Analysis of Antimicrobial Resistance in Bacterial Pathogens Recovered from Food and Human Sources: Insights from 639,087 Bacterial Whole-Genome Sequences in the NCBI Pathogen Detection Database
Abstract
:1. Introduction
2. Materials and Methods
2.1. Retrieval of Bacterial Sequence Metadata from NCBI/NPDD Analysis Pipeline
2.2. Isolation Source Categorization
2.3. Antimicrobial Resistance Categorization
2.4. Enumeration of Resistance by Isolation Source
2.5. Statistical Analysis
3. Results
3.1. Antimicrobial Resistance by Drug Class
3.2. Antibiotic Resistance
3.3. Biocide Resistance
3.4. Metal Resistance
4. Discussion
4.1. The Importance of Metadata
4.2. Filling the Gaps in Agri-Food Testing and Resistance Surveillance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC. Center for Disease Control and Prevention Achievements in Public Health 1900–1999: Control of Infectious Diseases. Available online: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm4829a1.htm (accessed on 10 November 2016).
- Kirchhelle, C. Pharming Animals: A Global History of Antibiotics in Food Production (1935–2017). Palgrave Commun. 2018, 4, 96. [Google Scholar] [CrossRef]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A Review of Antibiotic Use in Food Animals: Perspective, Policy, and Potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Kimera, Z.I.; Mshana, S.E.; Rweyemamu, M.M.; Mboera, L.E.G.; Matee, M.I.N. Antimicrobial Use and Resistance in Food-Producing Animals and the Environment: An African Perspective. Antimicrob. Resist. Infect. Control 2020, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial Activity of Metals: Mechanisms, Molecular Targets and Applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Durán, N.; Durán, M.; de Jesus, M.B.; Seabra, A.B.; Fávaro, W.J.; Nakazato, G. Silver Nanoparticles: A New View on Mechanistic Aspects on Antimicrobial Activity. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Rensing, C.; Moodley, A.; Cavaco, L.M.; McDevitt, S.F. Resistance to Metals Used in Agricultural Production. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 83–107. ISBN 978-1-68367-052-0. [Google Scholar]
- Argudín, M.A.; Hoefer, A.; Butaye, P. Heavy Metal Resistance in Bacteria from Animals. Res. Vet. Sci. 2019, 122, 132–147. [Google Scholar] [CrossRef]
- Maillard, J.-Y. Resistance of Bacteria to Biocides. Microbiol. Spectr. 2018, 6, 1110–1128. [Google Scholar] [CrossRef] [PubMed]
- Pal, C.; Asiani, K.; Arya, S.; Rensing, C.; Stekel, D.J.; Larsson, D.G.J.; Hobman, J.L. Chapter Seven—Metal Resistance and Its Association with Antibiotic Resistance. In Advances in Microbial Physiology; Poole, R.K., Ed.; Microbiology of Metal Ions; Academic Press: Cambridge, MA, USA, 2017; Volume 70, pp. 261–313. [Google Scholar]
- Wales, A.D.; Davies, R.H. Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens. Antibiotics 2015, 4, 567–604. [Google Scholar] [CrossRef] [PubMed]
- Holah, J.T.; Taylor, J.H.; Dawson, D.J.; Hall, K.E. Biocide Use in the Food Industry and the Disinfectant Resistance of Persistent Strains of Listeria monocytogenes and Escherichia coli. J. Appl. Microbiol. 2002, 92, 111S–120S. [Google Scholar] [CrossRef]
- CDC. Antibiotic Resistance Spreads in the Food Supply. Available online: https://www.cdc.gov/drugresistance/food.html (accessed on 10 January 2024).
- Riley, L.W. Extraintestinal Foodborne Pathogens. Annu. Rev. Food Sci. Technol. 2020, 11, 275–294. [Google Scholar] [CrossRef]
- Wegener, H.C. Antibiotics in Animal Feed and Their Role in Resistance Development. Curr. Opin. Microbiol. 2003, 6, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Cantas, L.; Shah, S.Q.A.; Cavaco, L.M.; Manaia, C.M.; Walsh, F.; Popowska, M.; Garelick, H.; Bürgmann, H.; Sørum, H. A Brief Multi-Disciplinary Review on Antimicrobial Resistance in Medicine and Its Linkage to the Global Environmental Microbiota. Front. Microbiol. 2013, 4, 96. [Google Scholar] [CrossRef] [PubMed]
- Bintsis, T. Foodborne Pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef] [PubMed]
- Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Res. Int. 2016, 2016, e2475067. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Buta-Hubeny, M.; Korzeniewska, E.; Hubeny, J.; Zieliński, W.; Rolbiecki, D.; Harnisz, M.; Paukszto, Ł. Structure of the Manure Resistome and the Associated Mobilome for Assessing the Risk of Antimicrobial Resistance Transmission to Crops. Sci. Total Environ. 2022, 808, 152144. [Google Scholar] [CrossRef] [PubMed]
