Prevalence, Molecular Detection, and Antimicrobial Resistance of Salmonella Isolates from Poultry Farms across Central Ethiopia: A Cross-Sectional Study in Urban and Peri-Urban Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design
2.3. Sample Size Determination and Sampling Strategies
Study Areas | Sample Type and Number | * p (Expected Prevalence) | |||||
---|---|---|---|---|---|---|---|
Cloacal Swabs | Fresh Fecal Droppings | Litter | Feed | Water | Total | ||
Adama | 260 | 30 | 30 | 30 | 30 | 380 | 28.8% [30] |
Addis Ababa | 167 | 56 | 56 | 56 | 56 | 391 | 16.5% [28] |
Debre Birhan | 176 | 52 | 52 | 52 | 52 | 384 | 50% (No previous work) |
West of Shaggar City | 160 | 50 | 50 | 50 | 50 | 360 | 19% [43] |
Total | 763 | 188 | 188 | 188 | 188 | 1515 |
d2
2.4. Sampling
2.5. Isolation and Identification of Salmonella
2.6. Molecular Detection of Salmonella Enteritidis and Typhimurium
2.6.1. DNA Extraction
2.6.2. Polymerase Chain Reaction (PCR)
2.6.3. Gel Electrophoresis DNA Band Visualization
2.7. Antimicrobial Susceptibility Test
2.8. Data Management and Analysis
3. Results
3.1. Isolation and Identification of Salmonella Species
3.2. Molecular Detection of Salmonella Typhimurium and Salmonella Enteritidis
3.3. Antimicrobial Susceptibility Profile of Salmonella Typhimurium and Salmonella Enteritidis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shapiro, B.I.; Gebru, G.; Desta, S.; Negassa, A.; Nigussie, K.; Aboset, G.; Mechal, H. Ethiopia livestock master plan. In ILRI Project Report; International Livestock Research Institute (ILRI): Nairobi, Kenya, 2015. [Google Scholar]
- Tadelle, D.; Nigusie, D.; Alemu, Y.; Peters, K.J. The feed resource base and its potentials for increased poultry production in Ethiopia. World’s Poult. Sci. J. 2002, 58, 77–87. [Google Scholar] [CrossRef]
- Milkias, M. Chicken meat production, consumption and constraints in Ethiopia. Food Sci. Qual. Manag. 2016, 54, 1–12. [Google Scholar]
- Tolasa, B. Current status of indigenous and highly productive chicken breeds in Ethiopia. Adv. Agric. 2021, 2021, 8848388. [Google Scholar] [CrossRef]
- Habte, T.; Amare, A.; Bettridge, J.; Collins, M.; Christley, R.; Wigley, P. Guide to chicken health and management in Ethiopia. In ILRI Manual 25; International Livestock Research Institute (ILRI): Nairobi, Kenya, 2017. [Google Scholar]
- Ebsa, Y.A.; Harpal, S.; Negia, G.G. Challenges and chicken production status of poultry producers in Bishoftu, Ethiopia. Poult. Sci. 2019, 98, 5452–5455. [Google Scholar] [CrossRef]
- Chanie, M.; Negash, T.; Tilahun, S.B. Occurrence of concurrent infectious diseases in broiler chickens is a threat to commercial poultry farms in Central Ethiopia. Trop. Anim. Health Prod. 2009, 41, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Endris, M.; Taddesse, F.; Geloye, M.; Degefa, T.; Jibat, T. Sero and media culture prevalence of Salmonellosis in local and exotic chicken, Debre Zeit, Ethiopia. Afr. J. Microbiol. Res. 2013, 7, 1041–1044. [Google Scholar]
- Wubet, W.; Bitew, M.; Mamo, G.; Gelaye, E.; Tesfaw, L.; Sori, H.; Abayneh, T. Evaluation of inactivated vaccine against fowl cholera developed from local isolates of Pasteurella multocida in Ethiopia. Afr. J. Microbiol. Res. 2019, 13, 500–509. [Google Scholar]
- Asfaw, Y.T.; Ameni, G.; Medhin, G.; Gumi, B.; Hagos, Y.; Wieland, B. Poultry disease occurrences and their impacts in Ethiopia. Trop. Anim. Health Prod. 2021, 53, 54. [Google Scholar] [CrossRef]
- Mezal, E.H.; Sabol, A.; Khan, M.A.; Ali, N.; Stefanova, R.; Khan, A.A. Isolation and molecular characterization of Salmonella enterica serovar Enteritidis from poultry house and clinical samples during 2010. Food Microbiol. 2014, 38, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Abebe, E.; Gugsa, G.; Ahmed, M. Review on major food-borne zoonotic bacterial pathogens. J. Trop. Med. 2020, 2020, 4674235. [Google Scholar] [CrossRef]
- Wilson, R.L.; Elthon, J.; Clegg, S.; Jones, B.D. Salmonella enterica serovars Gallinarum and Pullorum expressing Salmonella enterica serovar Typhimurium type 1 fimbriae exhibit increased invasiveness for mammalian cells. Infect. Immun. 2000, 68, 4782–4785. [Google Scholar] [CrossRef] [PubMed]
- Beyene, G.; Nair, S.; Asrat, D.; Mengistu, Y.; Engers, H.; Wain, J. Multidrug resistant Salmonella Concord is a major cause of salmonellosis in children in Ethiopia. J. Infect. Dev. Ctries. 2011, 5, 023–033. [Google Scholar] [CrossRef] [PubMed]
- Feasey, N.A.; Dougan, G.; Kingsley, R.A.; Heyderman, R.S.; Gordon, M.A. Invasive non-typhoidal Salmonella disease: An emerging and neglected tropical disease in Africa. Lancet 2012, 379, 2489–2499. [Google Scholar] [CrossRef]
- Li, S.; He, Y.; Mann, D.A.; Deng, X. Global spread of Salmonella Enteritidis via centralized sourcing and international trade of poultry breeding stocks. Nat. Commun. 2021, 12, 5109. [Google Scholar] [CrossRef] [PubMed]
- Gantois, I.; Ducatelle, R.; Pasmans, F.; Haesebrouck, F.; Gast, R.; Humphrey, T.J.; Van Immerseel, F. Mechanisms of egg contamination by Salmonella Enteritidis. FEMS Microbiol. Rev. 2009, 33, 718–738. [Google Scholar] [CrossRef] [PubMed]
- Al-Abadi, I.K.M.; Al-Mayah, A.A.S. Isolation and identification of Salmonella spp. from chicken and chicken environment in Basrah province. Afr. J. Biol. Sci. 2011, 7, 33–43. [Google Scholar]
