Identification and Pathogenicity of Fusarium Fungi Associated with Dry Rot of Potato Tubers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fusarium Strains
2.2. Genomic DNA Isolation, Sequencing, and Phylogenetic Analysis
2.3. Determination of Growth
2.4. Pathogenicity Test
2.5. Statistical Analysis
3. Results
3.1. Molecular Phylogeny
3.2. Effect of Temperature on Fungal Growth
3.3. Pathogenicity of the Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, M.; Ren, X.; Sun, Q.; Wang, Y.; Zhang, R. Characterization of Fusarium spp. causing potato dry rot in China and susceptibility evaluation of Chinese potato germplasm to the pathogen. Potato Res. 2012, 55, 175–184. [Google Scholar] [CrossRef]
- Stefańczyk, E.; Sobkowiak, S.; Brylińska, M.; Śliwka, J. Diversity of Fusarium spp. associated with dry rot of potato tubers in Poland. Eur. J. Plant Pathol. 2016, 145, 871–884. [Google Scholar] [CrossRef]
- Azil, N.; Stefańczyk, E.; Sobkowiak, S.; Chihat, S.; Boureghda, H.; Śliwka, J. Identification and pathogenicity of Fusarium spp. associated with tuber dry rot and wilt of potato in Algeria. Eur. J. Plant Pathol. 2021, 159, 495–509. [Google Scholar] [CrossRef]
- Wharton, P.; Hammerschmidt, R.; Kirk, W. Fusarium Dry Rot; Michigan State University: East Lansing, MI, USA, 2007; Available online: https://archive.lib.msu.edu/DMC/extension_publications/e2992/e2992.pdf (accessed on 22 January 2024).
- Herrmann, M.; Zocher, R.; Haese, A. Enniatin production by Fusarium strains and its effect on potato tuber tissue. Appl. Environ. Microbiol. 1996, 62, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Secor, G.A.; Salas, B. Fusarium dry rot and Fusarium wilt. In Compendium of Potato Diseases, 2nd ed.; Stevenson, W.R., Loria, R., Franc, G., Weingartner, D.P., Eds.; The American Phytopathological Society: St. Paul, MN, USA, 2001; pp. 23–25. [Google Scholar]
- Cullen, D.W.; Toth, I.K.; Pitkin, Y.; Boonham, N.; Walsh, K.; Barker, I.; Lees, A.K. Use of quantitative molecular diagnostic assays to investigate Fusarium dry rot in potato stocks and soil. Phytopathol. 2005, 95, 1462–1471. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Kumar, R.; Sharma, S.; Sagar, V.; Aggarwal, R.; Naga, K.C.; Lal, M.K.; Chourasia, K.N.; Kumar, D.; Kumar, M. Potato dry rot disease: Current status, pathogenomics and management. 3 Biotech 2020, 10, 503. [Google Scholar] [CrossRef] [PubMed]
- Choiseul, J.; Allen, L.; Carnegie, S.F. Fungi causing dry tuber rots of seed potatoes in storage in Scotland. Potato Res. 2007, 49, 241–253. [Google Scholar] [CrossRef]
- Heltoft, P.; Brurberg, M.B.; Skogen, M.; Le, V.H.; Razzaghian, J.; Hermansen, A. Fusarium spp. causing dry rot on potatoes in Norway and development of a real-time PCR method for detection of Fusarium coeruleum. Potato Res. 2016, 59, 67–80. [Google Scholar] [CrossRef]
- Esfahani, M.N. Susceptibility assessment of potato cultivars to Fusarium dry rot species. Potato Res. 2005, 48, 215–226. [Google Scholar] [CrossRef]
- Yikilmazsoy, G.; Tosun, N. Characterization of Fusarium sambucinum isolates associated with potato dry rot and evaluation of cultivar susceptibility and fungicides. Turk. J. Agric. For. 2021, 45, 10. [Google Scholar] [CrossRef]
- Erper, I.; Alkan, M.; Zholdoshbekova, S.; Turkkan, M.; Yildirim, E.; Özer, G. First report of dry rot of potato caused by Fusarium sambucinum in Kyrgyzstan. J. Plant Dis. Prot. 2022, 129, 189–191. [Google Scholar] [CrossRef]