- Savin, M.; Bierbaum, G.; Hammerl, J.A.; Heinemann, C.; Parcina, M.; Sib, E.; Voigt, A.; Kreyenschmidt, J. ESKAPE Bacteria and Extended-Spectrum-β-Lactamase-Producing Escherichia coli Isolated from Wastewater and Process Water from German Poultry Slaughterhouses. Appl. Environ. Microbiol. 2020, 86, e02748-19. [Google Scholar] [CrossRef] [PubMed]
- Jones, I.A.; Joshi, L.T. Biocide Use in the Antimicrobial Era: A Review. Molecules 2021, 26, 2276. [Google Scholar] [CrossRef]
- Pokharel, S.; Shrestha, P.; Adhikari, B. Antimicrobial Use in Food Animals and Human Health: Time to Implement ‘One Health’ Approach. Antimicrob. Resist. Infect. Control 2020, 9, 181. [Google Scholar] [CrossRef]
- van Alen, S.; Kaspar, U.; Idelevich, E.A.; Köck, R.; Becker, K. Increase of Zinc Resistance in German Human Derived Livestock-Associated MRSA between 2000 and 2014. Vet. Microbiol. 2018, 214, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Nriagu, J.O. A History of Global Metal Pollution. Science 1996, 272, 223. [Google Scholar] [CrossRef]
- Hanfi, M.Y.; Mostafa, M.Y.A.; Zhukovsky, M.V. Heavy Metal Contamination in Urban Surface Sediments: Sources, Distribution, Contamination Control, and Remediation. Environ. Monit. Assess. 2019, 192, 32. [Google Scholar] [CrossRef] [PubMed]
- Dutta, V.; Elhanafi, D.; Kathariou, S. Conservation and Distribution of the Benzalkonium Chloride Resistance Cassette bcrABC in Listeria monocytogenes. Appl. Environ. Microbiol. 2013, 79, 6067–6074. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, S.; López-Alonso, V.; Rodríguez, P.; Martínez-Suárez, J.V. The Connection between Persistent, Disinfectant-Resistant Listeria monocytogenes Strains from Two Geographically Separate Iberian Pork Processing Plants: Evidence from Comparative Genome Analysis. Appl. Environ. Microbiol. 2016, 82, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Kücken, D.; Feucht, H.-H.; Kaulfers, P.-M. Association of qacE and qacE Δ1 with Multiple Resistance to Antibiotics and Antiseptics in Clinical Isolates of Gram-Negative Bacteria. FEMS Microbiol. Lett. 2000, 183, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Nie, Q.; Wang, W.; Shi, L.; Yan, H. Characterization of a Transferable bcrABC and cadAC Genes-Harboring Plasmid in Listeria monocytogenes Strain Isolated from Food Products of Animal Origin. Int. J. Food Microbiol. 2016, 217, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Romero, J.L.; Grande Burgos, M.J.; Pérez-Pulido, R.; Gálvez, A.; Lucas, R. Resistance to Antibiotics, Biocides, Preservatives and Metals in Bacteria Isolated from Seafoods: Co-Selection of Strains Resistant or Tolerant to Different Classes of Compounds. Front. Microbiol. 2017, 8, 1650. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Bhatia, M.; Gupta, P.; Omar, B.J. Emerging Biocide Resistance among Multidrug-Resistant Bacteria: Myth or Reality? A Pilot Study. J. Pharm. Bioallied Sci. 2018, 10, 96–101. [Google Scholar] [CrossRef]
- Vijayakumar, R.; Sandle, T. A Review on Biocide Reduced Susceptibility Due to Plasmid-Borne Antiseptic-Resistant Genes—Special Notes on Pharmaceutical Environmental Isolates. J. Appl. Microbiol. 2019, 126, 1011–1022. [Google Scholar] [CrossRef]
- Oniciuc, E.-A.; Likotrafiti, E.; Alvarez-Molina, A.; Prieto, M.; López, M.; Alvarez-Ordóñez, A. Food Processing as a Risk Factor for Antimicrobial Resistance Spread along the Food Chain. Curr. Opin. Food Sci. 2019, 30, 21–26. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Zhang, H.; Shi, W.; Liu, Y. Bacterial Heavy-Metal and Antibiotic Resistance Genes in a Copper Tailing Dam Area in Northern China. Front. Microbiol. 2019, 10, 1916. [Google Scholar] [CrossRef]
- Futoma-Kołoch, B.; Książczyk, M.; Korzekwa, K.; Migdał, I.; Pawlak, A.; Jankowska, M.; Kędziora, A.; Dorotkiewicz-Jach, A.; Bugla-Płoskońska, G. Selection and Electrophoretic Characterization of Salmonella enterica Subsp. Enterica Biocide Variants Resistant to Antibiotics. Pol. J. Vet. Sci. 2015, 18, 725–732. [Google Scholar] [CrossRef]
- Webber, M.A.; Whitehead, R.N.; Mount, M.; Loman, N.J.; Pallen, M.J.; Piddock, L.J.V. Parallel Evolutionary Pathways to Antibiotic Resistance Selected by Biocide Exposure. J. Antimicrob. Chemother. 2015, 70, 2241–2248. [Google Scholar] [CrossRef] [PubMed]
- Monte, D.F.; Lincopan, N.; Fedorka-Cray, P.J.; Landgraf, M. Current Insights on High Priority Antibiotic-Resistant Salmonella Enterica in Food and Foodstuffs: A Review. Curr. Opin. Food Sci. 2019, 26, 35–46. [Google Scholar] [CrossRef]