- Moraes, D.M.C.; Duarte, S.C.; Bastos, T.S.A.; Rezende, C.L.G.; Leandro, N.S.M.; Café, M.B.; Andrade, M.A. Detection of Salmonella spp. by conventional bacteriology and by quantitative polymerase-chain reaction in commercial egg structures. Braz. J. Poult. Sci. 2016, 18, 117–124. [Google Scholar] [CrossRef]
- Liljebjelke, K.A.; Hofacre, C.L.; White, D.G.; Ayers, S.; Lee, M.D.; Maurer, J.J. Diversity of antimicrobial resistance phenotypes in Salmonella isolated from commercial poultry farms. Front. Vet. Sci. 2017, 4, 96. [Google Scholar] [CrossRef] [PubMed]
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J. International Collaboration on Enteric Disease “Burden of Illness” Studies. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef]
- Muvhali, M.; Smith, A.M.; Rakgantso, A.M.; Keddy, K.H. Investigation of Salmonella Enteritidis outbreaks in South Africa using multi-locus variable-number tandem-repeats analysis, 2013–2015. BMC Infect. Dis. 2017, 17, 661. [Google Scholar] [CrossRef] [PubMed]
- Glenn, L.M.; Lindsey, R.L.; Frank, J.F.; Meinersmann, R.J.; Englen, M.D.; Fedorka-Cray, P.J.; Frye, J.G. Analysis of antimicrobial resistance genes detected in multidrug-resistant Salmonella enterica serovar Typhimurium isolated from food animals. Microb. Drug Resist. 2011, 17, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Kariuki, S. Typhoid fever in sub-Saharan Africa: Challenges of diagnosis and management of infections. J. Infect. Dev. Ctries. 2008, 2, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, G. Prevalence of human Salmonellosis in Ethiopia: A systematic review and meta-analysis. BMC Infect. Dis. 2014, 14, 88. [Google Scholar] [CrossRef] [PubMed]
- Waktole, H.; Muluneh, T.; Miressa, Y.; Ayane, S.; Berhane, G.; Kabeta, T.; Mideksa, B.; Amenu, K.; Ashenafi, H.; Antonissen, G. Quantitative assessment of major biosecurity challenges of poultry production in central Ethiopia. Animals 2023, 13, 3719. [Google Scholar] [CrossRef] [PubMed]
- Crump, J.A.; Luby, S.P.; Mintz, E.D. The global burden of typhoid fever. Bull. World Health Organ. 2004, 82, 346–353. [Google Scholar] [PubMed]
- Eguale, T.; Gebreyes, W.A.; Asrat, D.; Alemayehu, H.; Gunn, J.S.; Engidawork, E. Non-typhoidal Salmonella serotypes, antimicrobial resistance and co-infection with parasites among patients with diarrhea and other gastrointestinal complaints in Addis Ababa, Ethiopia. BMC Infect. Dis. 2015, 15, 497. [Google Scholar] [CrossRef] [PubMed]
- Asif, M.; Rahman, H.; Qasim, M.; Khan, T.A.; Ullah, W.; Jie, Y. Molecular detection and antimicrobial resistance profile of zoonotic Salmonella Enteritidis isolated from broiler chickens in Kohat, Pakistan. J. Chin. Med. Assoc. 2017, 80, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Dagnew, B.; Alemayehu, H.; Medhin, G.; Eguale, T. Prevalence and antimicrobial susceptibility of Salmonella in poultry farms and in-contact humans in Adama and Modjo towns, Ethiopia. Microbiol. Open 2020, 9, e1067. [Google Scholar] [CrossRef] [PubMed]
- Ramtahal, M.A.; Amoako, D.G.; Akebe, A.L.; Somboro, A.M.; Bester, L.A.; Essack, S.Y. A public health insight into Salmonella in poultry in Africa: A review of the past decade: 2010–2020. Microb. Drug Resist. 2022, 28, 710–733. [Google Scholar] [CrossRef] [PubMed]
- De Mesquita Souza Saraiva, M.; Lim, K.; do Monte, D.F.M.; Givisiez, P.E.N.; Alves, L.B.R.; de Freitas Neto, O.C.; Kariuki, S.; Júnior, A.B.; de Oliveira, C.J.B.; Gebreyes, W.A. Antimicrobial resistance in the globalized food chain: A One Health perspective applied to the poultry industry. Braz. J. Microbiol. 2022, 53, 465–486. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- Aarestrup, F.M. Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic Clin. Pharmacol. Toxicol. 2005, 96, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Munang’andu, H.M.; Kabilika, S.H.; Chibomba, O.; Munyeme, M.; Muuka, G.M. Bacteria isolations from broiler and layer chicks in Zambia. J. Pathog. 2012, 2012, 520564. [Google Scholar] [CrossRef] [PubMed]
- Hedman, H.D.; Vasco, K.A.; Zhang, L. A review of antimicrobial resistance in poultry farming within low-resource settings. Animals 2020, 10, 1264. [Google Scholar] [CrossRef] [PubMed]
- Christensen, H.; Bachmeier, J.; Bisgaard, M. New strategies to prevent and control avian pathogenic Escherichia coli (APEC). Avian Pathol. 2021, 50, 370–381. [Google Scholar] [CrossRef] [PubMed]
- Nayak, R.; Kenney, P.B. Screening of Salmonella isolates from a turkey production facility for antibiotic resistance. Poult. Sci. 2002, 81, 1496–1500. [Google Scholar] [CrossRef]
- Jain, S.; Chen, J. Antibiotic resistance profiles and cell surface components of Salmonellae. J. Food Prot. 2006, 69, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Velasquez, C.G.; Macklin, K.S.; Kumar, S.; Bailey, M.; Ebner, P.E.; Oliver, H.F.; Singh, M. Prevalence and antimicrobial resistance patterns of Salmonella isolated from poultry farms in southeastern United States. Poult. Sci. 2018, 97, 2144–2152. [Google Scholar] [CrossRef] [PubMed]
- Mulchandani, R.; Zhao, C.; Tiseo, K.; Pires, J.; Van Boeckel, T.P. Predictive Mapping of Antimicrobial Resistance for Escherichia coli, Salmonella, and Campylobacter in Food-Producing Animals, Europe, 2000–2021. Emerg. Infect. Dis. 2024, 30, 96. [Google Scholar] [PubMed]
- NMA—National Meteorological Agency. Annual Meteorological Reports; NMA: Addis Ababa, Ethiopia, 2021.
