Real-Time PCR (qtPCR) to Discover the Fate of Plant Growth-Promoting Rhizobacteria (PGPR) in Agricultural Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Strains, Microbial Consortia, and Biochar Production
2.2. Experimental Set up of the Wheat Field Trial
2.3. Soil Sample Collection
2.4. DNA Extraction and Quantification
2.5. Searching Primers Specific for Microbial Species of MC_C
2.6. Real-Time PCR
2.7. Data Analysis
3. Results
3.1. Screening of Primers for Specific Amplification of Strains
3.2. Qualitative Test on DNA Extracted from Soil
3.3. Quantification of DNA from Microbial Species in Soil Samples
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumari, M.; Swarupa, P.; Kesari, K.K.; Kumar, A. Microbial Inoculants as Plant Biostimulants: A Review on Risk Status. Life 2023, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; Enshasy, H. El Plant Growth Promoting Rhizobacteria (Pgpr) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Khan, A.; Singh, A.V.; Gautam, S.S.; Agarwal, A.; Punetha, A.; Upadhayay, V.K.; Kukreti, B.; Bundela, V.; Jugran, A.K.; Goel, R. Microbial Bioformulation: A Microbial Assisted Biostimulating Fertilization Technique for Sustainable Agriculture. Front. Plant Sci. 2023, 14, 1270039. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.S.; Nogueira, M.A.; Hungria, M. Microbial Inoculants: Reviewing the Past, Discussing the Present and Previewing an Outstanding Future for the Use of Beneficial Bacteria in Agriculture. AMB Express 2019, 9, 205. [Google Scholar] [CrossRef]
- Vejan, P.; Abdullah, R.; Khadiran, T.; Ismail, S.; Nasrulhaq Boyce, A. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review. Molecules 2016, 21, 573. [Google Scholar] [CrossRef] [PubMed]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018, 871, 402666. [Google Scholar] [CrossRef] [PubMed]
- Nagrale, D.T.; Chaurasia, A.; Kumar, S.; Gawande, S.P.; Hiremani, N.S.; Shankar, R.; Gokte-Narkhedkar, N.; Renu; Prasad, Y.G. PGPR: The Treasure of Multifarious Beneficial Microorganisms for Nutrient Mobilization, Pest Biocontrol and Plant Growth Promotion in Field Crops. World J. Microbiol. Biotechnol. 2023, 39, 100. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, J.; Tyburski, J.; Matysiak, K.; Tylkowski, B.; Malusá, E. Field Exploitation of Multiple Functions of Beneficial Microorganisms for Plant Nutrition and Protection: Real Possibility or Just a Hope? Front. Microbiol. 2020, 11, 1904. [Google Scholar] [CrossRef] [PubMed]
- Rilling, J.I.; Acuña, J.J.; Nannipieri, P.; Cassan, F.; Maruyama, F.; Jorquera, M.A. Current Opinion and Perspectives on the Methods for Tracking and Monitoring Plant Growth–promoting Bacteria. Soil Biol. Biochem. 2019, 130, 205–219. [Google Scholar] [CrossRef]
- Kaminsky, L.M.; Trexler, R.V.; Malik, R.J.; Hockett, K.L.; Bell, T.H. The Inherent Conflicts in Developing Soil Microbial Inoculants. Trends Biotechnol. 2019, 37, 140–151. [Google Scholar] [CrossRef]
