Transcriptome Analysis of mfs2-Defective Penicillium digitatum Mutant to Reveal Importance of Pdmfs2 in Developing Fungal Prochloraz Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Media
2.2. RNA Extraction, RNA-seq Library Construction and Illumina Sequencing
2.3. Assembly of Reads and Unigenes and Analysis of SNP Sites
2.4. Analysis of Differentially Expressed Genes (DEGs)
2.5. Validation of DEGs with Quantitative Real-Time PCR (qRT-PCR)
3. Results
3.1. Transcriptome Sequencing and Reads Assembly
3.2. Analysis of Differentially Expressed Genes (DEGs)
3.3. DEG Analysis between the Wild-Type and mfs2-Deleted P. digitatum Strains at No Prochloraz Induction
3.4. DEG Analysis in the Wild-Type and mfs2-Deleted P. digitatum Strains with Prochloraz Induction
3.5. DEG Analysis between the Wild-Type and mfs2-Deleted P. digitatum Strains at Prochloraz Induction
3.6. Drug Pump Protein-Encoding Gene Expression Profiles
3.7. qPCR Validation of DEGs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palou, L.; Smilanick, J.L.; Usall, J.; Viñas, I. Control of postharvest blue and green molds of oranges by hot water, sodium carbonate, and sodium bicarbonate. Plant Dis. 2001, 85, 371–376. [Google Scholar] [CrossRef]
- Cheng, Y.L.; Lin, Y.L.; Cao, H.H.; Li, Z.G. Citrus postharvest green mold: Recent advances in fungal pathogenicity and fruit resistance. Microorganisms 2020, 8, 449. [Google Scholar] [CrossRef]
- Ma, B.; Tredway, L.P. Induced overexpression of cytochrome P450 sterol 14α-demethylase gene (CYP51) correlates with sensitivity to demethylation inhibitors (DMIs) in Sclerotinia homoeocarpa. Pest Manag. Sci. 2013, 69, 1369–1378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, B.; Zhu, F.X.; Fu, Y.P. Baseline sensitivity and fungicidal action of propiconazole against Penicillium digitatum. Pestic. Biochem. Physiol. 2021, 172, 104752. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Zhang, B.; Luo, C.X.; Fu, Y.P.; Zhu, F.X. Fungicidal actions and resistance mechanisms of prochloraz to Penicillium digitatum. Plant Dis. 2021, 105, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Torres, P.; Tuset, J.J. Molecular insights into fungicide resistance in sensitive and resistant Penicillium digitatum strains infecting citrus. Postharvest Biol. Technol. 2011, 59, 159–165. [Google Scholar] [CrossRef]
- de Ramón-Carbonell, M.; Sánchez-Torres, P. Significance of 195 bp-enhancer of PdCYP51B in the acquisition of Penicillium digitatum DMI resistance and increase of fungal virulence. Pestic. Biochem. Physiol. 2020, 165, 104522. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, S.Q.; Yuan, Y.Z.; Zhang, T.F.; Liu, J.; Liu, D.L. A novel major facilitator superfamily transporter in Penicillium digitatum (PdMFS2) is required for prochloraz resistance, conidiation and full virulence. Biotechnol. Lett. 2016, 38, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.F.; Cao, Q.W.; Li, N.; Liu, D.L.; Yuan, Y.Z. Transcriptome analysis of fungicide-responsive gene expression profiles in two Penicillium italicum strains with different response to the sterol demethylation inhibitor (DMI) fungicide prochloraz. BMC Genom. 2020, 21, 156. [Google Scholar] [CrossRef]
- Hamamoto, H.; Hasegawa, K.; Nakaune, R.; Lee, Y.J.; Makizumi, Y.; Akutsu, K.; Hibi, T. Tandem repeat of a transcriptional enhancer upstream of the sterol 14α-demethylase gene (CYP51) in Penicillium digitatum. Appl. Environ. Microbiol. 2000, 66, 3421–3426. [Google Scholar] [CrossRef]
- Sun, X.P.; Wang, J.Y.; Feng, D.; Ma, Z.H.; Li, H.Y. PdCYP51B, a new putative sterol 14α-demethylase gene of Penicillium digitatum involved in resistance to imazalil and other fungicides inhibiting ergosterol synthesis. Appl. Microbiol. Biotechnol. 2011, 91, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.Y.; Cao, H.J.; Yu, J.J.; Yu, M.N.; Qi, Z.Q.; Song, T.Q.; Du, Y.; Yong, M.L.; Zhang, R.S.; Yin, X.L.; et al. Monitoring and analysis of rice pathogen Ustilaginoidea virens isolates with resistance to sterol demethylation inhibitors in China. Phytopathol. Res. 2020, 2, 24. [Google Scholar] [CrossRef]
- Lucio, J.; Gonzalez-Jimenez, I.; Rivero-Menendez, O.; Alastruey-Izquierdo, A.; Pelaez, T.; Alcazar-Fuoli, L.; Mellado, E. Point mutations in the 14-α sterol demethylase Cyp51A or Cyp51C could contribute to azole resistance in Aspergillus flavus. Genes 2020, 11, 1217. [Google Scholar] [CrossRef] [PubMed]
- Morschhäuser, J. Regulation of multidrug resistance in pathogenic fungi. Fungal Genet. Biol. 2010, 47, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.Y.; Cheng, X.Y.; Li, Z.D.; Wang, Y.H.; Zhang, Z.P.; Yan, R.Y.; Chang, L.; Li, Y.C.; Xu, P.; Duan, C.Z. Quantitative proteomics revealed the transition of ergosterol biosynthesis and drug transporters processes during the development of fungal fluconazole resistance. Biochim. Biophys. Acta Gene Regul. Mech. 2023, 1866, 194953. [Google Scholar] [CrossRef] [PubMed]
- Yan, N. Structural advances for the major facilitator superfamily (MFS) transporters. Trend Biochem. Sci. 2013, 38, 151–159. [Google Scholar] [CrossRef]