- Sarba, E.J.; Kudama, K.; Dandecha, M.; Megersa, L.; Borena, B.M.; Gebremdhin, E.Z. Prevalence, organ distribution and antimicrobial susceptibility profile of Salmonella isolated from chickens purchased from markets in selected districts of West Shoa, Ethiopia. Ethiop. Vet. J. 2020, 24, 73–89. [Google Scholar] [CrossRef]
- Thrusfield, M. Veterinary Epidemiology, 3rd ed.; Blackwell Science Ltd.: Oxford, UK, 2007; pp. 233–250. [Google Scholar]
- Office International Épizooties (OIÉ). Terrestrial Manual. In Laboratory Methodologies for Bacterial Antimicrobial Susceptibility Testing; OIÉ: Paris, France, 2012; pp. 1–11. [Google Scholar]
- 6579:2002/A1:2007; Microbiology of Food and Animal Feeding Stuffs-Horizontal Method for the Detection of Salmonella spp. Amendment 1: Annex D: Detection of Salmonella spp. in Animal Faeces and in Environmental Samples from the Primary Production Stage. International Organization for Standardization (ISO): Geneva, Switzerland, 2007.
- Daquigan, N.; Grim, C.J.; White, J.R.; Hanes, D.E.; Jarvis, K.G. Early recovery of Salmonella from food using a 6-hour non-selective pre-enrichment and reformulation of tetrathionate broth. Front. Microbiol. 2016, 7, 235212. [Google Scholar] [CrossRef] [PubMed]
- Djeffal, S.; Mamache, B.; Elgroud, R.; Hireche, S.; Bouaziz, O. Prevalence and Risk Factors for Salmonella spp. Contamination in Broiler Chicken Farms and Slaughterhouses in the Northeast of Algeria. Vet. World 2018, 11, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Macwilliams, M.P. Indole Test Protocol; American Society for Microbiology: Washington, DC, USA, 2016; pp. 1–9. [Google Scholar]
- Park, S.H.; Ryu, S.; Kang, D.H. Development of an improved selective and differential medium for isolation of Salmonella spp. J. Clin. Microbiol. 2012, 50, 3222–3226. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.E.; Sao, S. Isolation and Identification of Micro Organisms. World J. Pharm. Res. 2015, 4, 2043–2057. [Google Scholar]
- Mcdevitt, S. Methyl Red and Voges-Proskauer Test Protocols. Am. Soc. Microbiol. 2016, 8, 1–9. Available online: https://asm.org/getattachment/0c828061-9d6f-4ae7-aea3-66e1a8624aa0/Methyl-Red-and-Voges-Proskauer-Test-Protocols.pdf (accessed on 12 March 2021).
- Islam, M.; Fakhruzzaman, M. Isolation and Identification of Escherichia coli and Salmonella from poultry litter and Feed. Int. J. Nat. Soc. Sci. 2018, 1, 1–7. [Google Scholar]
- Afendy, M.A.; Son, R. Pre-enrichment effect on PCR detection of Salmonella Enteritidis in artificially-contaminated raw chicken meat. Int. Food Res. J. 2015, 22, 2571. [Google Scholar]
- Alvarez, J.; Sota, M.; Vivanco, A.B.; Perales, I.; Cisterna, R.; Rementeria, A.; Garaizar, J. Development of a multiplex PCR technique for detection and epidemiological typing of Salmonella in human clinical samples. J. Clin. Microbiol. 2004, 42, 1734–1738. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard, 8th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; Volume 32, pp. 1–38. [Google Scholar]
- Odey, T.O.J.; Tanimowo, W.O.; Afolabi, K.O.; Jahid, I.K.; Reuben, R.C. Antimicrobial use and resistance in food animal production: Food safety and associated concerns in Sub-Saharan Africa. Int. Microbiol. 2023, 27, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Tufa, T.B.; Regassa, F.; Amenu, K.; Stegeman, J.A.; Hogeveen, H. Livestock producers’ knowledge, attitude, and behavior (KAB) regarding antimicrobial use in Ethiopia. Front. Vet. Sci. 2023, 10, 1167847. [Google Scholar] [CrossRef] [PubMed]
- STATA Corp. Stata Statistical Software: Release 17; StataCorp LLC: College Station, TX, USA, 2021. [Google Scholar]
- Ansari-Lari, M.; Hosseinzadeh, S.; Manzari, M.; Khaledian, S. Survey of Salmonella in commercial broiler farms in Shiraz, southern Iran. Prev. Vet. Med. 2022, 198, 105550. [Google Scholar] [CrossRef] [PubMed]
- Odoch, T.; Wasteson, Y.; L’Abée-Lund, T.; Muwonge, A.; Kankya, C.; Nyakarahuka, L.; Skjerve, E. Prevalence, antimicrobial susceptibility and risk factors associated with non-typhoidal Salmonella on Ugandan layer hen farms. BMC Vet. Res. 2017, 13, 365. [Google Scholar] [CrossRef] [PubMed]