- O’Callaghan, M.; Ballard, R.A.; Wright, D. Soil Microbial Inoculants for Sustainable Agriculture: Limitations and Opportunities. Soil Use Manag. 2022, 38, 1340–1369. [Google Scholar] [CrossRef]
- Sessitsch, A.; Pfaffenbichler, N.; Mitter, B. Microbiome Applications from Lab to Field: Facing Complexity. Trends Plant Sci. 2019, 24, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, K.; Kumar, N.; Shandilya, C.; Mohapatra, S.; Bhayana, S.; Varma, A. Revisiting Plant–Microbe Interactions and Microbial Consortia Application for Enhancing Sustainable Agriculture: A Review. Front. Microbiol. 2020, 11, 560406. [Google Scholar] [CrossRef] [PubMed]
- Tabacchioni, S.; Passato, S.; Ambrosino, P.; Huang, L.; Caldara, M.; Cantale, C.; Hett, J.; Del Fiore, A.; Fiore, A.; Schlüter, A.; et al. Identification of Beneficial Microbial Consortia and Bioactive Compounds with Potential as Plant Biostimulants for a Sustainable Agriculture. Microorganisms 2021, 9, 426. [Google Scholar] [CrossRef] [PubMed]
- Hett, J.; Döring, T.F.; Bevivino, A.; Neuhoff, D. Impact of Microbial Consortia on Organic Maize in a Temperate Climate Varies with Environment but Not with Fertilization. Eur. J. Agron. 2023, 144, 126743. [Google Scholar] [CrossRef]
- Hett, J.; Neuhoff, D.; Döring, T.F.; Masoero, G.; Ercole, E.; Bevivino, A. Effects of Multi-Species Microbial Inoculants on Early Wheat Growth and Litterbag Microbial Activity. Agronomy 2022, 12, 899. [Google Scholar] [CrossRef]
- Ganugi, P.; Masoni, A.; Pietramellara, G.; Benedettelli, S. A Review of Studies from the Last Twenty Years on Plant–Arbuscular Mycorrhizal Fungi Associations and Their Uses for Wheat Crops. Agronomy 2019, 9, 840. [Google Scholar] [CrossRef]
- Watts-Williams, S.J.; Gill, A.R.; Jewell, N.; Brien, C.J.; Berger, B.; Tran, B.T.T.; Mace, E.; Cruickshank, A.W.; Jordan, D.R.; Garnett, T.; et al. Enhancement of Sorghum Grain Yield and Nutrition: A Role for Arbuscular Mycorrhizal Fungi Regardless of Soil Phosphorus Availability. Plants People Planet 2022, 4, 143–156. [Google Scholar] [CrossRef]
- Marmiroli, M.; Bonas, U.; Imperiale, D.; Lencioni, G.; Mussi, F.; Marmiroli, N.; Maestri, E. Structural and Functional Features of Chars from Different Biomasses as Potential Plant Amendments. Front. Plant Sci. 2018, 9, 375024. [Google Scholar] [CrossRef]
- Semida, W.M.; Beheiry, H.R.; Sétamou, M.; Simpson, C.R.; Abd El-Mageed, T.A.; Rady, M.M.; Nelson, S.D. Biochar Implications for Sustainable Agriculture and Environment: A Review. South Afr. J. Bot. 2019, 127, 333–347. [Google Scholar] [CrossRef]
- Graziano, S.; Caldara, M.; Gullì, M.; Bevivino, A.; Maestri, E.; Marmiroli, N. A Metagenomic and Gene Expression Analysis in Wheat (T. durum) and Maize (Z. mays) Biofertilized with PGPM and Biochar. Int. J. Mol. Sci. 2022, 23, 10376. [Google Scholar] [CrossRef] [PubMed]
- Agrimonti, C.; Bortolazzi, L.; Maestri, E.; Sanangelantoni, A.M.; Marmiroli, N. A Real-Time PCR/SYBR Green I Method for the Rapid Quantification of Salmonella enterica in Poultry Meat. Food Anal. Methods 2013, 6, 1004–1015. [Google Scholar] [CrossRef]
