Food Security and Foodborne Mycotoxicoses—What Should Be the Adequate Risk Assessment and Regulation?
Abstract
:1. Introduction
2. Mycotoxin Prevalence and Current Regulations
3. Joint Mycotoxin Exposure as a Cause of Foodborne Ailments
4. Some Critical Points in Adequate Risk Assessment, Hygiene Control, and Regulation of Mycotoxins
5. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stoev, S.D. Food safety and increasing hazard of mycotoxin occurrence in foods and feeds. Crit. Rev. Food Sci. Nutr. 2013, 53, 887–901. [Google Scholar] [CrossRef]
- Stoev, S.D. Foodborne Diseases due to Underestimated Hazard of Joint Mycotoxin Exposure at Low Levels and Possible Risk Assessment. Toxins 2023, 15, 464. [Google Scholar] [CrossRef]
- Pereira, C.S.; Cunha, S.C.; Fernandes, J.O. Prevalent mycotoxins in animal feed: Occurrence and analytical methods. Toxins 2019, 11, 290. [Google Scholar] [CrossRef] [PubMed]
- Vlachou, M.; Pexara, A.; Solomakos, N.; Govaris, A. Ochratoxin A in Slaughtered Pigs and Pork Products. Toxins 2022, 14, 67. [Google Scholar] [CrossRef] [PubMed]
- Marc, R.A. Implications of Mycotoxins in Food Safety. In Mycotoxins and Food Safety—Recent Advances; IntechOpen: London, UK, 2022; Chapter 1; pp. 1–146. Available online: https://www.intechopen.com/books/11023 (accessed on 1 December 2023).
- Scientific Cooperation on Questions Relating to Food (SCOOP). Assesment of dietary intake of ochratoxin A by the population of EU Member States—Report Task 3.2.7. European Commission, Directorate-General Health and Consumer Protection. 2002. Available online: https://food.ec.europa.eu/system/files/2016-10/cs_contaminants_catalogue_ochratoxin_task_3-2-7_en.pdf (accessed on 15 January 2024).
- Stoev, S.D. Foodborne mycotoxicoses, risk assessment and underestimated hazard of masked mycotoxins and joint mycotoxin effects or interaction. Environ. Toxicol. Pharmacol. 2015, 9, 794–809. [Google Scholar] [CrossRef]
- Gashaw, M. Review on Mycotoxins in Feeds: Implications to Livestock and human health. E3 J. Agric. Res. Dev. 2015, 5, 137–144. [Google Scholar]
- Kan, C.A.; Meijer, G.A.L. The risk of contamination of food with toxic substances present in animal feed. Anim. Feed Sci. Technol. 2007, 133, 84–108. [Google Scholar] [CrossRef]
- Stoev, S.D. Food security, underestimated hazard of joint mycotoxin exposure and management of the risk of mycotoxin contamination. Food Control 2024, 159, 110235. [Google Scholar] [CrossRef]
- Richard, J.L.; Payne, G.A. (Eds.) Mycotoxins: Risks in Plant, Animal, and Human Systems; Task Force Report N 139; CAST (Council for Agricultural Science and Technology): Ames, IA, USA, 2003. [Google Scholar]
- Smith, M.-C.; Madec, S.; Coton, E.; Hymery, N. Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their in vitro Combined Toxicological Effects. Toxins 2016, 8, 94. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Cotty, P.J.; Jaime-Garcia, R. Effect of climate on aflatoxin producing fungi and aflatoxin contamination. Int. J. Food Microbiol. 2007, 119, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Teller, R.S.; Schmidt, R.J.; Whitlow, L.W.; Kung, L., Jr. Effect of physical damage to ears of corn before harvest and treatment with various additives on the concentration of mycotoxins, silage fermentation, and aerobic stability of corn silage. J. Dairy Sci. 2012, 95, 1428–1436. [Google Scholar] [CrossRef] [PubMed]
- Reyneri, A. The role of climatic condition on micotoxin production in cereal. Vet. Res. Comm. 2006, 30, 87–89. [Google Scholar] [CrossRef]
- The European Commission. Regulation No. 2023/915 of 25 April 2023 setting maximum levels for certain contaminants in foodstuffs and repealing Regulation (EC) No. 1881/2006 of 19 December 2006. Off. J. Eur. Union 2023, 119, 103–157. [Google Scholar]
- Scudamore, K.A.; Banks, J.N. The fate of mycotoxins during cereal processing. In Meeting the Mycotoxin Menace, Proceedings of the 2nd World Mycotoxin Forum, Nordwijk, The Netherlands, 17–18 February 2003; Barug, D., van Egmond, H., López-García, R., van Osenbruggen, T., Visconti, A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2004; pp. 165–181. [Google Scholar]
- Khodaei, D.; Javanmardi, F.; Khaneghah, A.M. The global overview of the occurrence of mycotoxins in cereals: A three-year survey. Curr. Opin. Food Sci. 2021, 39, 36–42. [Google Scholar] [CrossRef]
- Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current situation of mycotoxin contamination and co-occurrence in animal feed—Focus on Europe. Toxins 2012, 4, 788–809. [Google Scholar] [CrossRef] [PubMed]
- Schatzmayr, G.; Streit, E. Global occurrence of mycotoxins in the food and feed chain: Facts and figures. World Mycotoxin J. 2013, 6, 213–222. [Google Scholar] [CrossRef]
- Scientific Cooperation on Questions Relating to Food (SCOOP). Collection of Occurrence Data of Fusarium Toxins in Food and Assessment of Dietary Intake by the Population of EU Member States—Report Task 3.2.10. European Commission, Directorate-General Health and Consumer Protection. 2003. Available online: https://food.ec.europa.eu/system/files/2016-10/cs_contaminants_catalogue_fusarium_task3210.pdf (accessed on 15 January 2024).