- DTU Findit. Annual Report on Zoonoses in Denmark 2018; DTU Findit: Lyngby, Denmark, 2018; pp. 1–64. [Google Scholar]
- Witkowska, D.; Kuncewicz, M.; Żebrowska, J.P.; Sobczak, J.; Sowińska, J. Prevalence of Salmonella spp. in broiler chicken flocks in northern Poland in 2014–2016. Ann. Agric. Environ. Med. 2021, 25, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Le Bouquin, S.; Allain, V.; Rouxel, S.; Petetin, I.; Picherot, M.; Michel, V.; Chemaly, M. Prevalence and risk factors for Salmonella spp. contamination in French broiler-chicken flocks at the end of the rearing period. Prev. Vet. Med. 2010, 97, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Jibril, A.H.; Okeke, I.N.; Dalsgaard, A.; Kudirkiene, E.; Akinlabi, O.C.; Bello, M.B.; Olsen, J.E. Prevalence and risk factors of Salmonella in commercial poultry farms in Nigeria. PLoS ONE 2020, 15, e0238190. [Google Scholar] [CrossRef] [PubMed]
- Barua, H.; Biswas, P.K.; Olsen, K.E.; Christensen, J.P. Prevalence and characterization of motile Salmonella in commercial layer poultry farms in Bangladesh. PLoS ONE 2012, 7, e35914. [Google Scholar] [CrossRef] [PubMed]
- Authority, European Food Safety. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 2017, 15, 12. [Google Scholar]
- Eguale, T. Non-typhoidal Salmonella serovars in poultry farms in central Ethiopia: Prevalence and antimicrobial resistance. BMC Vet. Res. 2018, 14, 217. [Google Scholar] [CrossRef] [PubMed]
- Geresu, M.A.; Wayuo, B.A.; Kassa, G.M. Occurrence and antimicrobial susceptibility profile of Salmonella isolates from animal origin food items in selected areas of Arsi zone, southeastern Ethiopia, 2018/19. Int. J. Microbiol. 2021, 2021, 6633522. [Google Scholar]
- Zaki, M.S.; Fahmy, H.A.; Khedr, M.H.; Goha, M.; Attia, A.S. The prevalence of Salmonella species as a biosecurity indicator in poultry farms in Sharkia governorate, Egypt. Zagazig Vet. J. 2023, 51, 295–309. [Google Scholar]
- Abdi, R.D.; Mengstie, F.; Beyi, A.F.; Beyene, T.; Waktole, H.; Mammo, B.; Abunna, F. Determination of the sources and antimicrobial resistance patterns of Salmonella isolated from the poultry industry in Southern Ethiopia. BMC Infect. Dis. 2017, 17, 352. [Google Scholar] [CrossRef] [PubMed]
- Abunna, F.; Bedasa, M.; Beyene, T.; Ayana, D.; Mamo, B.; Duguma, R. Salmonella: Isolation and antimicrobial susceptibility tests on isolates collected from poultry farms in and around Modjo, Central Oromia, and Ethiopia. J. Anim. Poult. Sci. 2016, 5, 21–35. [Google Scholar]
- Alali, W.Q.; Thakur, S.; Berghaus, R.D.; Martin, M.P.; Gebreyes, W.A. Prevalence and distribution of Salmonella in organic and conventional broiler poultry farms. Foodborne Pathog. Dis. 2010, 7, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Kumar, D.; Hussain, S.; Pathak, A.; Shukla, M.; Kumar, V.P.; Singh, S.P. Prevalence, antimicrobial resistance and virulence genes characterization of non-typhoidal Salmonella isolated from retail chicken meat shops in Northern India. Food Control 2019, 102, 104–111. [Google Scholar] [CrossRef]
- Mridha, D.; Uddin, M.N.; Alam, B.; Akhter, A.T.; Islam, S.S.; Islam, M.S.; Kabir, S.L. Identification and characterization of Salmonella spp. from samples of broiler farms in selected districts of Bangladesh. Vet. World 2020, 13, 275. [Google Scholar] [CrossRef] [PubMed]
- Bayu, Z.; Asrade, B.; Kebede, N.; Sisay, Z.; Bayu, Y. Identification and characterization of Salmonella species in whole egg purchased from local markets in Addis Ababa, Ethiopia. J. Vet. Med. Anim. Health 2013, 5, 133–137. [Google Scholar]
- Abda, S.; Haile, T.; Abera, M. Isolation, identification antimicrobial susceptibility and associated risk factors of Salmonella in semi-intensive poultry farms of Kafa zone, Southwest Ethiopia. Vet. Anim. Sci. 2021, 14, 100206. [Google Scholar] [CrossRef] [PubMed]
- Zahli, R.; Scheu, A.K.; Abrini, J.; Copa-Patiño, J.L.; Nadia, A.; Nadia, S.S.; Soliveri, J. Salmonella spp: Prevalence, antimicrobial resistance and molecular typing of strains isolated from poultry in Tetouan-Morocco. LWT 2022, 153, 112359. [Google Scholar] [CrossRef]
- Blog: Salmonella Prevalence in Europe. 2021. Available online: https://www.calier.com/en/blog/Salmonella-prevalence-europe (accessed on 19 February 2024).