- Agrimonti, C.; Sanangelantoni, A.M.; Marmiroli, N. Simultaneous Enumeration of Campylobacter jejuni and Salmonella enterica Genome Equivalents by Melting Curve Analysis Following Duplex Real Time PCR in the Presence of SYBR Green. LWT 2018, 93, 542–548. [Google Scholar] [CrossRef]
- Blumenfeld, N.R.; Bolene, M.A.E.; Jaspan, M.; Ayers, A.G.; Zarrandikoetxea, S.; Freudman, J.; Shah, N.; Tolwani, A.M.; Hu, Y.; Chern, T.L.; et al. Multiplexed reverse-transcriptase quantitative polymerase chain reaction using plasmonic nanoparticles for point-of-care COVID-19 diagnosis. Nat. Nanotechnol. 2022, 17, 984–992. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Sang, B.; Wu, W. Battery-Powered Portable Rotary Real-Time Fluorescent QPCR with Low Energy Consumption, Low Cost, and High Throughput. Biosensors 2020, 10, 49. [Google Scholar] [CrossRef] [PubMed]
- Ponchel, F.; Toomes, C.; Bransfield, K.; Leong, F.T.; Douglas, S.H.; Field, S.L.; Bell, S.M.; Combaret, V.; Puisieux, A.; Mighell, A.J.; et al. Real-Time PCR Based on SYBR-Green I Fluorescence: An Alternative to the TaqMan Assay for a Relative Quantification of Gene Rearrangements, Gene Amplifications and Micro Gene Deletions. BMC Biotechnol 2003, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Trung, T.T.; Hetzer, A.; Göhler, A.; Topfstedt, E.; Wuthiekanun, V.; Limmathurotsakul, D.; Peacock, S.J.; Steinmetz, I. Highly Sensitive Direct Detection and Quantification of Burkholderia pseudomallei Bacteria in Environmental Soil Samples by Using Real-Time PCR. Appl. Environ. Microbiol. 2011, 77, 6486–6494. [Google Scholar] [CrossRef]
- Ramkumar, G.; Yu, S.-M.; Lee, Y.H. Influence of light qualities on antifungal lipopeptide synthesis in Bacillus amyloliquefaciens JBC36. Eur. J. Plant Pathol. 2013, 137, 243–248. [Google Scholar] [CrossRef]
- Chapalain, A.; Vial, L.; Laprade, N.; Dekimpe, V.; Perreault, J.; Déziel, E. Identification of quorum sensing-controlled genes in Burkholderia ambifaria. Microbiol. Open 2013, 2, 226–242. [Google Scholar] [CrossRef]
- Stets, M.I.; Campbell Alqueres, S.M.; Souza, E.M.; Pedrosa, F.D.O.; Schmid, M.; Hartmann, A.; Cruz, L.M. Quantification of Azospirillum brasilense FP2 Bacteria in Wheat Roots by Strain-Specific Quantitative PCR. Appl. Environ. Microbiol. 2015, 81, 6700–6709. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ma, Y.; Jiang, W.; Meng, L.; Cao, X.; Hu, J.; Chen, J.; Li, J. Development of a Strain-Specific Quantification Method for Monitoring Bacillus amyloliquefaciens TF28 in the Rhizospheric Soil of Soybean. Mol. Biotechnol. 2020, 62, 521–533. [Google Scholar] [CrossRef]
- Xiang, S.R.; Cook, M.; Saucier, S.; Gillespie, P.; Socha, R.; Scroggins, R.; Beaudette, L.A. Development of Amplified Fragment Length Polymorphism-Derived Functional Strain-Specific Markers to Assess the Persistence of 10 Bacterial Strains in Soil Microcosms. Appl. Environ. Microbiol. 2010, 76, 7126–7135. [Google Scholar] [CrossRef] [PubMed]