- Hanson, L.E.; Schwager, S.J.; Loria, R. Thiabendazole resistance in 22 Fusarium species associated with dry rot of potato. Phytopathology 1996, 86, 378–384. [Google Scholar] [CrossRef]
- Estrada Jr, R.; Gudmestad, N.C.; Rivera, V.V.; Secor, G.A. Fusarium graminearum as a dry rot pathogen of potato in the USA: Prevalence, comparison of host isolate aggressiveness and factors affecting aetiology. Plant Pathol. 2010, 59, 1114–1120. [Google Scholar] [CrossRef]
- Christian, C.L. Characterization of Fusarium Dry Rot Pathogens of Potato and Fusarium Dry Rot Disease Management in the Pacific Northwest of the United States. A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy with a Major in Plant Science in the College of Graduate Studies University of Idaho. Ph.D. Thesis, College of Graduate Studies University of Idaho, Moscow, ID, USA, 2023. [Google Scholar]
- Peters, J.C.; Lees, A.K.; Cullen, D.W.; Sullivan, L.; Stroud, G.P.; Cunnington, A.C. Characterization of Fusarium spp. responsible for causing dry rot of potato in Great Britain. Plant Pathol. 2008, 57, 262–271. [Google Scholar] [CrossRef]
- Daami-Remadi, M. Potato Fusarium dry rot in Tunisia: Current status and future prospects. Pest. Technol. 2012, 6, 15–22. [Google Scholar]
- Gashgari, R.M.; Gherbawy, Y.A. Pathogenicity of some Fusarium species associated with superficial blemishes of potato tubers. Pol. J. Microbiol. 2013, 62, 59–66. [Google Scholar] [CrossRef]
- Gachango, E.; Hanson, L.E.; Rojas, A.; Hao, J.J.; Kirk, W.W. Fusarium spp. causing dry rot of seed potato tubers in Michigan and their sensitivity to fungicides. Plant Dis. 2012, 96, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
- Chehri, K.; Ghasempour, H.R.; Karimi, N. Molecular phylogenetic and pathogenetic characterization of Fusarium solani species complex (FSSC), the cause of dry rot on potato in Iran. Microb. Pathog. 2014, 67–68, 14–19. [Google Scholar] [CrossRef]
- Baturo-Ciesniewska, A.; Lenc, L.; Grabowski, A.; Lukanowski, A. Characteristics of Polish isolates of Fusarium sambucinum: Molecular identification, pathogenicity, diversity and reaction to control agents. Am. J. Potato Res. 2015, 92, 49–61. [Google Scholar] [CrossRef]
- Aydin, M.H.; İnal, B. Comparative susceptibility of some commercial potato cultivars to Fusarium sambucinum and F. solani isolates causing tuber dry rot. Appl. Ecol. Environ. Res. 2018, 16, 4879–4892. [Google Scholar] [CrossRef]
- Gherbawy, Y.A.; Hussein, M.A.; Hassany, N.A.; Shebany, Y.M.; Hassan, S.; El-Dawy, E.G.A.E. Phylogeny and pathogenicity of Fusarium solani species complex (FSSC) associated with potato tubers. J. Basic Microbiol. 2021, 61, 1133–1144. [Google Scholar] [CrossRef]
- O’Donnell, K.; Cigelnik, E.; Caspe, H.H. Molecular phylogenetic, morphological, and mycotoxin data support reidentification of the Quorn mycoprotein fungus as Fusarium venenatum. Fungal Genet. Biol. 1998, 23, 57–67. [Google Scholar] [CrossRef]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Jewell, L.E.; Hsiang, T. Multigene differences between Microdochium nivale and Microdochium majus. Botany 2013, 91, 99–106. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Lord, E.; Leclercq, M.; Boc, A.; Diallo, A.B.; Makarenkov, V. Armadillo 1.1: An original workflow platform for designing and conducting phylogenetic analysis and simulations. PLoS ONE 2012, 7, e29903. [Google Scholar] [CrossRef] [PubMed]