- Stephen, J.; Salam, F.; Lekshmi, M.; Kumar, S.H.; Varela, M.F. The major facilitator superfamily and antimicrobial resistance efflux pumps of the ESKAPEE pathogen Staphylococcus aureus. Antibiotics 2023, 12, 343. [Google Scholar] [CrossRef]
- Dias, P.J.; Seret, M.L.; Goffeau, A.; Correia, I.S.; Baret, P.V. Evolution of the 12-spanner drug:H+ antiporter DHA1 family in hemiascomycetous yeasts. Omics 2010, 14, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Hassan, K.A.; Brzoska, A.J.; Wilson, N.L.; Eijkelkamp, B.A.; Brown, M.H.; Paulsen, I.T. Roles of DHA2 family transporters in drug resistance and iron homeostasis in Acinetobacter spp. J. Mol. Microbiol. Biotechnol. 2011, 20, 116–124. [Google Scholar]
- de Ramón-Carbonell, M.; Sánchez-Torres, P. Penicillium digitatum MFS transporters can display different roles during pathogen-fruit interaction. Int. J. Food Microbiol. 2021, 337, 108918. [Google Scholar] [CrossRef]
- Kretschmer, M.; Leroch, M.; Mosbach, A.; Walker, A.S.; Fillinger, S.; Mernke, D.; Schoonbeek, H.J.; Pradier, J.M.; Leroux, P.; De Waard, M.A.; et al. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mouldfungus Botrytis cinerea. PLoS Pathog. 2009, 512, e1000696. [Google Scholar]
- Roohparvar, R.; De Waard, M.A.; Kema, G.H.; Zwiers, L.H. MgMfs1, a major facilitator superfamily transporter from the fungal wheat pathogen Mycosphaerellagraminicola, is a strong protectant against natural toxic compounds and fungicides. Fungal Genet. Biol. 2007, 44, 378–388. [Google Scholar] [CrossRef]
- Qadri, H.; Shah, A.H.; Mir, M.A.; Qureshi, M.F.; Prasad, R. Quinidine drug resistance transporter knockout Candida cells modulate glucose transporter expression and accumulate metabolites leading to enhanced azole drug resistance. Fungal Genet. Biol. 2022, 161, 103713. [Google Scholar] [CrossRef]
- Ntasiou, P.; Samaras, A.; Papadakis, E.N.; Menkissoglu-Spiroudi, U.; Karaoglanidis, G.S. Aggressiveness and patulin production in Penicillium expansum multidrug resistant strains with different expression levels of MFS and ABC transporters, in the presence or absence of fludioxonil. Plants 2023, 12, 1398. [Google Scholar] [CrossRef]
- Wang, J.Y.; Sun, X.P.; Lin, L.Y.; Zhang, T.Y.; Ma, Z.H.; Li, H.Y. PdMFS1, a major facilitator superfamily transporter from Penicilliundigitatum, is partially involved in the imazalil-resistance and pathogenicity. Afr. J. Microbiol. Res. 2012, 6, 95–105. [Google Scholar]
- Liu, J.; Wang, S.Q.; Qin, T.T.; Li, N.; Niu, Y.H.; Li, D.D.; Yuan, Y.Z.; Geng, H.; Xiong, L.; Liu, D.L. Whole transcriptome analysis of Penicillium digitatum strains treatmented with prochloraz reveals their drug-resistant mechanisms. BMC Genom. 2015, 16, 855. [Google Scholar] [CrossRef]
- Morschhäuser, J.; Barker, K.S.; Liu, T.T.; BlaB-Warmuth, J.; Homayouni, R.; Rogers, P.D. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog. 2007, 3, e164. [Google Scholar] [CrossRef]
- Tan, X.L.; Long, C.Y.; Meng, K.X.; Shen, X.M.; Wang, Z.T.; Li, L.; Tao, N.G. Transcriptome sequencing reveals an inhibitory mechanism of Penicillium digitatum by sodium dehydroacetate on citrus fruit. Postharvest Biol. Technol. 2022, 188, 111898. [Google Scholar] [CrossRef]
- Oliveira-Tintino, C.D.D.; Muniz, D.F.; Barbosa, C.R.D.D.D.; Pereira, R.L.S.; Begnini, I.M.; Rebelo, R.A.; da Silva, L.E.; Mireski, S.L.; Nasato, M.C.; Krautler, M.I.L.; et al. NorA, Tet(K), MepA, and MsrAefflux pumps in Staphylococcus aureus, their inhibitors and 1,8-naphthyridine sulfonamides. Curr. Pharm. Des. 2023, 29, 323–355. [Google Scholar]
- Ma, Q.B.; Yi, R.; Li, L.; Liang, Z.Y.; Zeng, T.T.; Zhang, Y.; Huang, H.; Zhang, X.; Yin, X.L.; Cai, Z.D.; et al. GsMATE encoding a multidrug and toxic compound extrusion transporter enhances aluminum tolerance in Arabidopsis thaliana. BMC Plant Biol. 2018, 18, 212. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Kumar, P.; Kumar, A.; Praba, U.P.; Birdi, R.; Singh, R.; Kaur, G.; Lore, J.S.; Neelam, K.; Vikal, Y. OsMATE6 gene putatively involved in host defense response toward susceptibility against Rhizoctonia solani in rice. J. Plant Interact. 2022, 17, 744–755. [Google Scholar] [CrossRef]
- Marcet-Houben, M.; Ballester, A.R.; de la Fuente, B.; Harries, E.; Marcos, J.F.; González-Candelas, L.; Gabaldón, T. Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus. BMC Genom. 2012, 13, 646. [Google Scholar] [CrossRef]
- Wang, M.S.; Ruan, R.X.; Li, H.Y. The completed genome sequence of the pathogenic ascomycete fungus Penicillium digitatum. Genomics 2021, 113, 439–446. [Google Scholar] [CrossRef]
- de Ramón-Carbonell, M.; López-Pérez, M.; González-Candelas, L.; Sánchez-Torres, P. PdMFS1 transporter contributes to Penicilliundigitatum fungicide resistance and fungal virulence during citrus fruit infection. J. Fungi 2019, 5, 100. [Google Scholar] [CrossRef]
- Sun, X.P.; Ruan, R.X.; Lin, L.Y.; Zhu, C.Y.; Zhang, T.Y.; Wang, M.S.; Li, H.Y.; Yu, D.L. Genomewide investigation into DNA elements and ABC transporters involved in imazalil resistance in Penicillium digitatum. FEMS Microbiol. Lett. 2013, 348, 11–18. [Google Scholar] [CrossRef]