- Caldara, M.; Gullì, M.; Graziano, S.; Riboni, N.; Maestri, E.; Mattarozzi, M.; Bianchi, F.; Careri, M.; Marmiroli, N. Microbial Consortia and Biochar as Sustainable Biofertilisers: Analysis of Their Impact on Wheat Growth and Production. Sci. Total Environ. 2024, 917, 170168. [Google Scholar] [CrossRef]
- Couillerot, O.; Poirier, M.A.; Prigent-Combaret, C.; Mavingui, P.; Caballero-Mellado, J.; Moënne-Loccoz, Y. Assessment of SCAR Markers to Design Real-Time PCR Primers for Rhizosphere Quantification of Azospirillum brasilense Phytostimulatory Inoculants of Maize. J. Appl. Microbiol. 2010, 109, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Timmusk, S.; Paalme, V.; Lagercrantz, U.; Nevo, E. Detection and Quantification of Paenibacillus polymyxa in the Rhizosphere of Wild Barley (Hordeum spontaneum) with Real-Time PCR. J. Appl. Microbiol. 2009, 107, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Mavrodi, O.V.; Mavrodi, D.V.; Thomashow, L.S.; Weller, D.M. Quantification of 2,4-Diacetylphloroglucinol-Producing Pseudomonas Fluorescens Strains in the Plant Rhizosphere by Real-Time PCR. Appl. Environ. Microbiol. 2007, 73, 5531–5538. [Google Scholar] [CrossRef] [PubMed]
- Mendis, H.C.; Thomas, V.P.; Schwientek, P.; Salamzade, R.; Chien, J.T.; Waidyarathne, P.; Kloepper, J.; De La Fuente, L. Strain-Specific Quantification of Root Colonization by Plant Growth Promoting Rhizobacteria Bacillus firmus I-1582 and Bacillus amyloliquefaciens QST713 in Non-Sterile Soil and Field Conditions. PLoS ONE 2018, 13, e0193119. [Google Scholar] [CrossRef]
- Manfredini, A.; Malusà, E.; Canfora, L. Aptamer-Based Technology for Detecting Bacillus Subtilis in Soil. Appl. Microbiol. Biotechnol. 2023, 107, 6963–6972. [Google Scholar] [CrossRef]
- Young, J.M.; Park, D.C. Probable synonymy of the nitrogen-fixing genus Azotobacter and the genus Pseudomonas. Int. J. Syst. Evol. Micr. 2007, 57, 2894–2901. [Google Scholar] [CrossRef]
- Özen, A.I.; Ussery, D.W. Defining the Pseudomonas Genus: Where Do We Draw the Line with Azotobacter? Microb. Ecol. 2012, 63, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Mavrodi, D.V.; Loper, J.E.; Paulsen, I.T.; Thomashow, L.S. Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiol. 2009, 9, 8. [Google Scholar] [CrossRef]
- Manfredini, A.; Malusà, E.; Costa, C.; Pallottino, F.; Mocali, S.; Pinzari, F.; Canfora, L. Current Methods, Common Practices, and Perspectives in Tracking and Monitoring Bioinoculants in Soil. Front. Microbiol. 2021, 12, 698491. [Google Scholar] [CrossRef] [PubMed]
- Tavares, M.; Kozak, M.; Balola, A.; Sá-Correia, I. Burkholderia cepacia Complex Bacteria: A Feared Contamination Risk in Water-Based Pharmaceutical Products. Clin. Microbiol. Rev. 2020, 33, 10-1128. [Google Scholar] [CrossRef]
- Carson, L.A.; Favero, M.S.; Bond, W.W.; Petersen, N.J. Morphological, Biochemical, and Growth Characteristics of Pseudomonas cepacia from Distilled Water. Appl. Microbiol. 1973, 25, 476–483. [Google Scholar] [CrossRef]