- Canadian Food Inspection Agency (CFIA). Report 2010–2011 Targeted Surveys—Ochratoxin A and Deoxynivalenol in Selected Foods; Canadian Food Inspection Agency: North York, ON, Canada, 2012.
- Adamse, P.; van Egmond, H.J.; Driessen, J.J.M.; de Rijk, T.C.; de Jong, J.; de Nijs, M. Trend Analysis of Mycotoxins in Animal Feed; RIKILT-Institute of Food Safety: Wageningen, The Netherlands, 2012; pp. 1–52. [Google Scholar]
- Kuzdraliński, A.; Solarska, E.; Muszyńska, M. Deoxynivalenol and zearalenone occurence in beers analysed by an enzyme-linked immunosorbent assay method. Food Control 2013, 29, 22–24. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Venâncio, A.; Lima, N.; Guilloux-Bénatier, M.; Rousseaux, S. Predominant mycotoxins, mycotoxigenic fungi and climate change related to wine. Food Res. Int. 2018, 103, 478–491. [Google Scholar] [CrossRef]
- Raters, M.; Matissek, R. Study on distribution of mycotoxins in cocoa beans. Mycotoxin Res. 2005, 21, 182–186. [Google Scholar] [CrossRef]
- Filippo, R.; Gallo, A.; Terenzio, B. Emerging mycotoxins in the food chain. Mediterr. J. Nutr. Metab. 2020, 13, 7–27. [Google Scholar]
- Zapaśnik, A.; Bryła, M.; Wa’skiewicz, A.; Ksieniewicz-Wózniak, E.; Podolska, G. Ochratoxin A and 20R-Ochratoxin A in Selected Foodstuffs and Dietary Risk Assessment. Molecules 2022, 27, 188. [Google Scholar] [CrossRef]
- Monbaliu, S.; van Poucke, C.; Detavernier, C.L.; Dumoulin, F.D.R.; van De Velde, M.; Schoeters, E.; van Dyck, S.; Averkieva, O.; van Peteghem, C.; de Saeger, S. Occurrence of mycotoxins in feed as analyzed by a multi-mycotoxin LC-MS/MS method. J. Agric. Food Chem. 2010, 58, 66–71. [Google Scholar] [CrossRef]
- Griessler, K.; Rodrigues, I.; Handl, J.; Hofstetter, U. Occurrence of mycotoxins in Southern Europe. World Mycotoxin J. 2010, 3, 301–309. [Google Scholar] [CrossRef]
- Völkel, I. The carry-over of mycotoxins in products of animal origin with special regard to its implications for the European Food Safety Legislation. Food Sci. Nutr. 2011, 2, 852–867. [Google Scholar] [CrossRef]
- Zhao, T.; Shen, X.L.; Chen, W.; Liao, X.; Yang, J.; Wang, Y.; Zou, Y.; Fang, C. Advances in research of nephrotoxicity and toxic antagonism of ochratoxin A. Toxin Rev. 2017, 36, 39–44. [Google Scholar] [CrossRef]
- Montanha, F.P.; Anater, A.; Burchard, J.F.; Luciano, F.B.; Meca, G.; Manyes, L.; Pimpão, C.T. Mycotoxins in dry-cured meats: A review. Food Chem. Toxicol. 2018, 111, 494–502. [Google Scholar] [CrossRef]
- Iqbal, S.Z.; Nisar, S.; Asi, M.R.; Jinap, S. Natural incidence of aflatoxins, ochratoxin A and zearalenone in chicken meat and eggs. Food Control 2014, 43, 98–103. [Google Scholar] [CrossRef]
- Miraglia, M.; Marvin, H.J.P.; Kleter, G.A.; Battilani, P.; Brera, C.; Coni, E.; Cubadda, F.; Croci, L.; De Santis, B.; Dekkers, S.; et al. Climate Change and Food Safety: An Emerging Issue with Special Focus on Europe. Food Chem. Toxicol. 2009, 47, 1009–1021. [Google Scholar] [CrossRef]
- Battilani, P.; Toscano, P.; Van Der Fels-Klerx, H.J.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 Contamination in Maize in Europe Increases Due to Climate Change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef]
- Assunção, R.; Martins, C.; Viegas, S.; Viegas, C.; Jakobsen, L.S.; Pires, S.; Alvito, P. Climate Change and the Health Impact of Aflatoxins Exposure in Portugal—An Overview. Food Addit. Contam. Part A Chem. Anal. Control. Expo Risk Assess. 2018, 35, 1610–1621. [Google Scholar] [CrossRef]
- Alvito, P.; Assunção, R. Climate Change and the Impact on Aflatoxin Contamination in Foods: Where Are We and What Should Be Expected? In Aflatoxins in Food; Springer: Cham, Switzerland, 2021; pp. 275–288. ISBN 9783030857615. [Google Scholar]
- Piva, G.; Battilani, P.; Pietri, A. Emerging issues in southern Europe: Aflatoxins in Italy. In The Mycotoxin Factbook, Food and Feed Topics; Barug, D., Bhatnagar, D., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006; pp. 139–153. [Google Scholar]
- The European Commission. Regulation No. 165/2010 of 26 February 2010 amending Regulation No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. Off. J. Eur. Union 2010, 50, 8–12. [Google Scholar]
- Goertz, A.; Zuehlke, S.; Spiteller, M.; Steiner, U.; Dehne, H.W.; Waalwijk, C.; de Vries, I.; Oerke, E.C. Fusarium species and mycotoxin profiles on commercial maize hybrids in Germany. Eur. J. Plant Pathol. 2010, 128, 101–111. [Google Scholar] [CrossRef]
- Cheli, F.; Campagnoli, A.; Pinotti, L.; Fusi, E.; Dell’Orto, V. Sampling feed for mycotoxins: Acquiring knowledge from food. J. Anim. Sci. 2009, 8, 5–22. [Google Scholar] [CrossRef]
- The European Commission. Regulation No. 2023/2782 of 14 December 2023 laying down the methods of sampling and analysis for the control of the levels of mycotoxins in food and repealing EC Regulation No. 401/2006. Off. J. Eur. Union 2023, 1–44. Available online: https://data.europa.eu/eli/reg_impl/2023/2782/oj (accessed on 15 January 2024).