- Ruan, R.X.; Wang, M.S.; Liu, X.; Sun, X.P.; Chung, K.R.; Li, H.Y. Functional analysis of two sterol regulatory element binding proteins in Penicillium digitatum. PLoS ONE 2017, 12, e0176485. [Google Scholar] [CrossRef]
- Prasad, R.; Nair, R.; Banerjee, A. Multidrug transporters of Candida species in clinical azole resistance. Fungal Genet. Biol. 2019, 132, 103252. [Google Scholar] [CrossRef]
- Pérez-Cantero, A.; López-Fernández, L.; Guarro, J.; Capilla, J. Azole resistance mechanisms in Aspergillus: Update and recent advances. Int. J. Antimicrob. Agents 2020, 55, 105807. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, D.Y.; Wang, Z.; Tian, Z.H.; Yang, F.; Lu, X.J.; Long, C.A. Genome sequencing and transcriptome analysis of Geotrichumcitri-aurantii on citrus reveal the potential pathogenic- and guazatine-resistance related genes. Genomics 2020, 112, 4063–4071. [Google Scholar] [CrossRef] [PubMed]
- Lees, N.D.; Bard, M.; Kirsch, D.R. Biochemistry and molecular biology of sterol synthesis in Saccharomyces cerevisiae. Crit. Rev. Biochem. Mol. Biol. 1999, 34, 33–47. [Google Scholar] [PubMed]
- Fernandes, T.; Silva, S.; Henriques, M. Effect of voriconazole on Candida tropicalis biofilms: Relation with ERG genes expression. Mycopathologia 2016, 181, 643–651. [Google Scholar] [CrossRef]
- Park, M.Y.; Jeon, B.J.; Kang, J.E.; Kim, B.S. Synergistic interactions of schizostatinidentified from Schizophyllum commune with demethylation inhibitor fungicides. Plant Pathol. J. 2020, 36, 579–590. [Google Scholar] [CrossRef]
- Tong, L.; Harwood, H.J., Jr. Acetyl-coenzyme A carboxylases: Versatile targets for drug discovery. J. Cell. Biochem. 2006, 99, 1476–1488. [Google Scholar] [CrossRef]
- Galdieri, L.; Vancura, A. Acetyl-CoA carboxylase regulates global histone acetylation. J. Biol. Chem. 2012, 287, 23865–23876. [Google Scholar] [CrossRef] [PubMed]
- Bozaquel-Morais, B.L.; Madeira, J.B.; Venâncio, T.M.; Pacheco-Rosa, T.; Masuda, C.A.; Montero-Lomeli, M.A. Chemogenomic screen reveals novel Snf1p/AMPK independent regulators of acetyl-CoA carboxylase. PLoS ONE 2017, 12, e0169682. [Google Scholar] [CrossRef]
- Wang, Y.A.; Wang, M.K.; Li, M.; Zhao, T.; Zhou, L. Cinnamaldehyde inhibits the growth of Phytophthora capsica through disturbing metabolic homoeostasis. PeerJ 2021, 9, e11339. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O.; Pan, Z.; Bajsa-Hirschel, J.; Tamang, P.; Hammerschmidt, R.; Lorsbach, B.A.; Sparks, T.C. Molecular targets of herbicides and fungicides—Are there useful overlaps for fungicide discovery? J. Agric. Food Chem. 2023, 71, 20532–20548. [Google Scholar] [CrossRef] [PubMed]
- Bink, A.; Vandenbosch, D.; Coenye, T.; Nelis, H.; Cammue, B.P.A.; Thevissen, K. Superoxide dismutases are involved in Candida albicans biofilm persistence against miconazole. Antimicrob. Agents Chemother. 2011, 55, 4033–4037. [Google Scholar] [CrossRef]
- Orta-Zavalza, E.; Guerrero-Serrano, G.; Gutiérrez-Escobedo, G.; Cañas-Villamar, I.; Juárez-Cepeda, J.; Castaño, I.; De Las Peñas, A. Local silencing controls the oxidative stress response and the multidrug resistance in Candida glabrata. Mol. Microbiol. 2013, 88, 1135–1148. [Google Scholar] [CrossRef]
- Zhao, W.B.; Zhao, Z.M.; Ma, Y.; Li, A.P.; Zhang, Z.J.; Hu, Y.M.; Zhou, Y.; Wang, R.; Luo, X.F.; Zhang, B.Q.; et al. Antifungal activity and preliminary mechanism of pristimerin against Sclerotinia sclerotiorum. Ind. Crops Prod. 2022, 185, 115124. [Google Scholar] [CrossRef]
- Liu, F.; Gao, R.Q.; Zhang, F.; Ren, Y.; Li, W.; He, B. Postharvest biocontrol of green mold (Penicillium digitatum) in citrus by Bacillus velezensis strain S161 and its mode of action. Biol. Control. 2023, 187, 105392. [Google Scholar] [CrossRef]
- Neubauer, M.; Zhu, Z.J.; Penka, M.; Helmschrott, C.; Wagener, N.; Wagener, J. Mitochondrial dynamics in the pathogenic mold Aspergillus fumigatus: Therapeutic and evolutionary implications. Mol. Microbiol. 2015, 98, 930–945. [Google Scholar] [CrossRef] [PubMed]
- Bouillaud, F. Inhibition of succinate dehydrogenase by pesticides (SDHIs) and energy metabolism. Int. J. Mol. Sci. 2023, 24, 4045. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.R.; Fernando, S.D. Identification of fungicide combinations targeting Plasmoparaviticola and Botrytis cinerea fungicide resistance using machine learning. Microorganisms 2023, 11, 1341. [Google Scholar] [CrossRef]
- Zhang, J.R.; Gelain, J.; Schnabel, G.; Mallawarachchi, S.; Wang, H.Q.; Mulgaonkar, N.; Karthikeyan, R.; Fernando, S. Identification of fungicide combinations for overcoming Plasmoparaviticola and Botrytis cinerea fungicide resistance. Microorganisms 2023, 11, 2966. [Google Scholar] [CrossRef] [PubMed]
- Leach, M.D.; Stead, D.A.; Argo, E.; Maccallum, D.M.; Brown, A.J.P. Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance, metabolic adaptation, morphogenetic regulation and virulence of Candida albicans. Mol. Microbiol. 2011, 79, 1574–1593. [Google Scholar] [CrossRef] [PubMed]
- Retanal, C.; Ball, B.; Geddes-McAlister, J. Post-Translational Modifications drive success and failure of fungal-host interactions. J. Fungi 2021, 7, 124. [Google Scholar] [CrossRef] [PubMed]