- Authority, European Food Safety. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA J. 2022, 20, 3. [Google Scholar]
- Van Immerseel, F.; De Buck, J.; Pasmans, F.; Bohez, L.; Boyen, F.; Haesebrouck, F.; Ducatelle, R. Intermittent long-term shedding and induction of carrier birds after infection of chickens early posthatch with a low or high dose of Salmonella Enteritidis. Poult. Sci. 2004, 83, 1911–1916. [Google Scholar] [CrossRef]
- Rose, N.; Beaudeau, F.; Drouin, P.; Toux, J.Y.; Rose, V.; Colin, P. Risk factors for Salmonella persistence after cleansing and disinfection in French broiler-chicken houses. Prev. Vet. Med. 2000, 44, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Gast, R.K.; Porter, R.E., Jr. Salmonella infections. Dis. Poult. 2020, 16, 717–753. [Google Scholar]
- Mahmud, M.S.; Bari, M.L.; Hossain, M.A. Prevalence of Salmonella serovars and antimicrobial resistance profiles in poultry of Savar area, Bangladesh. Foodborne Pathog. Dis. 2011, 8, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Soria, M.C.; Soria, M.A.; Bueno, D.J.; Godano, E.I.; Gómez, S.C.; ViaButron, I.A.; Rogé, A.D. Salmonella spp. contamination in commercial layer hen farms using different types of samples and detection methods. Poult. Sci. 2017, 96, 2820–2830. [Google Scholar] [CrossRef] [PubMed]
- Fagbamila, I.O.; Barco, L.; Mancin, M.; Kwaga, J.; Ngulukun, S.S.; Zavagnin, P.; Muhammad, M. Salmonella serovars and their distribution in Nigerian commercial chicken layer farms. PLoS ONE 2017, 12, e0173097. [Google Scholar] [CrossRef] [PubMed]
- Yhiler, N.Y.; Bassey, B.E. Antimicrobial susceptibility patterns of Salmonella species from sources in poultry production settings in Calabar, Cross River state. Niger. Am. J. Health Res. 2015, 3, 76–81. [Google Scholar] [CrossRef]
- García, C.; Soriano, J.M.; Benítez, V.; Catalá-Gregori, P. Assessment of Salmonella spp. in feces, cloacal swabs, and eggs (eggshell and content separately) from a laying hen farm. Poult. Sci. 2011, 90, 1581–1585. [Google Scholar] [CrossRef] [PubMed]
- El-Tras, W.F.; Tayel, A.A.; Samir, A. Potential zoonotic pathways of Salmonella Enteritidis in laying farms. Vector-Borne Zoonotic Dis. 2010, 10, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Borsoi, A.; Santos, L.R.D.; Diniz, G.S.; C Salle, C.T.P.; Moraes, H.L.S.; Nascimento, V.P.D. Salmonella fecal excretion control in broiler chickens by organic acids and essential oils blend feed added. Braz. J. Poult. Sci. 2011, 13, 65–69. [Google Scholar] [CrossRef]
- Jajere, S.M. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet. World 2019, 12, 504. [Google Scholar] [CrossRef]
- Folorunso, O.R.; Kayode, S.; Onibon, V.O. Poultry farm hygiene: Microbiological quality assessment of drinking water used in layer chickens managed under the battery cage and deep litter systems at three poultry farms in southwestern Nigeria. Pak. J. Biol. Sci. 2014, 17, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Lapuz, R.; Tani, H.; Sasai, K.; Shirota, K.; Katoh, H.; Baba, E. The role of roof rats (Rattus rattus) in the spread of Salmonella Enteritidis and S. Infantis contamination in layer farms in eastern Japan. Epidemiol. Infect. 2008, 136, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Elkenany, R.; Elsayed, M.M.; Zakaria, A.I.; El-Sayed, S.A.E.S.; Rizk, M.A. Antimicrobial resistance profiles and virulence genotyping of Salmonella enterica serovars recovered from broiler chickens and chicken carcasses in Egypt. BMC Vet. Res. 2019, 15, 124. [Google Scholar] [CrossRef] [PubMed]
- Olobatoke, R.Y.; Mulugeta, S.D. Incidence of non-typhoidal Salmonella in poultry products in the North West Province, South Africa. South Afr. J. Sci. 2015, 111, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Huong, L.Q.; Reinhard, F.; Padungtod, P.; Hanh, T.T.; Kyule, M.N.; Baumann, M.P.; Zessin, K.H. Prevalence of Salmonella in retail chicken meat in Hanoi, Vietnam. Ann. NY Acad. Sci. 2006, 1081, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Abdellah, C.; Fouzia, R.F.; Abdelkader, C.; Rachida, S.B.; Mouloud, Z. Prevalence and anti-microbial susceptibility of Salmonella isolates from chicken carcasses and giblets in Meknès, Morocco. Afr. J. Microbiol. Res. 2009, 3, 215–219. [Google Scholar]
- Adhikari, P.; Cosby, D.E.; Cox, N.A.; Franca, M.S.; Williams, S.M.; Gogal Jr, R.M.; Kim, W.K. Effect of dietary fructooligosaccharide supplementation on internal organs Salmonella colonization, immune response, ileal morphology, and ileal immunohistochemistry in laying hens challenged with Salmonella Enteritidis. Poult. Sci. 2018, 97, 2525–2533. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, A.E.; Basami, M.; Afshari, N.S. Identification of Salmonella spp. and Salmonella typhimurium by a multiplex PCR-based assay from poultry carcasses in Mashhad-Iran. Int. J. Vet. Res. 2009, 3, 43–48. [Google Scholar]
- Arkali, A.; Çetinkaya, B. Molecular identification and antibiotic resistance profiling of Salmonella species isolated from chickens in eastern Turkey. BMC Vet. Res. 2020, 16, 205. [Google Scholar] [CrossRef] [PubMed]
- Abatcha, M.G.; Effarizah, M.E.; Rusul, G. Prevalence, antimicrobial resistance, resistance genes and class 1 integrons of Salmonella serovars in leafy vegetables, chicken carcasses and related processing environments in Malaysian fresh food markets. Food Control 2018, 91, 170–180. [Google Scholar] [CrossRef]
- El-Aziz, D.M. Detection of Salmonella typhimurium in retail chicken meat and chicken giblets. Asian Pac. J. Trop. Biomed. 2013, 3, 678–681. [Google Scholar] [CrossRef] [PubMed]
- Mollenhorst, H.; Van Woudenbergh, C.J.; Bokkers, E.G.M.; De Boer, I.J.M. Risk factors for Salmonella Enteritidis infections in laying hens. Poult. Sci. 2005, 84, 1308–1313. [Google Scholar] [CrossRef] [PubMed]