- Krska, R.; Schubert-Ullrich, P.; Molinelli, A.; Sulyok, M.; MacDonald, S.; Crews, C. Mycotoxin analysis: An update. Food Addit. Contam. Part A Chem. Anal. Control Exp. Risk Assess. 2008, 25, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, A.; Jinap, S.; Soleimany, F. Qualitative and Quantitative Analysis of Mycotoxins. Compr. Rev. Food Sci. Food Saf. 2009, 8, 202–251. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.W.; Subrahmanyam, S.; Piletsky, S.A. Analytical methods for determination of mycotoxins: A review. Anal. Chim. Acta 2009, 632, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Shephard, G.S.; Berthiller, F.; Burdaspal, P.A.; Crews, C.; Jonker, M.A.; Krska, R.; Lattanzio, V.M.T.; MacDonald, S.; Malone, R.J.; Maragos, C.; et al. Developments in mycotoxin analysis: An update for 2011–2012. World Mycotoxin J. 2013, 6, 3–30. [Google Scholar] [CrossRef]
- Berthiller, F.; Burdaspal, P.A.; Crews, C.; Iha, M.H.; Krska, R.; Lattanzio, W.M.T.; MacDonald, S.; Malone, R.J.; Maragos, C.; Solfrizzo, M.; et al. Developments in mycotoxin analysis: An update for 2012–2013. World Mycotoxin J. 2014, 7, 3–33. [Google Scholar] [CrossRef]
- Fiby, I.; Sopel, M.M.; Michlmayr, H.; Adam, G.; Berthiller, F. Development and Validation of an LC-MS/MS Based Method for the Determination of Deoxynivalenol and Its Modified Forms in Maize. Toxins 2021, 13, 600. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.Z. Mycotoxins in food, recent development in food analysis and future challenges; A review. Curr. Opin. Food Sci. 2021, 42, 237–247. [Google Scholar] [CrossRef]
- Singh, J.; Mehta, A. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Sci. Nutr. 2020, 8, 2183–2204. [Google Scholar] [CrossRef] [PubMed]
- Battilani, P.; Palumbo, R.; Giorni, P.; Dall’Asta, C.; Dellafiora, L.; Gkrillas, A.; Toscano, P.; Crisci, A.; Brera, C.; De Santis, B.; et al. Mycotoxin mixtures in food and feed: Holistic, innovative, flexible risk assessment modelling approach. EFSA Support Publ. 2020, 17, 1757E. [Google Scholar] [CrossRef]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin contamination in the EU feed supply chain: A focus on cereal byproducts. Toxins 2016, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Marasas, W.F.O.; Kellerman, J.S.; Pienaar, J.G.; Naude, T.W. Leukoencephalomalacia: A mycotoxicosis of Equidae caused by Fusarium moniliforme Sheldon. Onderstepoort J. Vet. Res. 1976, 43, 113–122. [Google Scholar] [PubMed]
- Stoev, S.D.; Dutton, M.; Njobeh, P.; Mosonik, J.; Steenkamp, P. Mycotoxic nephropathy in Bulgarian pigs and chickens: Complex aetiology and similarity to Balkan Enedemic Nephropathy. Food Addit. Contam. A 2010, 27, 72–88. [Google Scholar] [CrossRef]
- Stoev, S.D.; Denev, S.; Dutton, M.F.; Njobeh, P.B.; Mosonik, J.S.; Steenkamp, P.; Petkov, I. Complex etiology and pathology of mycotoxic nephropathy in South African pigs. Mycotoxin Res. 2010, 26, 31–46. [Google Scholar] [CrossRef]
- Marasas, W.F.O.; Jaskiewics, K.; Venter, F.S.; van Schalkwyk, D.J. Fusarium moniliforme contamination of maize in oesophageal cancer areas in Transkei. S. Afr. Med. J. 1988, 74, 110–114. [Google Scholar]
- Missmer, S.A.; Suarez, L.; Felkner, M.; Wang, E.; Merrill, A.H., Jr.; Rothman, K.J.; Hendricks, K.A. Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ. Health Perspect. 2006, 114, 237–241. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J.-H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health. 2017, 14, 632. [Google Scholar] [CrossRef]
- Wu, F.; Groopman, J.D.; Pestka, J.J. Public Health Impacts of Foodborne Mycotoxins. Annu. Rev. Food Sci. Technol. 2014, 5, 351–372. [Google Scholar] [CrossRef]
- Yu, M.; Liu, P. Discussion on emergency management of food safety from the perspective of foodborne diseases caused by mycotoxins. Food Sci. Technol. 2023, 43, e114622. [Google Scholar] [CrossRef]
- Köppen, R.; Koch, M.; Siegel, D.; Merkel, S.; Maul, R.; Nehls, I. Determination of Mycotoxins in Foods: Current State of Analytical Methods and Limitations. Appl. Microbiol. Biotechnol. 2010, 86, 1595–1612. [Google Scholar] [CrossRef]
- Patial, V.; Asrani, R.; Thakur, M. Food-Borne Mycotoxicoses: Pathologies and Public Health Impact—Chapter 9. In Handbook of Food Bioengineering, Foodborne Diseases; Holban, A.-M., Grumezescu, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 239–274. [Google Scholar] [CrossRef]
- Alvito, P.; Assunção, R.M.; Bajard, L.; Martins, C.; Mengelers, M.J.B.; Mol, H.; Namorado, S.; van den Brand, A.D.; Vasco, E.; Viegas, S.; et al. Current Advances, Research Needs and Gaps in Mycotoxins Biomonitoring under the HBM4EU—Lessons Learned and Future Trends. Toxins 2022, 14, 826. [Google Scholar] [CrossRef]
- Fink-Gremmels, J.; Malekinejad, H. Clinical effects and biochemical mechanisms associated with exposure to the mycoestrogen zearalenone. Anim. Feed Sci. Technol. 2007, 137, 326–341. [Google Scholar] [CrossRef]