- Toyotome, T.; Onishi, K.; Sato, M.; Kusuya, Y.; Hagiwara, D.; Watanabe, A.; Takahashi, H. Identification of novel mutations contributing to azole tolerance of Aspergillus fumigatus through in vitro exposure to tebuconazole. Antimicrob. Agents Chemother. 2021, 65, e0265720. [Google Scholar] [CrossRef]
- Poudel, B.; Mullins, J.; Fiedler, J.; Zhong, S.B. Genome-wide association study of fungicide sensitivity in a Fusarium graminearum population collected from North Dakota. Phytopathology 2024. [CrossRef]
- Sellers-Moya, Á.; Nuévalos, M.; Molina, M.; Martín, H. Clotrimazole-induced oxidative stress triggers novel yeast Pkc1-independent cell wall integrity MAPK pathway circuitry. J. Fungi 2021, 7, 647. [Google Scholar] [CrossRef]
- Wang, J.; Wen, Z.; Chen, Y.; Ma, Z.H. The sucrose non-fermenting-1 kinase Snf1 is involved in fludioxonil resistance via interacting with the high osmolarity glycerol MAPK kinase Hog1 in Fusarium. Phytopathol Res. 2023, 5, 52. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Shang, L.G.; Zhan, Y.H.; Lin, M.; Liu, Z.; Yan, Y.L. Genome-wide analysis of sugar transporters identifies the gtsA gene for glucose transportation in Pseudomonas stutzeri A1501. Microorganisms 2020, 8, 592. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Wang, Q.N.; He, C.Z.; An, B. CgMFS1, a major facilitator superfamily transporter, is required for sugar transport, oxidative stress resistance, and pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis. Curr. Issues. Mol. Biol. 2021, 43, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Yu, J.H.; Liu, J.; Yuan, Y.Z.; Li, N.; He, M.Q.; Qi, T.; Hui, G.; Xiong, L.; Liu, D.L. Novel mutations in CYP51B from Penicillium digitatum involved in prochloraz resistance. J. Microbiol. 2014, 52, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Banerjee, A.; Khandelwal, N.K.; Dhamgaye, S. The ABCs of Candida albicans multidrug transporter Cdr1. Eukaryot. Cell. 2015, 14, 1154–1164. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Florea, L.; Song, L.; Salzberg, S.L. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Res 2013, 2, 188. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple hypothesis testing. J. R. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- de Hoon, M.J.; Imoto, S.; Nolan, J.; Miyano, S. Open source clustering software. Bioinformatics 2004, 20, 1453–1454. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Galperin, M.Y.; Natale, D.A.; Koonin, E.V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000, 28, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36, D480–D484. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.Z.; Cai, T.; Olyarchuk, J.G.; Wei, L.P. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005, 21, 3787–3793. [Google Scholar] [CrossRef]
- Plett, K.L.; Buckley, S.; Plett, J.M.; Anderson, I.C.; Lundberg-Felten, J.; Jämtgård, S. Novel microdialysis technique reveals a dramatic shift in metabolite secretion during the early stages of the interaction between the ectomycorrhizal fungus Pisolithusmicrocarpus and its host Eucalyptus grandis. Microorganisms 2021, 9, 1817. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Wang, J.J.; Xie, J.T.; Jiang, D.H.; Keyhani, N.M. The Spt10 GNAT superfamily protein modulates development, cell cycle progression, and virulence in the fungal insect pathogen, Beauveria bassiana. J. Fungi 2021, 7, 905. [Google Scholar] [CrossRef]
- Sun, B.X.; Zhou, R.J.; Zhu, G.X.; Xie, X.W.; Chai, A.L.; Li, L.; Fan, T.F.; Zhang, S.P.; Li, B.J.; Shi, Y.X. The mechanisms of target and non-target resistance to QoIs in Corynespora cassiicola. Pestic. Biochem. Physiol. 2024, 198, 105760. [Google Scholar] [CrossRef]
KEGG (ID) | Annotated Function of DEG | Regulated | Log2FC | FDR Value |
---|---|---|---|---|
Pentose and glucuronate interconversions (ko00040) | Dihydrodipicolinate synthetase | Down | −1.54 | 1.66 × 10−10 |
Exopolygalacturonase | Down | −1.07 | 2.31 × 10−4 | |
Starch and sucrose metabolism (ko00500) | Exo-β-1,3-glucanase | Down | −1.25 | 3.74 × 10−5 |
α-L-Rhamnosidase | Down | −1.46 | 8.31 × 10−8 | |
β-Glucosidase | Down | −1.12 | 2.35 × 10−5 | |
Exopolygalacturonase | Down | −1.07 | 2.31 × 10−4 | |
Peroxisome (ko04146) | Peroxin | Down | −1.23 | 9.75 × 10−7 |
Fatty acyl-CoA oxidase | Down | −1.14 | 1.40 × 10−6 | |
Carnitine acetyl transferase | Down | −1.05 | 1.07 × 10−5 | |
Oxidative phosphorylation (ko00190) | NADH dehydrogenase | Down | −1.93 | 3.17 × 10-3 |
Cytochrome b | Down | −2.27 | 1.52 × 10−7 | |
ATP synthase | Down | −1.45 | 5.26 × 10−3 | |
Nitrogen metabolism (ko00910) | NAD+-dependent glutamate dehydrogenase | Up | 1.04 | 1.10 × 10−5 |
Nitrite reductase | Up | 1.32 | 1.55 × 10−8 | |
Nitrate reductase | Up | 1.19 | 1.27 × 10−6 | |
Nitrilase | Up | 1.72 | 1.19 × 10−6 | |
Tyrosine metabolism (ko00350) | Maleylacetoacetate isomerase | Up | 1.47 | 2.30 × 10−6 |
4-Hydroxyphenylpyruvate dioxygenase | Up | 1.62 | 2.28 × 10−12 | |
Amine oxidase | Up | 1.66 | 3.46 × 10−13 | |