- Nirenberg, H.I. Morphological differentiation of Fusarium sambucinum Fuckel sensu stricto, F. torulosum (Berk. & Curt.) Nirenberg comb. nov. and F. venenatum Nirenberg sp. nov. Mycopathology 1995, 129, 131–141. [Google Scholar] [CrossRef]
- Khadieva, G.F.; Lutfullin, M.T.; Akosakh, Y.A.; Malova, A.V.; Mochalova, N.K.; Vologin, S.G.; Staszevski, Z.; Mardanova, A.M. Analysis of micromycetes of the genus Fusarium isolated from infected potato tubers grown in the Republic of Tatarstan. Dostizheniya Nauk. I Teh. APK 2018, 32, 34–39. (In Russian) [Google Scholar] [CrossRef]
- Belosokhov, A.F.; Yarmeeva, M.M.; Dolgov, A.M.; Mislavsky, S.M.; Albantov, G.P.; Kurchaev, M.L.; Kokaeva, L.Y.; Chudinova, E.M.; Elansky, S.N. Fungi of the genus Fusarium on potato tubers. Sovrem. Mikol. V Ross. 2022, 9, 250–252. (In Russian) [Google Scholar]
- Gagkaeva, T.; Orina, A.; Trubin, I.; Gavrilova, O.; Khiutti, A. Fusarium sambucinum: Causing dry tuber rot of potatoes. Plant Prot. News 2023, 106, 137–145. (In Russian) [Google Scholar] [CrossRef]
- Lombard, L.; Sandoval-Denis, M.; Lamprecht, S.C.; Crous, P.W. Epitypification of Fusarium oxysporum—Clearing the taxonomic chaos. Persoonia 2019, 43, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.M.; Chen, Q.; Diao, Y.Z.; Duan, W.J.; Cai, L. Fusarium incarnatum-equiseti complex from China. Persoonia 2019, 43, 70–89. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.W.; Sandoval-Denis, M.; Crous, P.W.; Zhang, X.G.; Lombard, L. Numbers to names—Reappraisal of the Fusarium incarnatum-equiseti species complex. Persoonia 2019, 43, 186–221. [Google Scholar] [CrossRef] [PubMed]
- Crous, P.W.; Lombard, L.; Sandoval-Denis, M.; Seifert, K.A.; Schroers, H.-J.; Chaverri, P.; Gené, J.; Guarro, J.; Hirooka, Y.; Bensch, K.; et al. Fusarium: More than a node or a foot-shaped basal cell. Stud. Mycol. 2021, 98, 100116. [Google Scholar] [CrossRef] [PubMed]
- Geiser, D.M.; Al-Hatmi, A.M.S.; Aoki, T.; Arie, T.; Balmas, V.; Barnes, I.; Bergstrom, G.C.; Bhattacharyya, M.K.; Blomquist, C.L.; Bowden, R.L.; et al. Phylogenomic analysis of a 55.1-kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex. Phytopathol. 2021, 111, 1064–1079. [Google Scholar] [CrossRef] [PubMed]
- Laraba, I.; McCormick, S.P.; Vaughan, M.M.; Geiser, D.M.; O’Donnell, K. Phylogenetic diversity, trichothecene potential, and pathogenicity within Fusarium sambucinum species complex. PLoS ONE 2021, 16, e0245037. [Google Scholar] [CrossRef]
- Wang, M.M.; Crous, P.W.; Sandoval-Denis, M.; Han, S.L.; Liu, F.; Liang, J.M.; Duan, W.J.; Cai, L. Fusarium and allied genera from China: Species diversity and distribution. Persoonia 2022, 48, 1–53. [Google Scholar] [CrossRef]
- Akhmetova, G.K.; Knapp, D.G.; Özer, G.; O’Donnell, K.; Laraba, I.; Kiyas, A.; Zabolotskich, V.; Kovács, G.M.; Molnár, O. Multilocus molecular phylogenetic-led discovery and formal recognition of four novel root-colonizing Fusarium species from northern Kazakhstan and the phylogenetically divergent Fusarium steppicola lineage. Mycologia 2023, 115, 16–31. [Google Scholar] [CrossRef]
- Altomare, C.; Logrieco, A.; Bottalico, A.; Mulé, G.; Moretti, A.; Evidente, A. Production of type A trichothecenes and enniatin B by Fusarium sambucinum Fuckel sensu lato. Mycopathology 1995, 129, 177–181. [Google Scholar] [CrossRef]
- Desjardins, A.E. Gibberella from A (venaceae) to Z (eae). Annu. Rev. Phytopathol. 2003, 41, 177–198. [Google Scholar] [CrossRef] [PubMed]