- Zinedine, A.; Soriano, J.M.; Moltó, J.C.; Mañes, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [Google Scholar] [CrossRef]
- Adeyeye, S.A. Aflatoxigenic fungi and mycotoxins in food: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 709–721. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Ondari, E.N.; Nwozo, S.; Odongo, G.A.; Eseoghene, I.J.; Twinomuhwezi, H.; Ogbonna, C.U.; Upadhyay, A.K.; Adeleye, A.O.; Okpala, C.O.R. Mycotoxins’ toxicological mechanisms involving humans, livestock and their associated health concerns: A review. Toxins 2022, 14, 167. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene; IARC: Lyon, France, 2002; Volume 82, ISBN 9789283215875. [Google Scholar]
- International Agency for Research on Cancer (IARC). Mycotoxins and Human Health; IARC Press: Lyon, France, 2012; Volume 158, pp. 87–104. [Google Scholar]
- Chaytor, A.C.; See, M.T.; Hansen, J.A.; de Souza, A.L.P.; Middleton, T.F.; Kim, S.W. Effects of chronic exposure of diets with reduced concentrations of aflatoxin and deoxynivalenol on growth and immune status of pigs. J. Anim. Sci. 2011, 89, 124–135. [Google Scholar] [CrossRef]
- Maresca, M. From the gut to the brain: Journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins 2013, 5, 784–820. [Google Scholar] [CrossRef]
- Richard, J.L. Some major mycotoxins and their mycotoxicosis—An overview. Int. J. Food Microbiol. 2007, 119, 3–10. [Google Scholar] [CrossRef]
- Akande, K.E.; Abubakar, M.M.; Adegbola, T.A.; Bogoro, S.E. Nutritional and health implications of mycotoxins in animal feeds: A review. Pak. J. Nutr. 2006, 5, 398–403. [Google Scholar] [CrossRef]
- Lutsky, I.I.; Mor, N. Alimentary toxic aleukia (septic angina, endemic panmyelotoxicosis, alimentary hemorrhagic aleukia): T-2 toxin-induced intoxication of cats. Am. J. Pathol. 1981, 104, 189–191. [Google Scholar]
- Pleadin, J.; Frece, J.; Markov, K. Mycotoxins in food and feed. In Advances in Food and Nutrition Research; Toldrá, F., Ed.; Academic Press: Cambridge, MA, USA, 2019; Chapter 8; pp. 297–345. [Google Scholar]
- Conkova, E.; Laciakova, A.; Kovac, G.; Seidel, H. Fusarial toxins and their role in animal diseases. Vet. J. 2003, 165, 214–220. [Google Scholar] [CrossRef]
- Marasas, W.F.O. Discovery and occurrence of the fumonisins: A historical perspective. Environ. Health Perspect. 2001, 109, 239–243. [Google Scholar]
- Haschek, W.M.; Rousseaux, C.G.; Wallig, M.A. Fundamentals of Toxicologic Pathology, 2nd ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 1–714. ISBN 9780080919324. [Google Scholar]
- McMillan, A.; Renaud, J.B.; Burgess, K.M.N.; Orimadegun, A.E.; Akinyinka, O.O.; Allen, S.J.; Miller, J.D.; Reid, G.; Sumarah, M.W. Aflatoxin exposure in Nigerian children with severe acute malnutrition. Food Chem. Toxicol. 2018, 111, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Jamil, M.; Khatoon, A.; Saleemi, M.K.; Aleem, M.T.; Bhatti, S.A.; Abidin, Z.U.; Imran, M.; Naseem, M.N.; Nawaz, M.Y.; Tahir, M.W.; et al. Mycotoxins prevalence in poultry industry and its preventive strategies. In Animal Health Perspectives; Abbas, R.Z., Khan, A., Liu, P., Saleemi, M.K., Eds.; Unique Scientific Publishers: Faisalabad, Pakistan, 2022; Volume 2, pp. 190–200. [Google Scholar] [CrossRef]
- Misihairabgwi, J.M.; Ezekiel, C.N.; Sulyok, M.; Shephard, G.S.; Krska, R. Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007–2016). Crit. Rev. Food Sci. Nutr. 2019, 59, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Abdulrazzaq, Y.M.; Osman, N.; Ibrahim, A. Fetal exposure to aflatoxins in the United Arab Emirates. Ann. Trop. Paediatr. 2002, 22, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D.; Vitanov, S.; Anguelov, G.; Petkova-Bocharova, T.; Creppy, E.E. Experimental mycotoxic nephropathy in pigs provoked by a mouldy diet containing ochratoxin A and penicillic acid. Vet. Res. Commun. 2001, 25, 205–223. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D.; Stefanov, M.; Denev, S.; Radic, B.; Domijan, A.-M.; Peraica, M. Experimental mycotoxicosis in chickens induced by ochratoxin A and penicillic acid and intervention by natural plant extracts. Vet. Res. Commun. 2004, 28, 727–746. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D.; Gundasheva, D.; Zarkov, I.; Mircheva, T.; Zapryanova, D.; Denev, S.; Mitev, Y.; Daskalov, H.; Dutton, M.; Mwanza, M.; et al. Experimental mycotoxic nephropathy in pigs provoked by a mouldy diet containing ochratoxin A and fumonisin B1. Exp. Toxicol. Pathol. 2012, 64, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D.; Hald, B.; Mantle, P. Porcine nephropathy in Bulgaria: A progressive syndrome of complex of uncertain (mycotoxin) etiology. Vet. Rec. 1998, 142, 190–194. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.; Dietrich, D.R. Mycotoxins Affecting the Kidney. In Toxicology of Kidneys; Hook, J.B., Ed.; Chemical Rubber Company Press: Boca Raton, FL, USA, 2004; pp. 895–936. [Google Scholar]