Aldehyde dehydrogenase | Up | 1.02 | 1.69 × 10−5 | |
Phenylalanine metabolism (ko00360) | 4-Hydroxyphenylpyruvate dioxygenase | Up | 1.62 | 2.28 × 10−12 |
Amine oxidase | Up | 1.66 | 3.46 × 10−13 | |
Aldehyde dehydrogenase | Up | 1.02 | 1.69 × 10−5 | |
Tryptophan metabolism (ko00380) | Nitrilase | Up | 1.17 | 1.19 × 10−6 |
Indoleamine/pyrrole 2,3-dioxygenase | Up | 1.07 | 8.21 × 10−6 | |
Catalase | Up | 1.13 | 1.65 × 10−5 |
Annotated Function of DEG | Database | Class Name | ID |
---|---|---|---|
Dihydrodipicolinate | COG | Amino acid transport and metabolism | E |
COG | Cell wall/membrane/envelope biogenesis | M | |
Exo-β-1,3-glucanase | COG | Carbohydrate transport and metabolism | G |
α-L-Rhamnosidase | COG | Carbohydrate transport and metabolism | G |
KOG | Carbohydrate transport and metabolism | G | |
β-Glucosidase | COG | Carbohydrate transport and metabolism | G |
Peroxin | COG | General function prediction only | R |
KOG | Intracellular trafficking, secretion, and vesicular transport | U | |
Fatty acyl-CoA oxidase | COG | Lipid transport and metabolism | I |
KOG | Lipid transport and metabolism | I | |
Carnitine acetyl transferase | KOG | Lipid transport and metabolism | I |
NADH dehydrogenase | COG | Energy production and conversion | C |
KOG | Energy production and conversion | C | |
Cytochrome b | COG | Energy production and conversion | C |
KOG | Energy production and conversion | C | |
ATP synthase | COG | Energy production and conversion | C |
KOG | Energy production and conversion | C |
KEGG (ID) | Annotated Function of DEG | Log2FC | FDR |
---|---|---|---|
Oxidative phosphorylation (ko00190) | Cytochrome c oxidase | 2.54 | 1.54 × 10−22 |
NADH dehydrogenase | 3.65 | 8.77 × 10−34 | |
Cytochrome b | 2.39 | 6.76 × 10−18 | |
ATP synthase | 3.53 | 4.74 × 10−34 | |
Steroid biosynthesis (ko00100) | Erg24 | 1.30 | 5.65 × 10−8 |
Erg1 | 1.35 | 1.17 × 10−8 | |
Erg25 | 1.43 | 9.29 × 10−10 | |
Glutathione metabolism (ko00480) | Glutathione S-transferase | 1.13 | 1.03 × 10−3 |
Biosynthesis of unsaturated fatty acids (ko01040) | 1,3,6,8-Tetrahydroxynaphthalene reductase | 1.08 | 9.74 × 10−5 |
Biotin metabolism (ko00780) | 1,3,6,8-Tetrahydroxynaphthalene reductase | 1.08 | 9.74 × 10−5 |
Fatty acid biosynthesis (ko00061) | 1,3,6,8-Tetrahydroxynaphthalene reductase | 1.08 | 9.74 × 10−5 |
Ubiquinone and other terpenoid-quinone biosynthesis (ko00130) | NADH-quinone oxidoreductase | 1.43 | 8.80 × 10−10 |
Fatty acid metabolism (ko01212) | 1,3,6,8-Tetrahydroxynaphthalene reductase | 1.08 | 9.74 × 10−5 |
Glycerolipid metabolism (ko00561) | Glycerol kinase | 1.62 | 1.24 × 10−4 |
Pentose and glucuronate interconversions (ko00040) | Pectate lyase | 1.51 | 1.02 × 10−8 |
Ribosome (ko03010) | 40S Ribosomal protein | 1.01 | 3.49 × 10−5 |
Ribosomal protein | 1.01 | 3.00 × 10−5 | |
Glycerophospholipid metabolism (ko00564) | Phosphatidylserine decarboxylase | 1.14 | 2.23 × 10−6 |
Tyrosine metabolism (ko00350) | Maleylacetoacetate isomerase | 1.10 | 1.42 × 10−3 |
Peroxisome (ko04146) | Superoxide dismutase | 1.25 | 1.90 × 10−7 |
Biosynthesis of antibiotics (ko01130) | Erg25 | 1.43 | 9.29 × 10−10 |
Erg24 | 1.30 | 5.65 × 10−8 | |
Erg1 | 1.35 | 1.17 × 10−8 | |
Spliceosome (ko03040) | Pre-mRNA-splicing factor | 1.12 | 3.43 × 10−6 |
KEGG (ID) | Annotated Function of DEG | Log2FC | FDR |
---|---|---|---|
Steroid biosynthesis (ko00100) | Erg3 | 1.11 | 1.09 × 10−5 |
Erg25 | 1.12 | 9.08 × 10−6 | |
Ether lipid metabolism (ko00565) | Phospholipase C | 1.46 | 3.07 × 10−4 |
Galactose metabolism (ko00052) | Extracellular invertase | 1.88 | 4.25 × 10−3 |
Inositol phosphate metabolism (ko00562) | Phospholipase C | 1.46 | 3.07 × 10−4 |
Biosynthesis of antibiotics (ko01130) | Erg3 | 1.11 | 1.09 × 10−5 |
Erg25 | 1.12 | 9.08 × 10−6 | |
Glycerophospholipid metabolism (ko00564) | Phospholipase C | 1.46 | 3.07 × 10−4 |
Starch and sucrose metabolism (ko00500) | Extracellular invertase | 1.88 | 4.25 × 10−3 |
Function Class | Annotated Function of DEG | Pd-wt-(I/NI) | Pd-d-(I/NI) | ||
---|---|---|---|---|---|
Log2FC | FDR | Log2FC | FDR | ||
A | Zinc knuckle transcription factor | 1.08 | 2.47 × 10−4 | / | / |
RNA helicase | 2.57 | 1.19 × 10−4 | / | / | |
C | RNA helicase | 2.57 | 1.19 × 10−4 | / | / |
NADH dehydrogenase subunit 4 | 2.90 | 1.11 × 10−23 | / | / | |
NADH dehydrogenase subunit 1 | 2.02 | 8.60 × 10−8 | / | / | |
Hypothetical protein | 1.15 | 1.34 × 10−3 | / | / | |
Glyoxylate reductase | 1.14 | 5.55 × 10−4 | / | / | |
Hypothetical protein | 1.14 | 8.06 × 10−6 | / | / | |
Cytochrome b | 2.39 | 6.76 × 10−18 | / | / | |
Hypothetical protein | 1.12 | 3.43 × 10−6 | / | / | |
Cytochrome c oxidase | 2.54 | 1.54 × 10−22 | / | / | |
ATP synthase subunit 9 | 2.47 | 9.84 × 10−6 | / | / | |
ATP synthase subunit 6 | 3.53 | 4.74 × 10−34 | / | / | |
Oxaloacetate hydrolase | 3.70 | 2.35 × 10−27 | / | / | |
Hypothetical protein | 1.21 | 6.71 × 10−4 | / | / | |
FMN dependent dehydrogenase | 1.16 | 6.23 × 10−6 | / | / | |
E | Nitrilase | 1.06 | 1.30 × 10−5 | / | / |
Amino acid permease | 1.17 | 4.03 × 10−6 | / | / | |
G | Glycerol kinase | 1.62 | 1.24 × 10−4 | / | / |