- Ngalimat, M.S.; Yahaya, R.S.R.; Baharudin, M.M.A.; Yaminudin, S.M.; Karim, M.; Ahmad, S.A.; Sabri, S.A. Review on the Biotechnological Applications of the Operational Group Bacillus amyloliquefaciens. Microorganisms 2021, 9, 614. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Li, L.; Zheng, F.; Xie, X.; Chai, A.; Li, B. The complete genome sequence of Rahnella aquatilis ZF7 reveals potential beneficial properties and stress tolerance capabilities. Arch. Microbiol. 2020, 202, 483–499. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to Improve Soil Fertility. A Review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Bolan, S.; Sharma, S.; Mukherjee, S.; Kumar, M.; Rao, C.S.; Nataraj, K.C.; Singh, G.; Vinu, A.; Bhowmik, A.; Sharma, H.; et al. Biochar Modulating Soil Biological Health: A Review. Sci. Total Environ. 2023, 914, 169585. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, J.; Tang, G.; Bao, D.; Wang, T.; Kong, D. Impacts and Mechanisms of Biochar on Soil Microorganisms. Plant Soil Environ. 2023, 69, 45–54. [Google Scholar] [CrossRef]
- Vassura, I.; Fabbri, D.; Rombolà, A.G.; Rizzi, B.; Menichetti, A.; Cornali, S.; Pagano, L.; Reggiani, R.; Vecchi, M.R.; Marmiroli, N. Multi-Analytical Techniques to Study Changes in Carbon and Nitrogen Forms in a Tomato-Cultivated Soil Treated with Biochar and Biostimulants. Soil Environ. Health 2023, 1, 100050. [Google Scholar] [CrossRef]
- Àlvarez, G.; González, M.; Isabal, S.; Blanc, V.; León, R. Method to Quantify Live and Dead Cells in Multi-Species Oral Biofilm by Real-Time PCR with Propidium Monoazide. AMB Express 2013, 3, 1. [Google Scholar] [CrossRef]
- Marmiroli, M.; Caldara, M.; Pantalone, S.; Malcevschi, A.; Maestri, E.; Keller, A.A.; Marmiroli, N. Building a Risk Matrix for the Safety Assessment of Wood Derived Biochars. Sci. Total Environ. 2022, 839, 156265. [Google Scholar] [CrossRef]
MC_C | ||
---|---|---|
Azotobacter chroococcum | LS132 | N-fixation |
Burkholderia ambifaria | MCI7 | Plant growth-promoting |
Bacillus spp. | BV84 | Biocontrol/plant growth-promoting |
Bacillus amyloliquefaciens | LMG 9814 | α-amylase, α-glucosidase, and iso-amylase production |
Pseudomonas fluorescens | DR54 | Biocontrol of pathogen |
Rahnella aquatilis | BB23/T4d | Plant growth-promoting |
Target Species | Primer Name | Sequence | Tm | Reference | Reference Genome | E | R2 |
---|---|---|---|---|---|---|---|
R. aquatilis | Raq4 | Fw: 5′-CTCCAAACTGGTGCTGGAAG-3′ Rev: 5′-CAGCAGTTCCTGGGAGTTTG-3′ | 85.00 °C | UNIPR laboratory | ASM24195v1 (strain CIP 7865) | 90.550 ± 6.650 | 0.942 ± 0.021 |
B. amyloliquefaciens | rpsj | Fw: 5′-ATCTGGTCCGATTCCGTTGCCG-3′ Rev: 5′-TGGTGTTGGGTTCACAATGTCG-3′ | 79.00 °C | [29] | ASM1939692v1 (strain GKT04) | 93.750 ± 4.085 | 0.996 ± 0.003 |
B. ambifaria | Bamb 1196 | Fw: 5′-CTGCGTTACACCGTCTTCG-3′ Rev: 5′-AAGTGGTCGCAATAGGCATC-3′ | 86.50 °C | [30] | ASM1612775v1 (strain FDAARGOS_1027) | Nt | Nt |
Bamb 3350 | Fw: 5′-ACCCGTATCCAGCAGACCTT-3′ Rev: 5′-GTGCATGAACTCGACCGTCT-3′ | 87.00 °C | 98.267 ± 9.128 | 0.996 ± 0.001 | |||
Bamb 4475 | Fw: 5′-CTACGTGAACCAGACGCTTG-3′ Rev: 5′-TCGACGAGTACGACGAGTTG-3′ | 87.50 °C | Nt | Nt |