- Stoev, S.D.; Anguelov, G.; Ivanov, I.; Pavlov, D. Influence of ochratoxin A and an extract of artichoke on the vaccinal immunity and health in broiler chicks. Exp. Toxicol. Pathol. 2000, 52, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Mehtab, U.; Tahir, M.; Abbas, R.; Abbas, A.; Hussain, K.; Siddiqui, F.; Mohsin, M.; Rani, Z.; Rehman, A.; Yasin, R. Ochratoxin A Occurrence, Its Pathological Effects on Poultry Health and Decontamination Approaches. J. Hell. Vet. Med. Soc. 2022, 72, 3257–3262. [Google Scholar] [CrossRef]
- Stoev, S.D.; Koynarsky, V.; Mantle, P.G. Clinicomorphological studies in chicks fed ochratoxin A while simultaneously developing coccidiosis. Vet. Res. Commun. 2002, 26, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, A.; Abidin, Z. An extensive review of experimental ochratoxicosis in poultry: I. Growth and production parameters along with histopathological alterations. Worlds Poult. Sci. J. 2018, 74, 627–646. [Google Scholar] [CrossRef]
- Stoev, S.D. Studies on some feed additives and materials giving partial protection against the suppressive effect of ochratoxin A on egg production of laying hens. Res. Vet. Sci. 2010, 88, 486–491. [Google Scholar] [CrossRef]
- Betina, V. Biological effects of mycotoxins. In Mycotoxins: Chemical, Biological and Environmental Aspects; Betina, V., Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1989; Volume 9, pp. 42–58. [Google Scholar]
- International Program of Chemical Safety (IPCS). Selected Mycotoxins: Ochratoxins, Trichothecenes, Ergot; IPCS Environmental Health Criteria No. 105; WHO: Geneva, Switzerland, 1990.
- Schneider, D.J.; Miles, C.; Garthwaite, I.; van Halderen, A.; Wessels, J.C.; Lategan, H.J. First report of ergot-alkaloid toxicity in South Africa. Onderstepoort J. Vet. Res. 1996, 63, 97–108. [Google Scholar]
- Bennett, J.W.; Bentley, R. Pride and prejudice: The story of ergot. Perspect. Biol. Med. 1999, 42, 333–355. [Google Scholar] [CrossRef]
- Schneider, D.J.; Marasas, W.F.; Dale Kuys, J.C.; Kriek, N.P.; Van Schalkwyk, G.C. A field outbreak of suspected stachybotryotoxicosis in sheep. J. S. Afr. Vet. Assoc. 1979, 50, 73–81. [Google Scholar] [PubMed]
- Lefebvre, H.P.; Le Bars, J.; Legrand, C.; Le Bars, P.; Dossin, O.; Toutain, P.L.; Braun, J.P. Three cases of equine stachybotryotoxicosis. Revue Med. Vet. 1994, 145, 267–269. [Google Scholar]
- Assunção, R.; Alvito, P.; Kleiveland, C.R.; Lea, T.E. Characterization of in vitro effects of patulin on intestinal epithelial and immune cells. Toxicol. Lett. 2016, 250–251, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, H.; Arbabzadeh, O.; Khaaki, P.; Khataee, A.; Majidi, M.R.; Orooji, Y. Patulin and Trichothecene: Characteristics, occurrence, toxic effects and detection capabilities via clinical, analytical and nanostructured electrochemical sensing/biosensing assays in foodstuffs. Crit. Rev. Food Sci. Nutr. 2022, 62, 5540–5568. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Singh, N.; Ansari, K.M. Toxicological effects of patulin mycotoxin on the mammalian system: An overview. Toxicol. Res. 2017, 6, 764–771. [Google Scholar] [CrossRef]
- Shen, Y.; Nie, J.; Li, Z.; Li, H.; Wu, Y.; Zhang, J. Research progress on contamination, toxicity, biosynthesis and influencing factors of mycotoxins in fruits. Shipin Kexue 2018, 9, 294–304. [Google Scholar]
- Ramalingam, S.; Bahuguna, A.; Kim, M. The effects of mycotoxin patulin on cells and cellular components. Trends Food Sci. Technol. 2019, 83, 99–113. [Google Scholar] [CrossRef]
- Stoev, S.D. Studies on carcinogenic and toxic effects of ochratoxin A in chicks. Special issue “Ochratoxins”. Toxins 2010, 2, 649–664. [Google Scholar] [CrossRef]
- Stoev, S.D. Long term preliminary studies on toxic and carcinogenic effect of individual or simultaneous exposure to ochratoxin A and penicillic acid in mice. Toxicon 2020, 184, 192–201. [Google Scholar] [CrossRef]
- Stoev, S.D. Follow up long term preliminary studies on carcinogenic and toxic effects of ochratoxin A in rats and the putative protection of phenylalanine. Toxicon 2021, 190, 41–49. [Google Scholar] [CrossRef]
- Stoev, S.D. New Evidences about the Carcinogenic Effects of Ochratoxin A and Possible Prevention by Target Feed Additives. Toxins 2022, 14, 380. Available online: https://www.mdpi.com/2072-6651/14/6/380/pdf (accessed on 15 January 2024). [CrossRef] [PubMed]
- Stoev, S.D. Studies on teratogenic effect of ochratoxin A given via mouldy diet in mice in various sensitive periods of the pregnancy and the putative protection of phenylalanine. Toxicon 2022, 210, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Pfohl-Leszkowicz, A.; Manderville, R. An update on direct genotoxicity as a molecular mechanism of ochratoxin A carcinogenicity. Chem. Res. Toxicol. 2012, 25, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Claeys, L.; Romano, C.; De Ruyck, K.; Wilson, H.; Fervers, B.; Korenjak, M.; Zavadil, J.; Gunter, M.J.; De Saeger, S.; De Boevre, M.; et al. Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1449–1464. [Google Scholar] [CrossRef] [PubMed]