MFS | 1.29 | 1.42 × 10−6 | / | / | |
Aquaporin | 1.25 | 1.51 × 10−7 | / | / | |
I | NRPS-like enzyme | 1.28 | 3.99 × 10−4 | / | / |
Phosphatidylserine decarboxylase | 1.14 | 2.23 × 10−6 | / | / | |
Erg3 | / | / | 1.11 | 1.09 × 10−5 | |
Erg25 | 1.43 | 9.29 × 10−10 | 1.12 | 9.08 × 10−6 | |
Epoxide hydrolase | 1.08 | 1.85 × 10−5 | / | / | |
C-14 sterol reductase | 1.30 | 5.65 × 10−8 | / | / | |
J | Ribosomal protein | 1.01 | 3.00 × 10−5 | / | / |
40S Ribosomal protein | 1.01 | 3.49 × 10−5 | / | / | |
O | Protein-L-isoaspartate O-methyltransferase | 1.22 | 1.22 × 10−6 | / | / |
Thioredoxin | 1.00 | 4.10 × 10−5 | / | / | |
Glutathione S-transferase | 1.13 | 1.04 × 10−3 | / | / | |
Maleylacetoacetate isomerase | 1.10 | 1.42 × 10−3 | / | / | |
P | Metabolite transport protein GIT1 | 1.74 | 1.93 × 10−3 | / | / |
Superoxide dismutase | 1.24 | 1.90 × 10−7 | / | / | |
Plasma membrane low affinity zinc ion transporter | / | / | 1.21 | 8.06 × 10−3 | |
Q | Isopenicillin N synthase | 1.05 | 8.48 × 10−5 | / | / |
ABC | 1.52 | 3.91 × 10−3 | / | / | |
Phenyloxazoline synthase | 1.08 | 3.42 × 10−3 | / | / | |
Alcohol dehydrogenase | 1.25 | 1.21 × 10−6 | / | / | |
Flavin-binding monooxygenase-like protein | / | / | 1.10 | 1.71 × 10−4 | |
R | NADH-quinone oxidoreductase | 1.43 | 8.80 × 10−10 | / | / |
Aldehyde reductase | 1.16 | 6.37 × 10−3 | / | / | |
Short chain dehydrogenase/reductase | 1.16 | 1.74 × 10−5 | / | / | |
Isopenicillin N synthase | 1.05 | 8.48 × 10−5 | / | / | |
Dienelactone hydrolase | 1.05 | 2.81 × 10−4 | / | / | |
Short chain dehydrogenase/reductase | 1.04 | 2.65 × 10−5 | / | / | |
1,3,6,8-Tetrahydroxynaphthalene reductase | 1.08 | 9.74 × 10−5 | / | / | |
Pre-mRNA-splicing factor | 1.12 | 3.43 × 10−6 | / | / | |
Carbonyl reductase | 1.57 | 7.64 × 10−11 | / | / | |
T | Erg1 | 1.35 | 1.17 × 10−8 | / | / |
C-14 sterol reductase | 1.30 | 5.65 × 10−8 | / | / | |
Z | Profilin | 1.03 | 3.34 × 10−4 | / | / |
KEGG (ID) | Annotated Function of DEG | Regulated | Log2FC | FDR |
---|---|---|---|---|
Ribosome (ko03010) | 60S Ribosomal protein | Down | −1.28 | 1.84 × 10−8 |
40S Ribosomal protein | Down | −1.36 | 2.11 × 10−9 | |
Ribosomal protein | Down | −1.43 | 2.69 × 10−10 | |
60S Acidic ribosomal phosphoprotein | Down | −1.02 | 9.34 × 10−6 | |
Oxidative phosphorylation (ko00190) | Cytochrome c oxidase | Down | −7.57 | 9.35 × 10−141 |
ATP synthase | Down | −8.78 | 1.13 × 10−12 | |
NADH dehydrogenase | Down | −11.12 | 5.82 × 10−44 | |
Cytochrome b | Down | −6.28 | 1.02 × 10−51 | |
ATPase proteolipid | Down | −1.04 | 1.03 × 10−5 | |
NADH-ubiquinone oxidoreductase | Down | −1.33 | 3.66 × 10−8 | |
Pentose and glucuronate interconversions (ko00040) | Mandelate racemase/muconate lactonizing enzyme | Down | −1.09 | 2.49 × 10−6 |
Exopolygalacturonase | Down | −1.60 | 4.24 × 10−8 | |
Fatty acid biosynthesis (ko00061) | Fatty acid synthase β subunit | Up | 1.38 | 1.23 × 10−9 |
Fatty acid synthase α subunit | Up | 1.25 | 3.66 × 10−8 | |
Acetyl-CoA carboxylase | Up | 1.73 | 1.67 × 10−14 | |
Nitrogen metabolism (ko00910) | NAD+-dependent glutamate dehydrogenase | Up | 2.04 | 1.46 × 10−19 |
Nitrite reductase | Up | 1.29 | 2.42 × 10−8 | |
Nitrilase | Up | 1.26 | 6.59 × 10−8 | |
Regulation of mitophagy—yeast (ko04139) | Transcription factor | Up | 1.07 | 3.42 × 10−6 |
MAP kinase kinasekinase | Up | 1.34 | 5.63 × 10−9 | |
Ubiquitin carboxyl-terminal hydrolase | Up | 1.14 | 1.03 × 10−6 |
Annotated Function of DEG | Regulated | Class Name | Class ID |
---|---|---|---|
60S Ribosomal protein | Down | Translation, ribosomal structure and biogenesis | J |
40S Ribosomal protein | Down | Translation, ribosomal structure and biogenesis | J |
Ribosomal protein | Down | Translation, ribosomal structure and biogenesis | J |
60S Acidic ribosomal phosphoprotein | Down | Translation, ribosomal structure and biogenesis | J |
Cytochrome c oxidase | Down | Energy production and conversion | C |
ATP synthase | Down | Energy production and conversion | C |
NADH dehydrogenase | Down | Energy production and conversion | C |
Cytochrome b | Down | Energy production and conversion | C |
ATPase proteolipid | Down | Energy production and conversion | C |
NADH-ubiquinone oxidoreductase | Down | Energy production and conversion | C |
Acetyl-CoA carboxylase | Up | Lipid transport and metabolism | I |
NAD+-dependent glutamate dehydrogenase | Up | Amino acid transport and metabolism | E |
Nitrite reductase | Up | General function prediction only | R |
Nitrilase | Up | Amino acid transport and metabolism | E |
Transcription factor | Up | Chromatin structure and dynamics | B |
MAP kinase kinasekinase | Up | Signal transduction mechanisms | T |
Ubiquitin carboxyl-terminal hydrolase | Up | Post-translational modification, protein turnover, chaperones | O |
Gene Name | Changing Fold (log2FC) of the Gene Transcription Abundance in the Below Groups in the Present Comparative Analysis | |||
---|---|---|---|---|
Pd-wt-(I/NI) | Pd-d-(I/NI) | I-(Pd-d/Pd-wt) | NI-(Pd-d/Pd-wt) | |
MFS1 (PDIP_66230) | / | / | −2.28 | −2.46 |
MFS2 (PDIP_88410) | 1.18 | 0 | 0 | 0 |