- Fernández Márquez, M.L.; Burgos, M.J.G.; Pulido, R.P.; Gálvez, A.; López, R.L. Biocide Tolerance and Antibiotic Resistance in Salmonella Isolates from Hen Eggshells. Foodborne Pathog. Dis. 2016, 14, 89–95. [Google Scholar] [CrossRef]
- Márquez, M.L.F.; Burgos, M.J.G.; Pulido, R.P.; Gálvez, A.; López, R.L. Correlations among Resistances to Different Antimicrobial Compounds in Salmonella Strains from Hen Eggshells. J. Food Prot. 2018, 81, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Rhouma, M.; Romero-Barrios, P.; Gaucher, M.-L.; Bhachoo, S. Antimicrobial Resistance Associated with the Use of Antimicrobial Processing Aids during Poultry Processing Operations: Cause for Concern? Crit. Rev. Food Sci. Nutr. 2020, 61, 3279–3296. [Google Scholar] [CrossRef]
- Gantzhorn, M.R.; Pedersen, K.; Olsen, J.E.; Thomsen, L.E. Biocide and Antibiotic Susceptibility of Salmonella Isolates Obtained before and after Cleaning at Six Danish Pig Slaughterhouses. Int. J. Food Microbiol. 2014, 181, 53–59. [Google Scholar] [CrossRef]
- Maertens, H.; Van Coillie, E.; Millet, S.; Van Weyenberg, S.; Sleeckx, N.; Meyer, E.; Zoons, J.; Dewulf, J.; De Reu, K. Repeated Disinfectant Use in Broiler Houses and Pig Nursery Units Does Not Affect Disinfectant and Antibiotic Susceptibility in Escherichia Coli Field Isolates. BMC Vet. Res. 2020, 16, 140. [Google Scholar] [CrossRef]
- Ogunlana, L.; Kaur, D.; Shaw, L.P.; Jangir, P.; Walsh, T.; Uphoff, S.; MacLean, R.C. Regulatory Fine-Tuning of Mcr-1 Increases Bacterial Fitness and Stabilises Antibiotic Resistance in Agricultural Settings. ISME J. 2023, 17, 2058–2069. [Google Scholar] [CrossRef] [PubMed]
- National Center of Biotechnology Information. The NCBI Pathogen Detection Project 2016; National Library of Medicin (US): Bethesda, MD, USA, 2016. Available online: https://www.ncbi.nlm.nih.gov/pathogens/ (accessed on 17 November 2023).
- Sanaa, M.; Pouillot, R.; Vega, F.G.; Strain, E.; Doren, J.M.V. GenomeGraphR: A User-Friendly Open-Source Web Application for Foodborne Pathogen Whole Genome Sequencing Data Integration, Analysis, and Visualization. PLoS ONE 2019, 14, e0213039. [Google Scholar] [CrossRef] [PubMed]
- Panzenhagen, P.; Portes, A.B.; dos Santos, A.M.P.; Duque, S.d.S.; Conte Junior, C.A. The Distribution of Campylobacter Jejuni Virulence Genes in Genomes Worldwide Derived from the NCBI Pathogen Detection Database. Genes 2021, 12, 1538. [Google Scholar] [CrossRef] [PubMed]
- Cobo-Díaz, J.F.; González del Río, P.; Álvarez-Ordóñez, A. Whole Resistome Analysis in Campylobacter Jejuni and C. Coli Genomes Available in Public Repositories. Front. Microbiol. 2021, 12, 662144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Liu, E.; Tang, A.; Ye, M.C.; Wang, K.; Jia, Q.; Huang, Z. Data-Driven Analysis of Antimicrobial Resistance in Foodborne Pathogens from Six States within the US. Int. J. Environ. Res. Public Health 2019, 16, 1811. [Google Scholar] [CrossRef]
- Yang, K.; Wang, A.; Fu, M.; Wang, A.; Chen, K.; Jia, Q.; Huang, Z. Investigation of Incidents and Trends of Antimicrobial Resistance in Foodborne Pathogens in Eight Countries from Historical Sample Data. Int. J. Environ. Res. Public Health 2020, 17, 472. [Google Scholar] [CrossRef]
- Cooper, A.L. Source_and_Resistance_Categorizer 2023. Available online: https://github.com/OLC-Bioinformatics/source_and_resistance_categorizer (accessed on 17 November 2023).
- Painter, J.A.; Ayers, T.; Woodruff, R.; Blanton, E.; Perez, N.; Hoekstra, R.M.; Griffin, P.M.; Braden, C. Recipes for Foodborne Outbreaks: A Scheme for Categorizing and Grouping Implicated Foods. Foodborne Pathog. Dis. 2009, 6, 1259–1264. [Google Scholar] [CrossRef]
- Richardson, L.C.; Bazaco, M.C.; Parker, C.C.; Dewey-Mattia, D.; Golden, N.; Jones, K.; Klontz, K.; Travis, C.; Kufel, J.Z.; Cole, D. An Updated Scheme for Categorizing Foods Implicated in Foodborne Disease Outbreaks: A Tri-Agency Collaboration. Foodborne Pathog. Dis. 2017, 14, 701–710. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.-H.; McDermott, P.F.; et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob. Agents Chemother. 2019, 63, 1110–1128. [Google Scholar] [CrossRef]
- Selim, S. Mechanisms of Gram-Positive Vancomycin Resistance (Review). Biomed. Rep. 2022, 16, 7. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2014. [Google Scholar]
- Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests; R Package Version 0.7.2. 2021. Available online: https://rpkgs.datanovia.com/rstatix/ (accessed on 17 November 2023).