- Gelderblom, W.; Marasas, W.; Farber, E. The cancer initiating potential of the fumonisin B mycotoxins. Carcinogenesis 1992, 13, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Bensassi, F.; Gallerne, C.; Sharaf el dein, O.; Hajlaoui, M.R.; Lemaire, C.; Bacha, H. In vitro investigation of toxicological interactions between the fusariotoxins deoxynivalenol and zearalenone. Toxicon 2014, 84, 1–6. [Google Scholar] [CrossRef] [PubMed]
- De Ruyck, K.; De Boevre, M.; Huybrechts, I.; De Saeger, S. Dietary mycotoxins, co-exposure, and carcinogenesis in humans: Short review. Mutat. Res. Rev. Mutat. Res. 2015, 766, 32–41. [Google Scholar] [CrossRef]
- Grenier, B.; Loureiro-Bracarense, A.P.; Lucioli, J.; Pacheco, G.D.; Cossalter, A.M.; Moll, W.D.; Schatzmayr, G.; Oswald, I.P. Individual and combined effects of subclinical doses of deoxynivalenol and fumonisins in piglets. Mol. Nutr. Food Res. 2011, 55, 761–771. [Google Scholar] [CrossRef]
- Speijers, G.J.A.; Speijers, M.H.M. Combined toxic effects of mycotoxins. Toxicol. Lett. 2004, 153, 91–98. [Google Scholar] [CrossRef]
- Boonchuvit, B.; Hamilton, P.B.; Burmeister, H.R. Interaction of T-2 toxin with Salmonella infection in chickens. Poultry Sci. 1975, 54, 1693–1696. [Google Scholar] [CrossRef]
- Ziprin, R.I.; Holt, P.S.; Mortensen, R. T-2 toxin effects on the serum amyloid P-component (SAP) response of Listeria monocytogenes and Salmonella typhimurium infected mice. Toxicol. Lett. 1987, 39, 177–184. [Google Scholar] [CrossRef]
- Tai, J.H.; Pestka, J.J. Impaired murine resistance to Salmonella typhimurium following oral exposure to the trichothecene T-2 toxin. Food Chem. Toxicol. 1988, 26, 691–698. [Google Scholar] [CrossRef]
- Cooray, R.; Jonsson, P. Modulation of resistance to mastitis pathogens by pre-treatment of mice with T-2 toxin. Food Chem. Toxicol. 1990, 28, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Oswald, I.P.; Comera, C. Immunotoxicity of mycotoxins. Revue Med. Vet. 1998, 149, 585–590. [Google Scholar]
- Stoev, S.D.; Goundasheva, D.; Mirtcheva, T.; Mantle, P.G. Susceptibility to secondary bacterial infections in growing pigs as an early response in ochratoxicosis. Exp. Toxicol. Pathol. 2000, 52, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Elissalde, M.H.; Ziprin, R.L.; Huff, W.E.; Kubena, L.F.; Harvey, R.B. Effect of ochratoxin A on Salmonella-challenged broiler chicks. Poultry Sci. 1994, 73, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Fukata, T.; Sasai, K.; Baba, E.; Arakawa, A. Effect of ochratoxin A on Salmonella typhimurium-challenged layer chickens. Avian Dis. 1996, 40, 924–926. [Google Scholar] [CrossRef]
- Gupta, S.; Jindal, N.; Khokhar, R.S.; Asrani, R.K.; Ledoux, D.R.; Rottinghaus, G.E. Individual and combined effects of ochratoxin A and Salmonella enterica serovar Gallinarum infection on pathological changes in broiler chickens. Avian Pathol. 2008, 37, 265–272. [Google Scholar] [CrossRef]
- Kumar, A.; Jindal, N.; Shukla, C.L.; Pal, Y.; Ledoux, D.R.; Rottinghaus, G.E. Effect of ochratoxin A on Escherichia coli-challenged broiler chicks. Avian Dis. 2003, 47, 415–424. [Google Scholar] [CrossRef]
- Halloy, D.J.; Gustin, P.G.; Bouhet, S.; Oswald, I.P. Oral exposure to culture material extract containing fumonisins predisposes swine to the development of pneumonitis caused by Pasteurella multocida. Toxicology 2005, 213, 34–44. [Google Scholar] [CrossRef]
- Ramos, C.M.; Martinez, E.M.; Carrasco, A.C.; Puente, J.H.L.; Quezada, F.; Perez, J.T.; Oswald, I.P.; Elvira, S.M. Experimental trial of the effect of fumonisin B1 and the PRRS virus in swine. J. Anim. Vet. Adv. 2010, 9, 1301–1310. [Google Scholar]
- Pósa, R.; Donkó, T.; Bogner, P.; Kovács, M.; Repa, I.; Magyar, T. Interaction of Bordetella bronchiseptica, Pasteurella multocida and fumonisin B1 in the porcine respiratory tract followed up by computed tomography. Can. J. Vet. Res. 2011, 75, 176–183. [Google Scholar] [PubMed]
- Pósa, R.; Magyar, T.; Stoev, S.D.; Glávits, R.; Donkó, T.; Repa, I.; Kovács, M. Use of Computed Tomography and Histopathologic Review for Lung Lesions Produced by the Interaction between Mycoplasma hyopneumoniae and Fumonisin Mycotoxins in Pigs. Vet. Pathol. 2013, 50, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Pósa, R.; Stoev, S.D.; Kovács, M.; Donkó, T.; Repa, I.; Magyar, T. A comparative pathological finding in pigs exposed to fumonisin B1 and/or Mycoplasma hyopneumoniae. Toxicol. Ind. Health 2016, 32, 998–1012. [Google Scholar] [CrossRef] [PubMed]
- Manafi, M.; Mohan, K.; Ali, M.N. Effect of ochratoxin A on coccidiosis-challenged broiler chicks. World Mycotoxin J. 2011, 4, 177–181. [Google Scholar] [CrossRef]
- Longobardi, C.; Ferrara, G.; Andretta, E.; Montagnaro, S.; Damiano, S.; Ciarcia, R. Ochratoxin A and Kidney Oxidative Stress: The Role of Nutraceuticals in Veterinary Medicine—A Review. Toxins 2022, 14, 398. [Google Scholar] [CrossRef] [PubMed]