MFS3 (PDIP_34090) | / | / | −1.11 | −1.40 |
MFS4 (PDIP_53210) | / | / | −1.93 | −1.33 |
MFS5 (PDIP_21030) | / | / | −1.33 | −1.31 |
MFS6 (PDIP_86550) | / | / | −1.20 | / |
MFS7 (PDIP_02580) | / | / | −2.30 | / |
MFS8 (PDIP_77890) | / | / | −2.47 | −2.09 |
MFS9 (PDIP_77880) | / | / | −1.18 | −1.04 |
MFS10 (PDIP_68550) | / | / | −1.45 | / |
MFS11 (PDIP_83160) | / | / | −1.33 | / |
MFS12 (PDIP_57820) | / | / | −2.12 | −1.82 |
MFS13 (PDIP_05380) | / | −1.43 | −1.95 | / |
MFS14 (PDIP_42270) | / | / | −1.36 | / |
MFS15 (PDIP_18570) | / | / | −1.07 | −1.14 |
MFS16 (PDIP_67480) | / | / | −1.37 | / |
MFS17 (PDIP_54260) | / | −1.27 | −2.20 | / |
MFS18 (PDIP_11120) | / | / | −1.71 | −1.71 |
MFS19 (PDIP_08540) | / | / | −1.40 | / |
MFS20 (PDIP_32140) | / | / | −2.34 | / |
MFS21 (PDIP_55680) | 1.37 | / | −1.08 | / |
MFS22 (PDIP_19590) | 1.29 | / | −1.04 | / |
MFS23 (PDIP_36610) | / | / | 2.72 | 2.50 |
MFS24 (PDIP_40610) | / | / | 1.77 | / |
MFS25 (PDIP_03090) | −1.71 | −1.07 | 1.38 | / |
MFS26 (PDIP_64100) | / | / | 1.53 | 1.42 |
MFS27 (PDIP_55370) | / | / | 1.22 | 1.47 |
MFS28 (PDIP_70440) | / | / | 1.26 | / |
MFS29 (PDIP_67290) | / | / | 1.13 | / |
MFS30 (PDIP_09580) | / | / | 1.15 | / |
MFS31 (PDIP_19850) | / | −2.63 | / | 2.05 |
MFS32 (PDIP_28570) | −1.23 | −1.11 | / | / |
MFS33 (PDIP_55020) | / | −1.07 | / | 1.22 |
ABC1 (PDIP_64370) | / | / | −1.35 | −1.71 |
ABC2 (PDIP_58890) | / | / | −1.18 | / |
ABC3 (PDIP_13640) | −2.75 | −1.09 | 2.84 | 1.18 |
ABC4 (PDIP_19230) | −1.05 | / | 2.20 | 1.43 |
ABC5 (PDIP_78490) | / | / | 1.98 | 1.79 |
ABC6 (PDIP_37050) | / | / | / | 1.01 |
ABC7 (PDIP_37060) | / | / | / | 1.06 |
ABC8 (PDIP_57360) | / | / | / | 1.37 |
MATE1 (PDIP_56750) | 1.57 | / | −1.78 | / |
MATE2 (PDIP_40930) | 1.12 | / | −1.22 | / |
MATE3 (PDIP_05620) | 1.15 | / | −1.07 | / |
DEG Name | Pd-wt-(I/NI) | Pd-d-(I/NI) | ||
Relative Fold-Change in the RNA-seq | Relative Fold-Change in the qPCR | Relative Fold-Change in the RNA-seq | Relative Fold-Change in the qPCR | |
MFS1 | 0.75 | 0.41 ± 0.03 | 0.93 | 0.62 ± 0.06 |
MFS2 | 1.59 | 1.98 ± 0.21 | / | / |
MFS3 | 0.89 | 1.12 ± 0.14 | 1.19 | 0.91 ± 0.06 |
MFS4 | 1.01 | 1.35 ± 0.11 | 0.73 | 0.95 ± 0.10 |
MFS5 | 1.00 | 0.86 ± 0.07 | 1.07 | 0.91 ± 0.08 |
MFS6 | 1.48 | 1.76 ± 0.15 | 0.81 | 0.57 ± 0.06 |
MFS7 | 1.23 | 1.33 ± 0.12 | 0.49 | 0.75 ± 0.08 |
MFS8 | 0.67 | 1.12 ± 0.14 | 0.56 | 1.20 ± 0.11 |
MFS9 | 0.60 | 0.91 ± 0.07 | 0.59 | 1.05 ± 0.12 |
MFS10 | 1.58 | 2.13 ± 0.14 | 0.92 | 1.34 ± 0.15 |
MFS11 | 0.93 | 1.21 ± 0.06 | 0.80 | 1.30 ± 0.08 |
MFS12 | 0.55 | 0.92 ± 0.08 | 0.47 | 1.05 ± 0.09 |
MFS13 | 0.71 | 0.89 ± 0.06 | 0.37 | 0.55 ± 0.06 |
MFS14 | 1.01 | 1.19 ± 0.10 | 0.79 | 0.95 ± 0.07 |
MFS15 | 0.78 | 0.95 ± 0.08 | 0.89 | 1.06 ± 0.09 |
MFS16 | 1.74 | 2.16 ± 0.14 | 1.39 | 1.05 ± 0.09 |
MFS17 | 0.98 | 1.15 ± 0.13 | 0.41 | 0.76 ± 0.08 |
MFS18 | 0.89 | 1.09 ± 0.08 | 0.99 | 1.12 ± 0.11 |
MFS19 | 0.89 | 0.97 ± 0.06 | 0.61 | 0.79 ± 0.07 |
MFS20 | 0.91 | 1.22 ± 0.14 | 0.35 | 0.56 ± 0.05 |
MFS21 | 2.35 | 3.29 ± 0.25 | 1.21 | 1.77 ± 0.12 |
MFS22 | 2.23 | 4.10 ± 0.35 | 0.90 | 1.95 ± 0.13 |
MFS23 | 0.81 | 0.99 ± 0.06 | 1.03 | 1.15 ± 0.12 |
MFS24 | 0.47 | 0.87 ± 0.08 | 1.53 | 3.51 ± 0.33 |
MFS25 | 0.28 | 0.65 ± 0.04 | 0.48 | 0.79 ± 0.08 |
MFS26 | 0.59 | 0.99 ± 0.08 | 0.70 | 1.10 ± 0.09 |
MFS27 | 0.80 | 1.09 ± 0.08 | 0.73 | 0.95 ± 0.07 |
MFS28 | 0.53 | 0.85 ± 0.06 | 1.42 | 1.99 ± 0.14 |
MFS29 | 0.67 | 1.07 ± 0.09 | 0.96 | 1.15 ± 0.11 |
MFS30 | 0.68 | 0.97 ± 0.06 | 0.99 | 1.24 ± 0.09 |
MFS31 | 0.53 | 0.78 ± 0.05 | 0.15 | 0.62 ± 0.06 |
MFS32 | 0.39 | 0.77 ± 0.05 | 0.46 | 0.89 ± 0.08 |
MFS33 | 0.69 | 0.97 ± 0.08 | 0.47 | 1.07 ± 0.09 |
ABC1 | 0.81 | 0.98 ± 0.07 | 1.14 | 1.34 ± 0.12 |
ABC2 | 2.71 | 3.55 ± 0.34 | 1.59 | 1.27 ± 0.16 |
ABC3 | 0.13 | 0.64 ± 0.05 | 0.47 | 0.88 ± 0.07 |
ABC4 | 0.44 | 0.71 ± 0.06 | 0.82 | 0.85 ± 0.08 |
ABC5 | 0.79 | 1.13 ± 0.09 | 0.99 | 1.25 ± 0.11 |
ABC6 | 1.65 | 2.33 ± 0.15 | 1.51 | 2.71 ± 0.18 |
ABC7 | 1.55 | 2.72 ± 0.23 | 1.58 | 2.57 ± 0.19 |
ABC8 | 1.50 | 2.83 ± 0.21 | 0.89 | 1.38 ± 0.14 |
MATE1 | 2.97 | 3.94 ± 0.29 | 1.04 | 2.72 ± 0.24 |
MATE2 | 2.17 | 3.17 ± 0.19 | 1.14 | 2.13 ± 0.15 |
MATE3 | 2.22 | 3.46 ± 0.27 | 1.21 | 2.28 ± 0.16 |
1,3,6,8-Tetrahydroxynaphthalene reductase | 2.11 | 1.40 ± 0.08 | 0.47 | 0.31 ± 0.06 |
4-Hydroxyphenylpyruvate dioxygenase | 0.95 | 0.81 ± 0.04 | 0.77 | 0.58 ± 0.04 |
60S Acidic ribosomal phosphoprotein | 1.37 | 1.72 ± 0.13 | 0.82 | 0.71 ± 0.06 |
60S Ribosomal protein | 1.77 | 1.35 ± 0.12 | 0.90 | 0.76 ± 0.09 |
40S Ribosomal protein | 2.01 | 1.50 ± 0.06 | 0.84 | 0.58 ± 0.05 |
Ribosomal protein | 2.01 | 1.44 ± 0.15 | 0.86 | 1.21 ± 0.11 |
Acetyl-CoA carboxylase | 0.47 | 0.30 ± 0.02 | 1.49 | 1.01 ± 0.07 |
Alcohol dehydrogenase | 2.38 | 3.37 ± 0.21 | 0.88 | 1.17 ± 0.08 |
Aldehyde dehydrogenase | 1.03 | 1.66 ± 0.13 | 0.80 | 1.07 ± 0.14 |
Aldehyde reductase | 2.23 | 2.55 ± 0.11 | 1.71 | 1.37 ± 0.14 |
Amine oxidase | 0.58 | 1.21 ± 0.13 | 0.35 | 0.24 ± 0.04 |
Amino acid permease | 2.25 | 3.11 ± 0.24 | 0.89 | 1.45 ± 0.14 |
ATP synthase subunit 6 | 11.55 | 8.66 ± 0.35 | 0.11 | 0.57 ± 0.06 |
Erg1 | 2.55 | 3.92 ± 0.24 | 1.82 | 1.38 ± 0.15 |