- Wei, T.; Simko, V. R Package ‘Corrplot’: Visualization of a Correlation Matrix.(Version 0.92). 2021. Available online: https://github.com/taiyun/corrplot (accessed on 17 November 2023).
- Rooney, A.M.; Raphenya, A.R.; Melano, R.G.; Seah, C.; Yee, N.R.; MacFadden, D.R.; McArthur, A.G.; Schneeberger, P.H.H.; Coburn, B. Performance Characteristics of Next-Generation Sequencing for the Detection of Antimicrobial Resistance Determinants in Escherichia Coli Genomes and Metagenomes. mSystems 2022, 7, e00022-22. [Google Scholar] [CrossRef] [PubMed]
- Hodges, L.M.; Taboada, E.N.; Koziol, A.; Mutschall, S.; Blais, B.W.; Inglis, G.D.; Leclair, D.; Carrillo, C.D. Systematic Evaluation of Whole-Genome Sequencing Based Prediction of Antimicrobial Resistance in Campylobacter jejuni and C. coli. Front. Microbiol. 2021, 12, 776967. [Google Scholar] [CrossRef]
- Robertson, J.; Bessonov, K.; Schonfeld, J.; Nash, J.H.E.Y. Universal Whole-Sequence-Based Plasmid Typing and Its Utility to Prediction of Host Range and Epidemiological Surveillance. Microb. Genom. 2020, 6, e000435. [Google Scholar] [CrossRef] [PubMed]
- Quiñones, M.; Liou, D.T.; Shyu, C.; Kim, W.; Vujkovic-Cvijin, I.; Belkaid, Y.; Hurt, D.E. METAGENOTE: A Simplified Web Platform for Metadata Annotation of Genomic Samples and Streamlined Submission to NCBI’s Sequence Read Archive. BMC Bioinform. 2020, 21, 378. [Google Scholar] [CrossRef]
- ISO 23418:2022; Microbiology of the Food Chain—Whole Genome Sequencing for Typing and Ge-Nomic Characterization of Foodborne Bacteria. International Organization for Standardization: Geneva, Switzerland, 2022.
- Cernava, T.; Rybakova, D.; Buscot, F.; Clavel, T.; McHardy, A.C.; Meyer, F.; Meyer, F.; Overmann, J.; Stecher, B.; Sessitsch, A.; et al. Metadata Harmonization–Standards Are the Key for a Better Usage of Omics Data for Integrative Microbiome Analysis. Environ. Microbiome 2022, 17, 33. [Google Scholar] [CrossRef]
- Goudey, B.; Geard, N.; Verspoor, K.; Zobel, J. Propagation, Detection and Correction of Errors Using the Sequence Database Network. Brief. Bioinform. 2022, 23, bbac416. [Google Scholar] [CrossRef]
- Promponas, V.J.; Iliopoulos, I.; Ouzounis, C.A. Annotation Inconsistencies beyond Sequence Similarity-Based Function Prediction—Phylogeny and Genome Structure. Stand. Genom. Sci. 2015, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.J.; Collison, M.; Lord, P. Can Inferred Provenance and Its Visualisation Be Used to Detect Erroneous Annotation? A Case Study Using UniProtKB. PLoS ONE 2013, 8, e75541. [Google Scholar] [CrossRef]
- Field, D.; Amaral-Zettler, L.; Cochrane, G.; Cole, J.R.; Dawyndt, P.; Garrity, G.M.; Gilbert, J.; Glöckner, F.O.; Hirschman, L.; Karsch-Mizrachi, I.; et al. The Genomic Standards Consortium. PLoS Biol. 2011, 9, e1001088. [Google Scholar] [CrossRef]
- Golbreich, C.; Grosjean, J.; Darmoni, S.J. The Foundational Model of Anatomy in OWL 2 and Its Use. Artif. Intell. Med. 2013, 57, 119–132. [Google Scholar] [CrossRef]
- Buttigieg, P.L.; Morrison, N.; Smith, B.; Mungall, C.J.; Lewis, S.E.; The ENVO Consortium. The Environment Ontology: Contextualising Biological and Biomedical Entities. J. Biomed. Semant. 2013, 4, 43. [Google Scholar] [CrossRef] [PubMed]
- Dooley, D.M.; Griffiths, E.J.; Gosal, G.S.; Buttigieg, P.L.; Hoehndorf, R.; Lange, M.C.; Schriml, L.M.; Brinkman, F.S.L.; Hsiao, W.W.L. FoodOn: A Harmonized Food Ontology to Increase Global Food Traceability, Quality Control and Data Integration. NPJ Sci. Food 2018, 2, 23. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.; Capozzi, L.; Monno, M.R.; Del Sambro, L.; Manzulli, V.; Pesole, G.; Loconsole, D.; Parisi, A. Characterization of Bacillus Cereus Group Isolates From Human Bacteremia by Whole-Genome Sequencing. Front. Microbiol. 2021, 11, 599524. [Google Scholar] [CrossRef] [PubMed]