B. ambifaria-Bramante | ||||
---|---|---|---|---|
AMF + MC_C All Times | AMF + Biochar + MC_C All Times | AMF + MC_C T2, T3, T4 | AMF + Biochar + MC_C T2, T3, T4 | |
CTR all times | 2.92 × 10−10 **** | 7.81 × 10−9 **** | ||
CTR T2, T3, T4 | 0.000350 *** | 8.39 × 10−6 **** | ||
AMF + MC_C all times | 0.66514 ns | |||
AMF + MC_C T2, T3, T4 | 0.17311 ns | |||
B. ambifaria-Svevo | ||||
CTR all times | 0.00367 ** | 0.00010 *** | ||
CTR T2, T3, T4 | 0.02886 * | 0.00059 *** | ||
AMF + MC_C all times | 0.00730 ** | |||
AMF + MC_C T2, T3, T4 | 0.01732 * | |||
B. amyloloquefaciens-Bramante | ||||
CTR all times | 0.00998 ** | 0.00029 *** | ||
CTR T2, T3, T4 | 0.04268 * | 1.21 × 10−5 **** | ||
AMF + MC_C all times | 0.05269 ns | |||
AMF+MC_C T2, T3, T4 | 0.00502 ** | |||
B. amyloloquefaciens-Svevo | ||||
CTR all times | 0.00170 ** | 2.70 × 10−5 **** | ||
CTR T2, T3, T4 | 0.00568 ** | 0.00014 *** | ||
AMF + MC_C all times | 0.00239 ** | |||
AMF + MC_C T2, T3, T4 | 0.00553 ** | |||
R. aquatilis-Bramante | ||||
CTR all times | 0.00442 ** | 0.01267 * | ||
CTR T2, T3, T4 | 0.00028 ** | 0.00018 *** | ||
AMF + MC_C all times | 0.62860 ns | |||
AMF + MC_C T2, T3, T4 | 0.77247 ns | |||
R. aquatilis-Svevo | ||||
CTR all times | 0.04419 * | 0.00042 *** | ||
CTR T2, T3, T4 | 0.00226 ** | 0.00018 *** | ||
AMF + MC_C all times | 0.00247 ** | |||
AMF + MC_C T2, T3, T4 | 0.00282 ** |
B. ambifaria | ||
Average | Median | |
Bramante all times | 0.97107 | 1.04763 |
Bramante T2, T3, T4 | 1.10424 | 1.13713 |
Svevo all times | 1.26138 | 1.34574 |
Svevo T2, T3, T4 | 1.31697 | 1.40049 |
B. amyloliquefaciens | ||
Bramante all times | 1.09267 | 1.12214 |
Bramante T2, T3, T4 | 1.15601 | 1.15881 |
Svevo all times | 1.12783 | 1.03542 |
Svevo T2, T3, T4 | 1.15195 | 1.00520 |
R. aquatilis | ||
Bramante all times | 0.97500 | 0.96419 |
Bramante T2, T3, T4 | 1.01943 | 1.01178 |
Svevo all times | 1.43474 | 1.15627 |
Svevo excluding T2 | 1.09839 | 1.13917 |
Svevo T2, T3, T4 | 1.56841 | 1.20323 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iosa, I.; Agrimonti, C.; Marmiroli, N. Real-Time PCR (qtPCR) to Discover the Fate of Plant Growth-Promoting Rhizobacteria (PGPR) in Agricultural Soils. Microorganisms 2024, 12, 1002. https://doi.org/10.3390/microorganisms12051002
Iosa I, Agrimonti C, Marmiroli N. Real-Time PCR (qtPCR) to Discover the Fate of Plant Growth-Promoting Rhizobacteria (PGPR) in Agricultural Soils. Microorganisms. 2024; 12(5):1002. https://doi.org/10.3390/microorganisms12051002
Chicago/Turabian StyleIosa, Ilenia, Caterina Agrimonti, and Nelson Marmiroli. 2024. "Real-Time PCR (qtPCR) to Discover the Fate of Plant Growth-Promoting Rhizobacteria (PGPR) in Agricultural Soils" Microorganisms 12, no. 5: 1002. https://doi.org/10.3390/microorganisms12051002
APA StyleIosa, I., Agrimonti, C., & Marmiroli, N. (2024). Real-Time PCR (qtPCR) to Discover the Fate of Plant Growth-Promoting Rhizobacteria (PGPR) in Agricultural Soils. Microorganisms, 12(5), 1002. https://doi.org/10.3390/microorganisms12051002