- Stakheev, A.A.; Samokhvalova, L.V.; Mikityuk, O.D.; Zavriev, S.K. Phylogenetic analysis and molecular typing of trichothecene-producing Fusarium fungi from Russian collections. Acta Nat. 2018, 10, 79–92. [Google Scholar] [CrossRef]
- O’Donnell, K.; Humber, R.A.; Geiser, D.M.; Kang, S.; Park, B.; Robert, V.A.R.G.; Crous, P.W.; Johnston, P.R.; Aoki, T.; Rooney, A.P.; et al. Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and Fusarium MLST. Mycologia 2012, 104, 427–445. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Al-Hatmi, A.M.S.; Aoki, T.; Brankovics, B.; Cano-Lira, J.F.; Coleman, J.J.; de Hoog, G.S.; Di Pietro, A.; Frandsen, R.J.N.; Geiser, D.M.; et al. No to Neocosmospora: Phylogenomic and practical reasons for continued inclusion of the Fusarium solani species complex in the genus Fusarium. mSphere 2020, 5, e00810-20. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Denis, M.; Guarnaccia, V.; Polizzi, G.; Crous, P.W. Symptomatic Citrus trees reveal a new pathogenic lineage in Fusarium and two new Neocosmospora species. Persoonia 2018, 40, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Denis, M.; Crous, P.W. Removing chaos from confusion: Assigning names to common human and animal pathogens in Neocosmospora. Persoonia 2018, 41, 109–129. [Google Scholar] [CrossRef] [PubMed]
- Gräfenhan, T.; Schroers, H.J.; Nirenberg, H.I.; Seifert, K.A. An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella. Stud. Mycol. 2011, 68, 79–113. [Google Scholar] [CrossRef]
- Schroers, H.J.; Samuels, G.J.; Zhang, N.; Short, D.P.; Juba, J.; Geiser, D.M. Epitypification of Fusisporium (Fusarium) solani and its assignment to a common phylogenetic species in the Fusarium solani species complex. Mycologia 2016, 108, 806–819. [Google Scholar] [CrossRef]
- Sandoval-Denis, M.; Lombard, L.; Crous, P.W. Back to the roots: A reappraisal of Neocosmospora. Persoonia 2019, 43, 90–185. [Google Scholar] [CrossRef]
- Zhu, Z.; Dong, Z.; Mo, R.; Liu, X.; Zuo, Y.; Hu, X.; Zhang, C.; Yu, C. First report of Neocosmospora mori causing root rot and stem blight of mulberry in Nanzhang, Hubei, China. Plant Dis. 2023, 108, 206. [Google Scholar] [CrossRef]
- Imazaki, I.; Kadota, I. Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems. FEMS Microbiol. Ecol. 2015, 91, fiv098. [Google Scholar] [CrossRef]
- Guarnaccia, V.; Van Niekerk, J.; Crous, P.; Sandoval-Denis, M. Neocosmospora spp. associated with dry root rot of Citrus in South Africa. Phytopathol. Mediter. 2021, 60, 79–100. [Google Scholar] [CrossRef]
- Šišić, A.; Al-Hatmi, A.M.S.; Baćanović-Šišić, J.; Ahmed, S.A.; Dennenmoser, D.; de Hoog, G.S.; Finckh, M.R. Two new species of the Fusarium solani species complex isolated from compost and hibiscus (Hibiscus sp.). Antonie Van. Leeuwenhoek 2018, 111, 1785–1805. [Google Scholar] [CrossRef] [PubMed]
- Crous, P.W.; Hernández-Restrepo, M.; van Iperen, A.L.; Starink-Willemse, M.; Sandoval-Denis, M.; Groenewald, J.Z. Citizen science project reveals novel fusarioid fungi (Nectriaceae, Sordariomycetes) from urban soils. Fungal Syst. Evol. 2021, 8, 101–127. [Google Scholar] [CrossRef] [PubMed]
- Biota of New Zealand. Names and Classification of Bacteria, Fungi, Land Invertebrates and Plants. Available online: https://biotanz.landcareresearch.co.nz/scientific-names/3bbf4ec3-6c71-40bf-88bf-3873f2a5357f (accessed on 19 January 2024).