- Hetman, B.M.; Pearl, D.L.; Barker, D.O.R.; Robertson, J.; Nash, J.H.E.; Reid-Smith, R.; Agunos, A.; Carrillo, C.; Topp, E.; Van Domselaar, G.; et al. Combining Analytical Epidemiology and Genomic Surveillance to Identify Risk Factors Associated with the Spread of Antimicrobial Resistance in Salmonella Enterica Subsp. Enterica Serovar Heidelberg. Microb. Genom. 2022, 8, mgen000891. [Google Scholar] [CrossRef] [PubMed]
- Antunes, P.; Mourão, J.; Campos, J.; Peixe, L. Salmonellosis: The Role of Poultry Meat. Clin. Microbiol. Infect. 2016, 22, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Otto, S.J.G.; Carson, C.A.; Finley, R.L.; Thomas, M.K.; Reid-Smith, R.J.; McEwen, S.A. Estimating the Number of Human Cases of Ceftiofur-Resistant Salmonella Enterica Serovar Heidelberg in Québec and Ontario, Canada. Clin. Infect. Dis. 2014, 59, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.E.F.; Cooper, A.; Carrillo, C.; Blais, B. Selection of Multidrug-Resistant Bacteria in Medicated Animal Feeds. Front. Microbiol. 2019, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Scornec, H.; Bellanger, X.; Guilloteau, H.; Groshenry, G.; Merlin, C. Inducibility of Tn916 Conjugative Transfer in Enterococcus Faecalis by Subinhibitory Concentrations of Ribosome-Targeting Antibiotics. J. Antimicrob. Chemother. 2017, 72, 2722–2728. [Google Scholar] [CrossRef] [PubMed]
- Merlin, C. Reducing the Consumption of Antibiotics: Would That Be Enough to Slow Down the Dissemination of Resistances in the Downstream Environment? Front. Microbiol. 2020, 11, 33. [Google Scholar] [CrossRef]
- Brunn, A.A.; Roustit, M.; Kadri-Alabi, Z.; Guardabassi, L.; Waage, J. A Meta-Analysis to Estimate Prevalence of Resistance to Tetracyclines and Third Generation Cephalosporins in Enterobacteriaceae Isolated from Food Crops. Antibiotics 2022, 11, 1424. [Google Scholar] [CrossRef]
- Zaheer, R.; Cook, S.R.; Barbieri, R.; Goji, N.; Cameron, A.; Petkau, A.; Polo, R.O.; Tymensen, L.; Stamm, C.; Song, J.; et al. Surveillance of Enterococcus Spp. Reveals Distinct Species and Antimicrobial Resistance Diversity across a One-Health Continuum. Sci. Rep. 2020, 10, 3937. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.; Carrillo, C.D.; Deschênes, M.; Blais, B.W. Genomic Markers for Quaternary Ammonium Compound Resistance as a Persistence Indicator for Listeria monocytogenes Contamination in Food Manufacturing Environments. J. Food Prot. 2020, 84, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Parsons, C.; Lee, S.; Kathariou, S. Heavy Metal Resistance Determinants of the Foodborne Pathogen Listeria monocytogenes. Genes 2019, 10, 11. [Google Scholar] [CrossRef]
- Coppola, N.; Freire, B.; Umpiérrez, A.; Cordeiro, N.F.; Ávila, P.; Trenchi, G.; Castro, G.; Casaux, M.L.; Fraga, M.; Zunino, P.; et al. Transferable Resistance to Highest Priority Critically Important Antibiotics for Human Health in Escherichia coli Strains Obtained From Livestock Feces in Uruguay. Front. Vet. Sci. 2020, 7, 588919. [Google Scholar] [CrossRef] [PubMed]
- Hassoun-Kheir, N.; Stabholz, Y.; Kreft, J.-U.; de la Cruz, R.; Romalde, J.L.; Nesme, J.; Sørensen, S.J.; Smets, B.F.; Graham, D.; Paul, M. Comparison of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes Abundance in Hospital and Community Wastewater: A Systematic Review. Sci. Total Environ. 2020, 743, 140804. [Google Scholar] [CrossRef] [PubMed]
- CDC. Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health and Human Services: Washington, DC, USA; CDC: Atlanta, GA, USA, 2019.