- Benkerroum, N. Chronic and acute toxicities of aflatoxins: Mechanisms of action. Int. J. Environ. Res. Public Health 2020, 17, 423. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Evaluation of certain mycotoxins that may contaminate food. In Proceedings of the 56th Meeting of JECFA, Geneva, Switzerland, 6–15 February 2001. [Google Scholar]
- Rosner, H. Mycotoxin Regulations: An Update. Rev. Med. Vet. 1998, 149, 679–680. [Google Scholar]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Scientific opinion—Risk assessment of aflatoxins in food. EFSA J. 2020, 18, 6040. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Summary and Conclusions, Issued on 12 April 2022. In Proceedings of the Ninety-Third Virtual Meeting, Virtual, 24–25, 29–30 March and 1 April 2022. [Google Scholar]
- The European Commission. Commission Recommendation 2013/165/EU of 27 March 2013 on the Presence of T-2 and HT-2 Toxin in Cereals and Cereal Products. Off. J. Eur. Union 2013, 91, 12–15. [Google Scholar]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Appropriateness to set a group health-based guidance value for zearalenone and its modified forms. EFSA J. 2016, 14, 4425. [Google Scholar]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Risks to Human and Animal Health Related to the Presence of Deoxynivalenol and Its Acetylated and Modified Forms in Food and Feed. EFSA J. 2017, 15, 4718. [Google Scholar]
- Wang, X.; Qiu, N.; Zhang, C.; Zhou, S.; Zhao, Y.; Wu, Y.; Gong, Y. Comprehensive dietary and internal exposure assessment of deoxynivalenol contamination in a high-risk area in China using duplicate diet studies and urinary biomarkers. Food Control 2021, 124, 107830. [Google Scholar] [CrossRef]
- Vidal, A.; Claeys, L.; Mengelers, M.; Vanhoorne, V.; Vervaet, C.; Huybrechts, B.; De Saeger, S.; De Boevre, M. Humans Significantly Metabolize and Excrete the Mycotoxin Deoxynivalenol and Its Modified Form Deoxynivalenol-3-Glucoside within 24 Hours. Sci. Rep. 2018, 8, 5255. [Google Scholar] [CrossRef] [PubMed]
- Alvito, P.; Barcelo, J.; De Meester, J.; Rito, E.; Suman, M. Mitigation of Mycotoxins during Food Processing: Sharing Experience among Europe and South East Asia. Sci. Technol. Cereals Oils Foods 2021, 29, 59–70. [Google Scholar]
- Knutsen, H.K.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; Hogstrand, C.; et al. Appropriateness to Set a Group Health-Based Guidance Value for Fumonisins and Their Modified Forms. EFSA J. 2018, 16, 5172. [Google Scholar]
- Grenier, B.; Applegate, T.J. Modulation of intestinal functions following mycotoxin ingestion: Meta-analysis of published experiments in animals. Toxins 2013, 5, 396–430. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Evaluation of certain food additives and contaminants. In Thirty-Seventh Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO Technical Report Series 806; World Health Organization: Geneva, Switzerland, 1991; pp. 29–31. [Google Scholar]
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Toxicological Evaluation of Certain Food Additives; WHO Food Additives Series. In Proceedings of the Forty-Nineth Meeting of JECFA, Geneva, Switzerland, 17–26 June 1997. [Google Scholar]
- Kuiper-Goodman, T.; Scott, P.M. Risk assessment of the mycotoxin ochratoxin A. Biomed. Environ. Sci. 1989, 2, 179–248. [Google Scholar] [PubMed]
- Boutrif, E.; Canet, C. Mycotoxin prevention and control: FAO programes. Revue Med. Vet. 1989, 149, 681–694. [Google Scholar]
- Krogh, P.; Hald, B.; Pederson, J. Occurrence of ochratoxin A and citrinin in cereals associated with mycotoxic porcine nephropathy. Acta Path. Mcrobiol. Scand. Sect. B 1973, 81, 689–695. [Google Scholar] [CrossRef]
- Stoev, S.D.; Stoeva, J.; Anguelov, G.; Hald, B.; Creppy, E.E.; Radic, B. Haematological, biochemical and toxicological investigations in spontaneous cases with different frequency of porcine nephropathy in Bulgaria. J. Vet. Med. Ser. A 1998, 45, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D. Complex Etiology, Prophylaxis and Hygiene Control in Mycotoxic Nephropathies in Farm Animals and Humans, Special Issue “Mycotoxins: Mechanisms of Toxicological Activity—Treatment and Prevention”, Section “Molecular Pathology”. Int. J. Mol. Sci. 2008, 9, 578–605. [Google Scholar] [CrossRef] [PubMed]
- Nordic Working Group on Food Toxicology and Risk Evaluation (NNT). Nordiske Seminar-og Arbeidsrapporter (1991:545); Health Evaluation of Ochratoxin A in Food Products, Nordic Council of Ministers: Copenhagen, Denmark, 1991; pp. 1–29. [Google Scholar]
- Dowell, F.E.; Dorner, J.W.; Cole, R.J.; Davidson, J.I. Aflatoxin reduction by screening farmers stock peanuts. Peanut Sci. 1990, 17, 6–8. [Google Scholar] [CrossRef]
- FAO. Manual on the Application of the HACCP System in Mycotoxin Prevention and Control; Joint FAO/WHO Food Standards Programme FAO: Rome, Italy, 2002.