- Namata, H.; Welby, S.; Aerts, M.; Faes, C.; Abrahantes, J.C.; Imberechts, H.; Mintiens, K. Identification of risk factors for the prevalence and persistence of Salmonella in Belgian broiler chicken flocks. Prev. Vet. Med. 2009, 90, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Rabsch, W.; Andrews, H.L.; Kingsley, R.A.; Prager, R.; Tschäpe, H.; Adams, L.G.; Bäumler, A.J. Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect. Immun. 2002, 70, 2249–2255. [Google Scholar] [CrossRef] [PubMed]
- Kidanemariam, A.; Engelbrecht, M.; Picard, J. Retrospective study on the incidence of Salmonella isolations in animals in South Africa, 1996 to 2006. J. South Afr. Vet. Assoc. 2010, 81, 37–44. [Google Scholar] [CrossRef]
- Agron, P.G.; Walker, R.L.; Kinde, H.; Sawyer, S.J.; Hayes, D.C.; Wollard, J.; Andersen, G.L. Identification by subtractive hybridization of sequences specific for Salmonella enterica serovar Enteritidis. Appl. Environ. Microbiol. 2001, 67, 4984–4991. [Google Scholar] [CrossRef] [PubMed]
- Adamu, K.; Sori, H.; Gelaye, E.; Belay, A.; Ayelet, G.; Yami, M.; Abayneh, T. Evaluation of the protective efficacy of Salmonella Gallinarum 9R strain vaccine against Salmonella strains isolated from cases suspected of salmonellosis outbreaks in poultry farms in central Ethiopia. Ethiop. Vet. J. 2017, 21, 102–116. [Google Scholar] [CrossRef]
- Ramatla, T.A.; Mphuthi, N.; Ramaili, T.; Taioe, M.O.; Thekisoe, O.M.; Syakalima, M. Molecular detection of virulence genes in Salmonella spp. isolated from chicken faeces in Mafikeng, South Africa. J. South Afr. Vet. Assoc. 2020, 91, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Garedew, L.; Hagos, Z.; Addis, Z.; Tesfaye, R.; Zegeye, B. Prevalence and antimicrobial susceptibility patterns of Salmonella isolates in association with hygienic status from butcher shops in Gondar town, Ethiopia. Antimicrob. Resist. Infect. Control 2015, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Geresu, M.A.; Desta, W.Z. Carriage, risk factors, and antimicrobial resistance patterns of Salmonella isolates from raw beef in Jimma, Southwestern Ethiopia. Infect. Drug Resist. 2021, 14, 2349–2360. [Google Scholar] [CrossRef] [PubMed]
- Gemeda, B.A.; Amenu, K.; Magnusson, U.; Dohoo, I.; Hallenberg, G.S.; Alemayehu, G.; Wieland, B. Antimicrobial use in extensive smallholder livestock farming systems in Ethiopia: Knowledge, attitudes, and practices of livestock keepers. Front. Vet. Sci. 2020, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Siddiky, N.A.; Sarker, M.S.; Khan, M.S.R.; Begum, R.; Kabir, M.E.; Karim, M.R.; Samad, M.A. Virulence and antimicrobial resistance profiles of Salmonella enterica serovars isolated from chicken at wet markets in Dhaka, Bangladesh. Microorganisms 2021, 9, 952. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, S.; Shrestha, P.; Adhikari, B. Antimicrobial use in food animals and human health: Time to implement ‘One Health’ approach. Antimicrob. Resist. Infect. Control 2020, 9, 181. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, U.; Moodley, A.; Osbjer, K. Antimicrobial resistance at the livestock-human interface: Implications for Veterinary Services. Rev. Sci. Et Tech. (Int. Off. Epizoot.) 2021, 40, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A. Antimicrobial resistance: A growing serious threat for global public health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Ejo, M.; Garedew, L.; Alebachew, Z.; Worku, W. Prevalence and antimicrobial resistance of Salmonella isolated from animal-origin food items in Gondar, Ethiopia. BioMed Res. Int. 2016, 2016, 4290506. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Maksoud, M.; Abdel-Khalek, R.; El-Gendy, A.; House, B.L.; Gamal, R.F.; Abdelhady, H.M. Genetic characterisation of multidrug-resistant Salmonella enterica serotypes isolated from poultry in Cairo, Egypt. Afr. J. Lab. Med. 2015, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Andoh, L.A.; Dalsgaard, A.; Obiri-Danso, K.; Newman, M.J.; Barco, L.; Olsen, J.E. Prevalence and antimicrobial resistance of Salmonella serovars isolated from poultry in Ghana. Epidemiol. Infect. 2016, 144, 3288–3299. [Google Scholar] [CrossRef] [PubMed]
- Kayode, F.; Folasade, O.; Frank, M.A.; Rene, S.H. Antimicrobial susceptibility and serovars of Salmonella from chickens and humans in Ibadan, Nigeria. J. Infect Dev. Ctries 2010, 4, 484–494. [Google Scholar]
- Dione, M.M.; Ieven, M.; Garin, B.; Marcotty, T.; Geerts, S. Prevalence and antimicrobial resistance of Salmonella isolated from broiler farms, chicken carcasses, and street-vended restaurants in Casamance, Senegal. J. Food Prot. 2009, 72, 2423–2427. [Google Scholar] [CrossRef] [PubMed]
- Achi, C.; Holmes, M. Multidrug-resistance in Salmonella species isolated from poultry in Nigeria. Int. J. Infect. Dis. 2020, 101, 37–38. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Li, T.; Liu, F.; Cheng, Y.; Guo, X.; Zhang, T. Characterization of Salmonella spp. isolated from chickens in Central China. BMC Vet. Res. 2020, 16, 299. [Google Scholar] [CrossRef]
- Van, T.T.H.; Yidana, Z.; Smooker, P.M.; Coloe, P.J. Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. J. Glob. Antimicrob. Resist. 2020, 20, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Destaw, T.; Ayehu, M. A review on antibiotics residue in foods of animal origin. Austin J. Vet. Sci. Anim. Husb. 2022, 9, 1104. [Google Scholar] [CrossRef]
- Ohemu, G.P. Starved of ACTION: A Critical Look at the Antimicrobial Resistance Action Plans of African Countries. ACS Infect. Dis. 2022, 8, 1377–1380. [Google Scholar] [CrossRef] [PubMed]
- DACA: Drug Administration and Control Authority of Ethiopia. Antimicrobial Use, Resistance and Containment Baseline Survey Synthesis of Findings; DACA: Addis Ababa, Ethiopia, 2009.