- Beyer, P.; Paulin, S. Priority Pathogens and the Antibiotic Pipeline: An Update. Bull. World Health Organ. 2020, 98, 151. [Google Scholar] [CrossRef] [PubMed]
- Kurittu, P.; Khakipoor, B.; Aarnio, M.; Nykäsenoja, S.; Brouwer, M.; Myllyniemi, A.-L.; Vatunen, E.; Heikinheimo, A. Plasmid-Borne and Chromosomal ESBL/AmpC Genes in Escherichia Coli and Klebsiella Pneumoniae in Global Food Products. Front. Microbiol. 2021, 12, 592291. [Google Scholar] [CrossRef] [PubMed]
- Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE Pathogens in the Environment: Antibiotic Resistance Status, Community-Acquired Infection and Risk to Human Health. Int. J. Hyg. Environ. Health 2022, 244, 114006. [Google Scholar] [CrossRef]
- Bouchami, O.; Fraqueza, M.J.; Faria, N.A.; Alves, V.; Lawal, O.U.; de Lencastre, H.; Miragaia, M. Evidence for the Dissemination to Humans of Methicillin-Resistant Staphylococcus Aureus ST398 through the Pork Production Chain: A Study in a Portuguese Slaughterhouse. Microorganisms 2020, 8, 1892. [Google Scholar] [CrossRef]
- Khanal, S.; Boonyayatra, S.; Awaiwanont, N. Prevalence of Methicillin-Resistant Staphylococcus Aureus in Dairy Farms: A Systematic Review and Meta-Analysis. Front. Vet. Sci. 2022, 9, 947154. [Google Scholar] [CrossRef]
- Sergelidis, D.; Angelidis, A.S. Methicillin-Resistant Staphylococcus Aureus: A Controversial Food-Borne Pathogen. Lett. Appl. Microbiol. 2017, 64, 409–418. [Google Scholar] [CrossRef]
- Chelaghma, W.; Loucif, L.; Bendahou, M.; Rolain, J.-M. Vegetables and Fruit as a Reservoir of β-Lactam and Colistin-Resistant Gram-Negative Bacteria: A Review. Microorganisms 2021, 9, 2534. [Google Scholar] [CrossRef] [PubMed]
- Lázár, V.; Singh, G.P.; Spohn, R.; Nagy, I.; Horváth, B.; Hrtyan, M.; Busa-Fekete, R.; Bogos, B.; Méhi, O.; Csörgő, B.; et al. Bacterial Evolution of Antibiotic Hypersensitivity. Mol. Syst. Biol. 2013, 9, 700. [Google Scholar] [CrossRef]
- Denis, N.; Zhang, H.; Leroux, A.; Trudel, R.; Bietlot, H. Prevalence and Trends of Bacterial Contamination in Fresh Fruits and Vegetables Sold at Retail in Canada. Food Control 2016, 67, 225–234. [Google Scholar] [CrossRef]
- Mengistu, D.A.; Belami, D.D.; Tefera, A.A.; Alemeshet Asefa, Y. Bacteriological Quality and Public Health Risk of Ready-to-Eat Foods in Developing Countries: Systematic Review and Meta Analysis. Microbiol. Insights 2022, 15, 11786361221113916. [Google Scholar] [CrossRef]
- Rahman, M.; Alam, M.-U.; Luies, S.K.; Kamal, A.; Ferdous, S.; Lin, A.; Sharior, F.; Khan, R.; Rahman, Z.; Parvez, S.M.; et al. Contamination of Fresh Produce with Antibiotic-Resistant Bacteria and Associated Risks to Human Health: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 19, 360. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Ning, J.; Ahmed, S.; Huang, J.; Ullah, R.; An, B.; Hao, H.; Dai, M.; Huang, L.; Wang, X.; et al. Selection and Dissemination of Antimicrobial Resistance in Agri-Food Production. Antimicrob. Resist. Infect. Control 2019, 8, 158. [Google Scholar] [CrossRef]
- Robertson, J.; Nash, J.H.E. MOB-Suite: Software Tools for Clustering, Reconstruction and Typing of Plasmids from Draft Assemblies. Microb. Genom. 2018, 4, e000206. [Google Scholar] [CrossRef]
- Alcock, B.P. The Comprehensive Antibiotic Resistance Database. Available online: https://card.mcmaster.ca/prevalence (accessed on 25 March 2024).
- Alcock, B.; Huynh, W.; Chalil, R.; Smith, K.; Raphenya, A.; Wlodarski, M.; Edalatmand, A.; Petkau, A.; Syed, S.; Tsang, K.; et al. CARD 2023: Expanded Curation, Support for Machine Learning, and Resistome Prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2020, 51, D690–D699. [Google Scholar] [CrossRef]
- Perez, M.F.; Kurth, D.; Farías, M.E.; Soria, M.N.; Castillo Villamizar, G.A.; Poehlein, A.; Daniel, R.; Dib, J.R. First Report on the Plasmidome From a High-Altitude Lake of the Andean Puna. Front. Microbiol. 2020, 11, 1343. [Google Scholar] [CrossRef]
- Dib, J.R.; Wagenknecht, M.; Farías, M.E.; Meinhardt, F. Strategies and Approaches in Plasmidome Studies—Uncovering Plasmid Diversity Disregarding of Linear Elements? Front. Microbiol. 2015, 6, 463. [Google Scholar] [CrossRef] [PubMed]