- The European Commission. Commission Recomendation 2006/576/EC of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union 2006, 229, 7–9. [Google Scholar]
- The European Commission. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed. Off. J. Eur. Union 2002, 140, 10–21. [Google Scholar]
- The European Commission. Directive 2003/100/EC of 31 October 2003 amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council on undesirable substances in animal feed. Off. J. Eur. Union 2003, 285, 33–37. [Google Scholar]
- GB 2761-2017; Limit of mycotoxin in food of China National Food Safety Standard. United States Department of Agriculture (USDA): Washington, DC, USA, 2017.
- Micco, C.; Miraglia, M.; Onori, R.; Libanori, A.; Brera, C.; Mantovani, A.; Macri, C. Effect of combined exposure to ochratoxin A and penicillic acid on residues and toxicity in broilers. Ravista Soc. Ital. Sci. Dell’allimentazione 1991, 20, 101–108. [Google Scholar]
Mycotoxin | Feeds or Ingredients | Mean Level (μg/kg) | Positive % | Continent (Region) | Reference |
---|---|---|---|---|---|
AFs | various | 128 | 78 | South Asia | [21] |
AFs | various | 61 | 55 | Southeast Asia | |
OTA | various | 20 | 55 | South Asia | |
OTA | various | 4 | 49 | Eastern Europe | |
FUMs | various | 2691 | 77 | South America | |
DON | various | 1418 | 68 | North America | |
ZEA | various | 386 | 56 | North Asia | |
DON | various | 1060 | 78 | North Asia |
Mycotoxin | Feeds or Ingredients | Range (μg/kg) | Number of Samples | Positive % | Continent (Region) | Reference |
---|---|---|---|---|---|---|
OTA | wheat, maize | 22–33 | 82 | 2 | Europe | [30] |
FB1 | wheat, maize | 36–5114 | 82 | 44 | Europe | |
ZEA | wheat, maize | 58–387 | 82 | 15 | Europe | |
DON | wheat, maize | 74–9528 | 82 | 63 | Europe | |
HT-2 | wheat, maize | 22–116 | 82 | 9 | Europe | |
AFs | various | 0.5–66 | 127 | 25 | Southern Europe | [31] |
OTA | various | 1–54 | 46 | 22 | Southern Europe | |
FUMs | various | 25–36,390 | 89 | 66 | Southern Europe | |
DON | various | 52–4827 | 348 | 66 | Southern Europe | |
ZEA | various | 10–2939 | 303 | 28 | Southern Europe | |
T-2/HT-2 | various | 35–137 | 65 | 8 | Southern Europe |
Mycotoxins | TDI (µg/kg b.w.) |
---|---|
Ochratoxin A (OTA) | 0.0002–0.017 (the lower figure refers to a cancerogenic effect) |
Aflatoxins (AFs) (sum of AFB1, AFB2, AFG1, AFG2, AFM1) | No exact value (ALARA principle is applied)—less than 0.001–0.01 are advisable—the lower figure refers to a cancerogenic effect |
Patulin (PAT) | 0.4 |
Deoxynivalenol (DON) | 1 |
Nivalenol (NIV) | 1.2 |
T-2 + HT-2 toxins + DAS | 0.025 |
Zearalenone (ZEA) | 0.25 |
Fumonisins (FUMs) | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoev, S.D. Food Security and Foodborne Mycotoxicoses—What Should Be the Adequate Risk Assessment and Regulation? Microorganisms 2024, 12, 580. https://doi.org/10.3390/microorganisms12030580
Stoev SD. Food Security and Foodborne Mycotoxicoses—What Should Be the Adequate Risk Assessment and Regulation? Microorganisms. 2024; 12(3):580. https://doi.org/10.3390/microorganisms12030580
Chicago/Turabian StyleStoev, Stoycho D. 2024. "Food Security and Foodborne Mycotoxicoses—What Should Be the Adequate Risk Assessment and Regulation?" Microorganisms 12, no. 3: 580. https://doi.org/10.3390/microorganisms12030580
APA StyleStoev, S. D. (2024). Food Security and Foodborne Mycotoxicoses—What Should Be the Adequate Risk Assessment and Regulation? Microorganisms, 12(3), 580. https://doi.org/10.3390/microorganisms12030580