- Zhang, H.; Yang, Z.; Jiang, Z.; Zhang, X.; Nizamani, M.M.; Wu, Y.; Wei, S.; Wang, Y.; Xie, X. Diversity of fungi isolated from potato nematode cysts in Guizhou province, China. J. Fungi 2023, 9, 247. [Google Scholar] [CrossRef]
- Prudnikova, S.V.; Churakov, A.A.; Ovsyankina, S.V.; Khizhnyak, S.V. Isolation and identification of autochthonous pathogens of potato diseases common in the regions of Siberia. In Biotechnology of New Materials–Environment–Quality of Life, Proceedings of the IV International Scientific Conference, Krasnoyarsk, Russia, 10–13 October 2021; Siberian Federal University: Krasnoyarsk, Russia, 2021; pp. 174–177. (In Russian) [Google Scholar]
- Debbarma, R.; Kamil, D.; Maya Bashyal, B.; Choudhary, S.P.; Thokla, P. First report of root rot disease on Solanum lycopersicum L. caused by Fusarium vanettenii in India. J. Phytopathol. 2021, 169, 752–756. [Google Scholar] [CrossRef]
- Daami-Remadi, M.; Jabnoun-Khiareddine, H.; Ayed, F.; El Mahjoub, M. Effect of temperature on aggressivity of Tunisian Fusarium species causing potato (Solanum tuberosum L.) tuber dry rot. J. Agron. 2006, 5, 350–355. [Google Scholar] [CrossRef]
- Lenc, L. Pathogenicity and potential capacity for producing mycotoxins by Fusarium sambucinum and Fusarium solani isolates derived from potato tubers. Plant Breed. Seed Sci. 2011, 64, 23–34. [Google Scholar] [CrossRef]
- Romberg, M.K.; Davis, R.M. Host range and phylogeny of Fusarium solani f. sp. eumartii from potato and tomato in California. Plant Dis. 2007, 91, 585–592. [Google Scholar] [CrossRef]
- El-Hassan, K.I.; El-Saman, M.G.; Mosa, A.A.; Mostafa, M.H. Variation among Fusarium spp. the causal of potato tuber dry rot in their pathogenicity and mycotoxins production. Egypt. J. Phytopathol. 2007, 35, 53–68. [Google Scholar]
- Morid, B.; Zare, R.; Rezaee, S.; Zamani-Zadeh, H.; Hajmansour, S. The relationship between cutinases and the pathogenicity/virulence of Fusarium solani in potato tubers. Phytopathol. Mediter. 2009, 48, 403–410. [Google Scholar]
- Xue, H.; Liu, Q.; Yang, Z. Pathogenicity, mycotoxin production, and control of potato dry rot caused by Fusarium spp.: A review. J. Fungi 2023, 9, 843. [Google Scholar] [CrossRef] [PubMed]
- Bojanowski, A.; Avis, T.J.; Pelletier, S.; Tweddell, R.J. Management of potato dry rot. Postharvest Biol. Technol. 2013, 84, 99–109. [Google Scholar] [CrossRef]
- Steglińska, A.; Sulyok, M.; Janas, R.; Grzesik, M.; Liszkowska, W.; Kręgiel, D.; Gutarowska, B. Metabolite formation by fungal pathogens of potatoes (Solanum tuberosum L.) in the presence of bioprotective agents. Int. J. Environ. Res. Public Health 2023, 20, 5221. [Google Scholar] [CrossRef]