Risk Factors | Number Farms Tested | Number of Positives | Prevalence (%) | Chi-Square Value (p-Value) |
---|---|---|---|---|
Study site | 6.3 (0.098) | |||
Adama | 30 | 21 | 70.0% | |
Addis Ababa | 56 | 17 | 30.4% | |
Debre Birhan | 26 | 19 | 73.1% | |
West of Shaggar City | 50 | 25 | 50.0% | |
Overall | 162 | 82 | 50.6% | |
Type of production | 0.3 (0.592) | |||
Broiler | 46 | 26 | 56.5% | |
Layer | 116 | 56 | 48.3% | |
Overall | 162 | 82 | 50.6% | |
Breed | 1.1 (0.570) | |||
Bovans brown | 90 | 41 | 45.6% | |
Cobb 500 | 34 | 22 | 64.7% | |
Saso | 38 | 19 | 50.0% | |
Overall | 162 | 82 | 50.6% | |
Age animals | 0.1 (0.950) | |||
<2 months | 50 | 25 | 50.0% | |
2–5 months | 27 | 15 | 55.6% | |
>6 months | 85 | 42 | 49.4% | |
Overall | 162 | 82 | 50.6% |
Study Areas | Cloacal Swab | Fresh Fecal Droppings | Litter | Feed | Water | χ2Test | p Value |
---|---|---|---|---|---|---|---|
Adama | 18.5% (48/260) | 50% (15/30) | 43% (13/30) | 16.7% (5/30) | 23.3% (7/30) | 12.5 | 0.014 |
Addis Ababa | 7.7% (14/167) | 7.1% (4/56) | 5.4% (3/56) | 1.8% (1/56) | 1.8% (1/56) | 4.9 | 0.334 |
Debre Birhan | 13.6% (24/176) | 25% (13/52) | 23.1% (12/52) | 5.8% (3/52) | 5.8% (3/52) | 10.6 | 0.030 |
West of Shaggar City | 15.6% (25/160) | 12% (6/50) | 18% (9/50) | 14% (7/50) | 10% (5/50) | 1.3 | 0.859 |
Overall | 14.5% (111/763) | 20.2% (38/188) | 19.7% (37/188) | 8.5% (16/188) | 8.5% (16/188) | 15.1 | 0.005 |
Risk Factors | Number Samples Tested | Number of Positives | Prevalence (%) | Chi-Square Value (p-Value) |
---|---|---|---|---|
Study site | 46.7 (p < 0.001) | |||
Adama | 380 | 88 | 23.2 | |
Addis Ababa | 391 | 23 | 5.9 | |
Debre Birhan | 384 | 55 | 14.3 | |
West of Shaggar City | 360 | 52 | 14.4 | |
Overall | 1515 | 218 | 14.4 | |
Type of production | 13.2 (p < 0.001) | |||
Broiler | 492 | 94 | 19.1 | |
Layer | 1023 | 124 | 12.1 | |
Overall | 1515 | 218 | 14.4 | |
Breed | 18.2 (p < 0.001) | |||
Bovans brown | 793 | 95 | 12 | |
Cobb 500 | 369 | 78 | 21.1 | |
Saso | 353 | 45 | 12.7 | |
Overall | 1515 | 218 | 14.4 | |
Age animals | 3.5 (p = 0.175) | |||
<2 months | 296 | 34 | 11.5 | |
2–5 months | 517 | 84 | 16.2 | |
>6 months | 702 | 100 | 14.2 | |
Overall | 1515 | 218 | 14.4 |
Sample Type | No. Samples Tested for | PCR Positive | ||
---|---|---|---|---|
Salmonella Typhimurium (Debre Birhan) | Salmonella Enteritidis (Adama) | Salmonella Typhimurium (Debre Birhan) | Salmonella Enteritidis (Adama) | |
Cloacal swab | 9 | 25 | 4 (44.5%) | 6 (24%) |
Fresh fecal droppings | 12 | 8 | 7 (58.3%) | 3 (37.5%) |
Litter | 6 | 4 | 3 (50%) | 1 (25%) |
Feed | 3 | 3 | 1 (33.3%) | 0 (0%) |
Water | 3 | 3 | 0 (0%) | 0 (0%) |
Total | 33 | 43 | 15 (45.5%) | 10 (23.3%) |
Chi-square value (p-value) | 4.2 (p = 0.041) |
Risk Factors | Bacteriological Test | PCR Test | ||||
---|---|---|---|---|---|---|
Number of Positive | Crude Odds Ratio (95% CI) | Adjusted Odd Ratio (95% CI) | Number of Positive | Crude Odds Ratio (95% CI) | Adjusted Odd Ratio (95% CI) | |
Study site | ||||||
Adama | 88 | Ref | Ref | 10 | Ref | - |
Addis Ababa | 23 | 0.21 (0.13–0.34) | 0.18 (0.08–0.43) | - | - | - |
Debre Birhan | 55 | 0.55 (0.38–0.80) | 0.65 (0.23–1.86) | 15 | 2.75 (1.03–7.36) | - |
West of Shaggar City | 52 | 0.56 (0.38–0.82) | 0.55 (0.19–1.58) | - | - | - |
Type of production | ||||||
Broiler | 94 | Ref | Ref | 10 | Ref | - |
Layer | 124 | 0.58 (0.44–0.78) | 0.74 (0.21–2.53) | 15 | 2.75 (1.03–7.36) | - |
Breed | ||||||
Bovans brown | 95 | Ref | Ref | 15 | Ref | Ref |
Cobb 500 | 78 | 1.97 (1.42–2.74) | 3.32 (1.11–9.96) | 7 | 0.24 (0.08–0.72) | 0.23 (0.07–0.75) |
Saso | 45 | 1.07 (0.73–1.57) | 0.91 (0.54–1.52) | 3 | 0.43 (0.09–1.98) | 0.33 (0.07–1.64) |
Age group | ||||||
<2 months | 34 | Ref | Ref | 3 | Ref | - |
2–5 months | 84 | 0.67 (0.44–1.03) | 2.39 (0.94–6.05) | 7 | 1.55 (0.33–7.41) | - |
>6 months | 100 | 0.86 (0.62–1.17) | 4.98 (2.09–11.87) | 15 | 4.44 (1.48–13.35) | - |
Sample type | ||||||
Cloacal Swab | 111 | Ref | Ref | 10 | Ref | Ref |
Fresh fecal droppings | 38 | 1.49 (0.99–2.24) | 1.87 (1.22–2.88) | 10 | 2.40 (0.76–7.55) | 1.51 (0.43–5.31) |
Litter | 37 | 1.44 (0.95–2.17) | 1.81 (1.17–2.79) | 4 | 1.60 (0.37–6.92) | 1.27 (0.27–6.02) |