Organism a | Number of Sequences from Food Source (%) b | Total from Foods (%) d | Human Clinical (%) e | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Egg | Fish/ Seafood | Multi-Product c | Meat/Poultry | Cider | Dairy | Flour | Fruit/ Vegetable | Spice/ Herbs | Nuts/Seeds | Tea | |||
Acinetobacter | 2 (8.70%) | 1 (4.35%) | 13 (56.52%) | 3 (13.04%) | - | - | - | 4 (17.39%) | - | - | - | 23 (0.02%) | 21,905 (4.46%) |
Aeromonas | - | 32 (59.26%) | 9 (16.67%) | 6 (11.11%) | - | 1 (1.85%) | - | 6 (11.11%) | - | - | - | 54 (0.04%) | 306 (0.06%) |
Bacillus | 2 (0.28%) | 25 (3.44%) | 410 (56.40%) | 31 (4.26%) | - | 165 (22.70%) | - | 71 (9.77%) | 17 (2.34%) | 6 (0.83%) | - | 727 (0.49%) | 326 (0.07%) |
Campylobacter | 17 (0.05%) | 23 (0.07%) | 3045 (8.95%) | 30,807 (90.50%) | - | 149 (0.44%) | - | - | - | - | - | 34,041 (23.03%) | 16,577 (3.37%) |
Citrobacter | - | 5 (10.20%) | 17 (34.69%) | 8 (16.33%) | - | 2 (4.08%) | - | 16 (32.65%) | 1 (2.04%) | - | - | 49 (0.03%) | 2013 (0.41%) |
Clostridioides difficile | - | - | 6 (6.38%) | 41 (43.62%) | - | 1 (1.06%) | - | 46 (48.94%) | - | - | - | 94 (0.06%) | 20,105 (4.09%) |
Clostridium | - | 34 (12.98%) | 109 (41.60%) | 80 (30.53%) | - | 2 (0.76%) | - | 32 (12.21%) | 4 (1.53%) | 1 (0.38%) | - | 262 (0.18%) | 1268 (0.26%) |
Edwardsiella | - | 3 (100.00%) | - | - | - | - | - | - | - | - | - | 3 (<0.00%) | 4 (<0.00%) |
Enterobacter | - | 6 (9.09%) | 11 (16.67%) | 4 (6.06%) | - | 2 (3.03%) | - | 32 (48.48%) | 4 (6.06%) | 7 (10.6%) | - | 66 (0.04%) | 9660 (1.97%) |
Enterococcus | 21 (2.34%) | 117 (13.01%) | 95 (10.57%) | 538 (59.84%) | - | 118 (13.13%) | - | 8 (0.89%) | 1 (0.11%) | 1 (0.11%) | - | 899 (0.61%) | 23,002 (4.68%) |
Escherichia | 103 (0.59%) | 337 (1.93%) | 1541 (8.84%) | 12,399 (71.15%) | 9 (0.05%) | 1408 (8.08%) | 93 (0.53%) | 1373 (7.88%) | 147 (0.84%) | 16 (0.09%) | - | 17,426 (11.79%) | 90,808 (18.48%) |
Klebsiella | 1 (0.16%) | 42 (6.69%) | 102 (16.24%) | 215 (34.24%) | - | 173 (27.55%) | - | 93 (14.81%) | 2 (0.32%) | - | - | 628 (0.42%) | 60,726 (12.36%) |
Kluyvera intermedia | - | 1 (100.00%) | - | - | - | - | - | - | - | - | - | 1 (<0.00%) | 12 (<0.00%) |
Listeria | 13 (0.08%) | 933 (5.59%) | 9783 (58.58%) | 2303 (13.79%) | - | 1488 (8.91%) | - | 2090 (12.52%) | 53 (0.32%) | 36 (0.22%) | - | 16,699 (11.30%) | 10,218 (2.08%) |
Morganella | - | - | 2 (11.76%) | - | - | 11 (64.71%) | - | 4 (23.53%) | - | - | - | 17 (0.01%) | 359 (0.07%) |
Providencia | - | - | - | - | - | 1 (12.50%) | - | 7 (87.50%) | - | - | - | 8 (0.01%) | 490 (0.10%) |
Pseudomonas | 4 (2.25%) | 13 (7.30%) | 7 (3.93%) | 111 (62.36%) | - | 6 (3.37%) | - | 35 (19.66%) | - | 2 (1.12%) | - | 178 (0.12%) | 20,547 (4.18%) |
Salmonella | 622 (0.88%) | 2247 (3.18%) | 13,375 (18.90%) | 48,436 (68.45%) | - | 622 (0.88%) | 4 (0.01%) | 2933 (4.14%) | 831 (1.17%) | 1688 (2.39%) | 2 (<0.0%) | 70,760 (47.88%) | 114,170 (23.24%) |
Serratia | - | 5 (6.58%) | - | 5 (6.58%) | - | 7 (9.21%) | - | 58 (76.32%) | - | 1 (1.32%) | - | 76 (0.05%) | 2167 (0.44%) |
Shewanella algae | - | 4 (80.00%) | 1 (20.00%) | - | - | - | - | - | - | - | - | 5 (<0.00%) | 76 (0.02%) |
Shigella | - | 2 (14.29%) | 6 (42.86%) | 5 (35.71%) | - | - | - | 1 (7.14%) | - | - | - | 14 (0.01%) | 17,281 (3.52%) |
Staphylococcus | - | 31 (1.18%) | 891 (33.89%) | 246 (9.36%) | - | 1408 (53.56%) | 15 (0.57%) | 38 (1.45%) | - | - | - | 2629 (1.78%) | 72,276 (14.71%) |
Stenotrophomonas maltophilia | - | - | - | - | - | - | - | 1 (100.00%) | - | - | - | 1 (<0.00%) | 872 (0.18%) |
Vibrio | - | 2642 (84.46%) | 469 (14.99%) | 13 (0.42%) | - | - | - | 2 (0.06%) | 2 (0.06%) | - | - | 3128 (2.12%) | 6131 (1.25%) |
Combined total from source f | 785 (0.53%) | 6503 (4.40%) | 29,892 (20.23%) | 95,251 (64.45%) | 9 (0.01%) | 5564 (3.76%) | 112 (0.08%) | 6850 (4.64%) | 1062 (0.72%) | 1758 (1.19%) | 2 (<0.0%) | 147,788 | 491,299 |
Isolation Source Assignment * | Definition | Examples |
---|---|---|