- Ellner, F.M. Mycotoxins in potato tubers infected by Fusarium sambucinum. Mycotox. Res. 2002, 18, 57–61. [Google Scholar] [CrossRef]
- Eranthodi, A.; Schneiderman, D.; Harris, L.J.; Witte, T.E.; Sproule, A.; Hermans, A.; Overy, D.P.; Chatterton, S.; Liu, J.; Li, T.; et al. Enniatin production influences Fusarium avenaceum virulence on potato tubers, but not on durum wheat or peas. Pathogens 2020, 9, 75. [Google Scholar] [CrossRef]
Species | Species Complex | Strain ID | Origin | Year | GenBank Accessions | |
---|---|---|---|---|---|---|
tef | rpb2 | |||||
F. sambucinum | FSAMSC * | MFG 60833 | Russia: Vologda region | 2020 | OR020701 | OR727754 |
F. sambucinum | FSAMSC | MFG 60834 | Russia: Vologda region | 2020 | OR020702 | OR727755 |
F. sambucinum | FSAMSC | MFG 70102 | Russia: Novgorod region | 2020 | OR020704 | OR727756 |
F. sambucinum | FSAMSC | MFG 70133 | Russia: Yaroslavl region | 2020 | OR020710 | OR727758 |
F. sambucinum | FSAMSC | MFG 70134 | Russia: Yaroslavl region | 2020 | OR020711 | OR727759 |
F. sambucinum | FSAMSC | MFG 70135 | Russia: Stavropol region | 2020 | OR020712 | OR727760 |
F. sambucinum | FSAMSC | MFG 70149 | Russia: Samara region | 2020 | OR020717 | OR727761 |
F. sambucinum | FSAMSC | MFG 70160 | Russia: Moscow region | 2021 | OR020724 | OR727762 |
F. sambucinum | FSAMSC | MFG 70162 | Russia: Chuvashia | 2021 | OR020725 | OR727763 |
F. sambucinum | FSAMSC | MFG 70166 | Russia: Chuvashia | 2021 | OR020728 | OR727764 |
F. sambucinum | FSAMSC | MFG 70175 | Russia: Kaluga region | 2021 | OR020730 | OR727753 |
F. sambucinum | FSAMSC | MFG 70201 | Russia: Vologda region | 2021 | OR020734 | OR727765 |
F. sambucinum | FSAMSC | MFG 70202 | Russia: Udmurtia | 2021 | OR020735 | OR727766 |
F. sambucinum | FSAMSC | MFG 70208 | Russia: Ryazan region | 2022 | OR020736 | OR727767 |
F. sambucinum | FSAMSC | MFG 70210 | Russia: Ryazan region | 2022 | OR020737 | OR727768 |
F. sambucinum | FSAMSC | MFG 80005 | Russia: Novgorod region | 2020 | OR020738 | OR727769 |
F. sambucinum | FSAMSC | MFG 80204 | Russia: Moscow region | 2021 | OR020739 | OR727770 |
F. sambucinum | FSAMSC | MFG 80337 | Russia: Tula region | 2022 | OR020741 | OR727771 |
F. sambucinum | FSAMSC | MFG 80361 | Russia: Omsk region | 2022 | OR020742 | OR727772 |
F. sambucinum | FSAMSC | MFG 80362 | Russia: Omsk region | 2022 | OR020743 | OR727773 |
F. sambucinum | FSAMSC | MFG 80365 | Russia: Omsk region | 2022 | OR020744 | OR727774 |
F. venenatum | FSAMSC | MFG 70118 | Russia: Leningrad region | 2020 | OR020706 | OR727757 |
F. mori | FSSC ** | MFG 70147 | Russia: Samara region | 2020 | OR020716 | OR727777 |
F. noneumartii | FSSC | MFG 70154 | Russia: Bashkiria | 2021 | OR020719 | OR727778 |
F. noneumartii | FSSC | MFG 70155 | Russia: Bashkiria | 2021 | OR020720 | OR727779 |