Feed | 16 | 0.55 (0.32–0.95) | 0.65 (0.37–1.15) | 1 | 0.48 (0.05–4.65) | 0.31 (0.03–3.39) |
Water | 16 | 0.55 (0.32–0.95) | 0.65 (0.37–1.15) | 0 | - | - |
Antimicrobial Used | Disc Concentration (µg) | Salmonella Typhimurium (15 Selected Samples) | Salmonella Enteritidis (10 Selected Samples) | ||||
---|---|---|---|---|---|---|---|
No. and % Susceptible | No. and % Intermediate | No. and % Resistant | No. and % Susceptible | No. and % Intermediate | No. and % Resistant | ||
Ampicillin (AMP) | 10 | 0 (0%) | 1 (6.7%) | 14 (93.3%) | 1 (10%) | 0 (0.0%) | 9 (90%) |
Azithromycin (AZM) | 15 | 13 (86.7%) | 0 (0.0%) | 2 (13.3%) | 9 (90%) | 0 (0.0%) | 1 (10%) |
Ceftazidime (CAZ) | 30 | 15 (100%) | 0 (0.0%) | 0 (0.0%) | 10 (100%) | 0 (0.0%) | 0 (0%) |
Ciprofloxacin (CIP) | 5 | 15 (100%) | 0 (0%) | 0 (0%) | 10 (100%) | 0 (0%) | 0 (0%) |
Chloramphenicol (CHL) | 30 | 10 (66.7%) | 2 (13.3%) | 3 (20%) | 8 (80%) | 0 (0.0%) | 2 (20%) |
Erythromycin (ERT) | 15 | 9 (60%) | 0 (0%) | 6 (40%) | 7 (70%) | 0 (0%) | 3 (30%) |
Gentamycin (GNT) | 10 | 11 (73.3%) | 4 (20%) | 0 (0%) | 8 (80%) | 2 (20%) | 0 (0%) |
Kanamycin (KAN) | 30 | 7 (46.7%) | 2 (13.3%) | 6 (40%) | 5 (50%) | 2 (20%) | 3 (30%) |
Nalidixic acid (NAL) | 30 | 8 (53.3%) | 4 (26.7%) | 3 (20%) | 2 (20%) | 1 (10%) | 7 (70%) |
Oxytetracycline (OXT) | 30 | 0 (0%) | 2 (13.3%) | 13 (86.7%) | 0 (0%) | 2 (20%) | 8 (80%) |
Sulfamethoxazole/Trimethoprim (SXT) | 25 | 5 (33.3%) | 3 (20%) | 7 (46.7%) | 6 (60%) | 0 (0.0%) | 4 (40%) |
Tetracycline (TET) | 30 | 6 (40%) | 3 (20%) | 6 (40%) | 2 (20%) | 0 (0.0%) | 8 (80%) |
Number of Antimicrobials | Resistant Pattern (Number of Isolates) | Proportion of Resistant Isolates |
---|---|---|
Two | AMP-OXT (3); AMP-KAN (1) | 4 (26.7%) |
Three | AMP-OXT-SXT (1); AMP-ERT-GNT (1); AMP-OXT-TET (1) | 3 (20%) |
Four | AMP-OXT-CHL-SXT (1); AMP-CHL-ERT-SXT (1); AMP-OXT-TET-SXT (1) | 3 (20%) |
Five | AMP-OXT-ERT-TET-SXT (1) | 1 (6.7%) |
Six | AMP-AZM-TET-KAN-ERT-NA (1); AMP-KAN-GNT-OXT-SXT-NAL (1) | 2 (13.3%) |
Eight | AMP-AZM-CHL-ERT-KAN-TET-SXT-NAL (2) | 2 (13.3%) |
Number of Antimicrobials | Antimicrobial Resistance Pattern (No.) | Proportion of Resistance Isolates |
---|---|---|
Three | AMP-NAL-TET (1) | 1 (11.1%) |
Four | AMP-ERT-SXT-TET (1) AMP-ERT-NAL-TET (1) AZM-ERT-NA-TET (1) | 3 (33.3%) |
Five | AMP-ERT-NAL-SXT-TET (1) AMP-CHL-AZM-SXT-TET (1) AMP-CHL-KAN-TET-SXT (1) | 3 (33.3%) |
Six | AMP-CHL-KAN-NAL-SXT-TET (1) | 1 (11.1%) |
Nine | AMP-AZM-CHL-ERT-KAN-NAL-OXT-SXT-TET (1) | 1 (11.11%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waktole, H.; Ayele, Y.; Ayalkibet, Y.; Teshome, T.; Muluneh, T.; Ayane, S.; Borena, B.M.; Abayneh, T.; Deresse, G.; Asefa, Z.; et al. Prevalence, Molecular Detection, and Antimicrobial Resistance of Salmonella Isolates from Poultry Farms across Central Ethiopia: A Cross-Sectional Study in Urban and Peri-Urban Areas. Microorganisms 2024, 12, 767. https://doi.org/10.3390/microorganisms12040767
Waktole H, Ayele Y, Ayalkibet Y, Teshome T, Muluneh T, Ayane S, Borena BM, Abayneh T, Deresse G, Asefa Z, et al. Prevalence, Molecular Detection, and Antimicrobial Resistance of Salmonella Isolates from Poultry Farms across Central Ethiopia: A Cross-Sectional Study in Urban and Peri-Urban Areas. Microorganisms. 2024; 12(4):767. https://doi.org/10.3390/microorganisms12040767
Chicago/Turabian StyleWaktole, Hika, Yonas Ayele, Yamlaksira Ayalkibet, Tsedale Teshome, Tsedal Muluneh, Sisay Ayane, Bizunesh Mideksa Borena, Takele Abayneh, Getaw Deresse, Zerihun Asefa, and et al. 2024. "Prevalence, Molecular Detection, and Antimicrobial Resistance of Salmonella Isolates from Poultry Farms across Central Ethiopia: A Cross-Sectional Study in Urban and Peri-Urban Areas" Microorganisms 12, no. 4: 767. https://doi.org/10.3390/microorganisms12040767
APA StyleWaktole, H., Ayele, Y., Ayalkibet, Y., Teshome, T., Muluneh, T., Ayane, S., Borena, B. M., Abayneh, T., Deresse, G., Asefa, Z., Eguale, T., Amenu, K., Ashenafi, H., & Antonissen, G. (2024). Prevalence, Molecular Detection, and Antimicrobial Resistance of Salmonella Isolates from Poultry Farms across Central Ethiopia: A Cross-Sectional Study in Urban and Peri-Urban Areas. Microorganisms, 12(4), 767. https://doi.org/10.3390/microorganisms12040767