Dairy | Dairy products including milk, ice cream, and cheeses. Milk from bovine with mastitis was excluded. | Milk from healthy cattle, raw milk, Roquefort papillon cheese, etc. |
Egg | Egg products such as chicken eggs and chicken egg shells but not including reptile or fish eggs | Chicken egg outside shell, frozen liquid egg, egg white, yolks, etc. |
Fish/Seafood | Fish and seafood products, excluding mixed salads and mixed products, which were categorized as multi-product. | Brown mussels, imported shrimp, salmon, crab, etc. |
Fruit/Vegetables | Any fruit or vegetables, including frozen and ready to eat, and mixed fruit sources. French fries listed as multi-product. | Tomato, red leaf lettuce, carrot, mango. |
Multi-product | Mixed food products or products that cannot be easily categorized. Chili, if type was not specified, as it could refer to prepared chili or the pepper; spreads and cream cheese mixtures; all salads (including tuna, egg, potato, and coleslaw) that may contain mixed ingredients; hummus; guacamole; salsa; ready-to-eat mixed products; sandwiches; fruitcake; sushi; pasta; sauces; etc. | Tuna salad, meatball sub, brownie, coleslaw, pie crust, smoothie blend, etc. |
Meat/Poultry | Meat and poultry products including raw and ready to eat products, sausages, hot dogs, snails, etc. but excluding reptile meats and mixed products (like meat sauce, pates, and spreads) | Packaged whole turkey, thin sliced chicken breast, venison, raw beef, beef trim, etc. |
Genus | Resistance Class(es) with Positive Association to Source | Source(s) |
---|---|---|
Bacillus | Glycopeptide | Fruit/Vegetables |
Campylobacter | Aminoglycoside | Meat/poultry, Egg |
Metal, Tetracycline | Clinical, Dairy, Meat/Poultry, Multi-product | |
Citrobacter | Biocide, Sulphonamide, Trimethoprim | Clinical |
Clostridium | Macrolide | Clinical |
Metal, Phenicol | Multi-product, Fruit/Vegetables, Fish/Seafood, Dairy | |
Tetracycline | Clinical, Meat/Poultry, Multi-product, Fruit/Vegetables | |
C. difficile | Glycopeptide | Clinical, Meat/Poultry, Multi-product |
Enterococcus | Glycopeptide, Quinolone, Trimethoprim | Clinical |
Escherichia | Trimethoprim | Clinical (weak association) |
Shigella | Trimethoprim | Clinical (very strong association) |
Klebsiella | Beta-lactam, Metal, Phenicol, Quinolone | Clinical, Meat/Poultry, Multi-product, Fruit/Vegetables, Fish/Seafood, Dairy, Egg |
Sulphonamide, Trimethoprim | Clinical, Egg | |
Listeria | Biocide | Multi-product, Egg |
Salmonella | Aminoglycoside, Tetracycline | Meat/Poultry |
Vibrio | Tetracycline | All sources, but especially strong with Fish/Seafood |
Aminoglycoside, Sulphonamide, Trimethoprim | Multi-product |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooper, A.L.; Wong, A.; Tamber, S.; Blais, B.W.; Carrillo, C.D. Analysis of Antimicrobial Resistance in Bacterial Pathogens Recovered from Food and Human Sources: Insights from 639,087 Bacterial Whole-Genome Sequences in the NCBI Pathogen Detection Database. Microorganisms 2024, 12, 709. https://doi.org/10.3390/microorganisms12040709
Cooper AL, Wong A, Tamber S, Blais BW, Carrillo CD. Analysis of Antimicrobial Resistance in Bacterial Pathogens Recovered from Food and Human Sources: Insights from 639,087 Bacterial Whole-Genome Sequences in the NCBI Pathogen Detection Database. Microorganisms. 2024; 12(4):709. https://doi.org/10.3390/microorganisms12040709
Chicago/Turabian StyleCooper, Ashley L., Alex Wong, Sandeep Tamber, Burton W. Blais, and Catherine D. Carrillo. 2024. "Analysis of Antimicrobial Resistance in Bacterial Pathogens Recovered from Food and Human Sources: Insights from 639,087 Bacterial Whole-Genome Sequences in the NCBI Pathogen Detection Database" Microorganisms 12, no. 4: 709. https://doi.org/10.3390/microorganisms12040709
APA StyleCooper, A. L., Wong, A., Tamber, S., Blais, B. W., & Carrillo, C. D. (2024). Analysis of Antimicrobial Resistance in Bacterial Pathogens Recovered from Food and Human Sources: Insights from 639,087 Bacterial Whole-Genome Sequences in the NCBI Pathogen Detection Database. Microorganisms, 12(4), 709. https://doi.org/10.3390/microorganisms12040709