F. noneumartii | FSSC | MFG 70176 | Russia: Moscow region | 2021 | OR020731 | OR727781 |
F. noneumartii | FSSC | MFG 70177 | Russia: Moscow region | 2021 | OR020732 | OR727782 |
F. stercicola | FSSC | MFG 70108 | Russia: Pskov region | 2020 | OR020705 | OR727775 |
F. stercicola | FSSC | MFG 70141 | Russia: Stavropol region | 2020 | OR020715 | OR727776 |
F. vanettenii | FSSC | MFG 70164 | Russia: Chuvashia | 2021 | OR020726 | OR727780 |
F. vanettenii | FSSC | MFG 80216 | Russia: Pskov region | 2021 | OR020740 | OR727783 |
SC * | Fusarium spp. (No. of Strains) | Temperature, °C | ||||||
---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | 35 | ||
FSAMSC | F. sambucinum | 0.8 ± 0.1 ** | 3.2 ± 0.2 | 6.9 ± 0.3 | 11.0 ± 0.5 | 13.4 ± 0.3 | 6.2 ± 0.3 | 0 |
(n = 19) | (0–1.8) | (2.0–4.4) | (5.1–8.8) | (8.0–13.8) | (11.6–15.0) | (3.6–8.3) | (0–0.8) | |
F. venenatum | 0 | 2.4 | 6.7 ± 0.1 | 10.5 ± 0.1 | 13.5 ± 0.1 | 8.7 ± 0.1 | 0.9 ± 0.1 | |
(n = 1) | (2.4; 2.4) | (6.6; 6.8) | (10.4; 10.6) | (13.4; 13.6) | (8.6; 8.8) | (0.8; 1.0) | ||
FSSC | F. noneumartii | 0 | 1.5 ± 0.8 | 4.0 ± 1.0 | 7.2 ± 1.5 | 9.6 ± 1.5 | 8.2 ± 0.2 | 1.5 ± 0.6 |
(n = 4) | (0.6–3.8) | (3.0–7.2) | (5.5–11.7) | (8.0–14.1) | (7.5–8.6) | (0–3.2) | ||
F. stercicola | 0 | 1.0 | 3.7 ± 0.1 | 7.0 | 9.6 ± 0.1 | 9.2 | 0 | |
(n = 2) | (1.0; 1.0) | (3.6; 3.8) | (7.0; 7.0) | (9.5; 9.7) | (9.2; 9.2) | |||
F. vanettenii | 0 | 0.8 ± 0.3 | 2.6 | 4.7 ± 0.9 | 6.3 ± 2.1 | 6.2 ± 3.2 | 2.8 ± 2.7 | |
(n = 2) | (0.4; 1.1) | (2.6; 2.6) | (3.8; 5.6) | (4.2; 8.4) | (2.9; 9.4) | (0; 5.5) | ||
F. mori | 0 | 1.0 | 3.5 ± 0.1 | 6.9 ± 0.3 | 9.0 | 10.7 ± 0.3 | 1.2 ± 0.2 | |
(n = 1) | (1.0; 1.0) | (3.4; 3.6) | (6.6; 7.2) | (9.0; 9.0) | (10.4; 11.0) | (1.0; 1.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrilova, O.; Orina, A.; Trubin, I.; Gagkaeva, T. Identification and Pathogenicity of Fusarium Fungi Associated with Dry Rot of Potato Tubers. Microorganisms 2024, 12, 598. https://doi.org/10.3390/microorganisms12030598
Gavrilova O, Orina A, Trubin I, Gagkaeva T. Identification and Pathogenicity of Fusarium Fungi Associated with Dry Rot of Potato Tubers. Microorganisms. 2024; 12(3):598. https://doi.org/10.3390/microorganisms12030598
Chicago/Turabian StyleGavrilova, Olga, Aleksandra Orina, Ilya Trubin, and Tatiana Gagkaeva. 2024. "Identification and Pathogenicity of Fusarium Fungi Associated with Dry Rot of Potato Tubers" Microorganisms 12, no. 3: 598. https://doi.org/10.3390/microorganisms12030598
APA StyleGavrilova, O., Orina, A., Trubin, I., & Gagkaeva, T. (2024). Identification and Pathogenicity of Fusarium Fungi Associated with Dry Rot of Potato Tubers. Microorganisms, 12(3), 598. https://doi.org/10.3390/microorganisms12030598