Erg3 | 1.61 | 1.33 ± 0.15 | 2.16 | 3.97 ± 0.23 |
Erg24 | 2.46 | 4.07 ± 0.23 | 1.62 | 1.22 ± 0.15 |
Erg25 | 2.69 | 3.98 ± 0.19 | 2.17 | 3.33 ± 0.18 |
Carnitine acetyl transferase | 0.39 | 0.26 ± 0.04 | 0.84 | 0.67 ± 0.05 |
Catalase | 1.78 | 1.40 ± 0.06 | 0.95 | 1.19 ± 0.09 |
Cytochrome b | 5.24 | 3.66 ± 0.17 | 0.32 | 0.25 ± 0.04 |
Cytochrome c oxidase | 5.82 | 8.57 ± 0.22 | 0.05 | 0.17 ± 0.05 |
RNA helicase | 5.94 | 7.47 ± 0.25 | 1.91 | 1.46 ± 0.15 |
Dienelactone hydrolase | 2.07 | 1.64 ± 0.07 | 1.06 | 1.34 ± 0.11 |
Epoxide hydrolase | 2.11 | 2.03 ± 0.16 | 1.25 | 1.76 ± 0.09 |
Exopolygalacturonase | 0.89 | 0.57 ± 0.05 | 0.67 | 0.79 ± 0.05 |
Exo-β-1,3-glucanase | 0.79 | 0.91 ± 0.06 | 0.97 | 0.69 ± 0.05 |
Fatty acid synthase β subunit | 0.52 | 0.52 ± 0.04 | 1.23 | 1.75 ± 0.11 |
Fatty acyl-CoA oxidase | 0.51 | 0.33 ± 0.05 | 1.26 | 1.20 ± 0.14 |
FMN dependent dehydrogenase | 2.23 | 4.41 ± 0.12 | 1.29 | 1.69 ± 0.08 |
Glutathione S-transferase | 2.19 | 3.38 ± 0.24 | 0.85 | 1.04 ± 0.12 |
Glycerol kinase | 3.07 | 2.23 ± 0.16 | 0.76 | 1.05 ± 0.10 |
Glyoxylate reductase | 2.20 | 4.32 ± 0.22 | 1.17 | 1.65 ± 0.11 |
Maleylacetoacetate isomerase | 2.14 | 2.05 ± 0.13 | 0.81 | 1.17 ± 0.14 |
MAP kinase kinasekinase | 0.46 | 0.52 ± 0.04 | 1.04 | 1.35 ± 0.07 |
NADH dehydrogenase subunit 1 | 4.06 | 3.77 ± 0.29 | 0.43 | 0.82 ± 0.08 |
NADH dehydrogenase subunit 4 | 7.46 | 8.15 ± 0.33 | 0.25 | 0.64 ± 0.05 |
NADH-ubiquinone oxidoreductase | 1.77 | 1.59 ± 0.07 | 0.94 | 0.77 ± 0.05 |
Nitrate reductase | 1.06 | 1.35 ± 0.09 | 0.98 | 0.77 ± 0.06 |
Nitrite reductase | 0.77 | 0.88 ± 0.06 | 0.82 | 1.11 ± 0.07 |
Oxaloacetate hydrolase | 13.00 | 8.96 ± 0.21 | 0.22 | 0.75 ± 0.06 |
Pectate lyase | 2.85 | 4.34 ± 0.21 | 1.47 | 1.62 ± 0.13 |
Phenyloxazoline synthase | 2.11 | 2.04 ± 0.17 | 1.30 | 1.83 ± 0.15 |
Phosphatidylserine decarboxylase | 2.20 | 2.85 ± 0.17 | 1.37 | 1.62 ± 0.09 |
Phospholipase C | 1.23 | 1.59 ± 0.13 | 2.75 | 3.82 ± 0.18 |
Pre-mRNA-splicing factor | 2.17 | 2.12 ± 0.14 | 1.37 | 1.44 ± 0.09 |
Protein-L-isoaspartate O-methyltransferase | 2.33 | 3.63 ± 0.19 | 1.18 | 1.68 ± 0.15 |
Superoxide dismutase | 2.38 | 4.37 ± 0.15 | 1.05 | 1.39 ± 0.12 |
Thioredoxin | 2.00 | 1.62 ± 0.06 | 1.38 | 1.03 ± 0.11 |
Ubiquitin carboxyl-terminal hydrolase | 0.49 | 0.37 ± 0.04 | 1.11 | 1.52 ± 0.17 |
α-L-Rhamnosidase | 0.48 | 0.40 ± 0.06 | 1.11 | 1.47 ± 0.15 |
DEG Name | I-(Pd-d/Pd-wt) | NI-(Pd-d/Pd-wt) | ||
Relative Fold-Change in the RNA-seq | Relative Fold-Change in the qPCR | Relative Fold-Change in the RNA-seq | Relative Fold-Change in the qPCR | |
MFS1 | 0.20 | 0.65 ± 0.04 | 0.16 | 0.43 ± 0.05 |
MFS2 | 0.00 | 0.00 | 0.00 | 0.00 |
MFS3 | 0.45 | 0.42 ± 0.08 | 0.34 | 0.51 ± 0.04 |
MFS4 | 0.25 | 0.17 ± 0.04 | 0.35 | 0.25 ± 0.03 |
MFS5 | 0.39 | 0.56 ± 0.06 | 0.36 | 0.55 ± 0.03 |
MFS6 | 0.42 | 0.27 ± 0.04 | 0.77 | 0.81 ± 0.05 |
MFS7 | 0.20 | 0.45 ± 0.05 | 0.50 | 0.77 ± 0.06 |
MFS8 | 0.18 | 0.53 ± 0.04 | 0.21 | 0.51 ± 0.06 |
MFS9 | 0.43 | 0.82 ± 0.08 | 0.43 | 0.72 ± 0.05 |
MFS10 | 0.36 | 0.41 ± 0.04 | 0.61 | 0.69 ± 0.05 |
MFS11 | 0.38 | 0.68 ± 0.05 | 0.44 | 0.65 ± 0.04 |
MFS12 | 0.21 | 0.49 ± 0.04 | 0.25 | 0.44 ± 0.04 |
MFS13 | 0.25 | 0.42 ± 0.03 | 0.48 | 0.67 ± 0.06 |
MFS14 | 0.38 | 0.45 ± 0.05 | 0.49 | 0.58 ± 0.06 |
MFS15 | 0.46 | 0.81 ± 0.07 | 0.40 | 0.71 ± 0.05 |
MFS16 | 0.38 | 0.31 ± 0.04 | 0.47 | 0.62 ± 0.04 |
MFS17 | 0.21 | 0.37 ± 0.04 | 0.50 | 0.59 ± 0.05 |
MFS18 | 0.29 | 0.52 ± 0.05 | 0.26 | 0.49 ± 0.04 |
MFS19 | 0.37 | 0.51 ± 0.04 | 0.54 | 0.65 ± 0.05 |
MFS20 | 0.19 | 0.33 ± 0.04 | 0.49 | 0.69 ± 0.04 |
MFS21 | 0.46 | 0.57 ± 0.05 | 0.89 | 1.10 ± 0.08 |
MFS22 | 0.64 | 1.12 ± 0.07 | 1.58 | 2.25 ± 0.17 |
MFS23 | 6.41 | 4.55 ± 0.21 | 5.04 | 3.97 ± 0.24 |
MFS24 | 3.33 | 5.41 ± 0.26 | 1.02 | 1.33 ± 0.19 |
MFS25 | 2.54 | 2.37 ± 0.24 | 1.48 | 1.95 ± 0.12 |
MFS26 | 2.81 | 3.23 ± 0.19 | 2.38 | 3.11 ± 0.24 |
MFS27 | 2.26 | 2.94 ± 0.18 | 2.47 | 3.58 ± 0.21 |
MFS28 | 2.33 | 3.52 ± 0.16 | 0.88 | 1.53 ± 0.11 |
MFS29 | 2.12 | 1.97 ± 0.18 | 1.47 | 1.96 ± 0.13 |
MFS30 | 2.16 | 2.15 ± 0.14 | 1.49 | 1.87 ± 0.09 |
MFS31 | 1.11 | 3.97 ± 0.31 | 3.82 | 5.16 ± 0.32 |
MFS32 | 0.61 | 1.05 ± 0.08 | 0.51 | 0.99 ± 0.06 |
MFS33 | 1.43 | 3.45 ± 0.27 | 2.08 | 3.27 ± 0.18 |
ABC1 | 0.38 | 1.12 ± 0.11 | 0.27 | 0.77 ± 0.05 |
ABC2 | 0.55 | 0.38 ± 0.05 | 0.93 | 1.16 ± 0.11 |
ABC3 | 7.00 | 2.29 ± 0.13 | 2.01 | 1.73 ± 0.18 |
ABC4 | 4.46 | 2.51 ± 0.21 | 2.40 | 2.06 ± 0.13 |
ABC5 | 3.85 | 3.84 ± 0.25 | 3.09 | 3.53 ± 0.29 |
ABC6 | 1.65 | 3.17 ± 0.18 | 1.80 | 2.78 ± 0.24 |
ABC7 | 1.89 | 2.21 ± 0.26 | 1.86 | 2.51 ± 0.15 |
ABC8 | 1.37 | 1.28 ± 0.09 | 2.31 | 2.93 ± 0.19 |
MATE1 | 0.29 | 1.25 ± 0.08 | 0.83 | 1.84 ± 0.12 |
MATE2 | 0.43 | 0.97 ± 0.06 | 0.82 | 1.54 ± 0.09 |
MATE3 | 0.48 | 0.81 ± 0.07 | 0.88 | 1.25 ± 0.08 |
1,3,6,8-Tetrahydroxynaphthalene reductase | 0.08 | 0.15 ± 0.03 | 0.37 | 0.62 ± 0.05 |
4-Hydroxyphenylpyruvate dioxygenase | 2.30 | 2.48 ± 0.11 | 3.07 | 3.57 ± 0.15 |
60S Acidic ribosomal phosphoprotein | 0.48 | 0.27 ± 0.02 | 0.81 | 0.64 ± 0.02 |
60S Ribosomal protein | 0.40 | 0.52 ± 0.04 | 0.79 | 0.95 ± 0.07 |
40S Ribosomal protein | 0.39 | 0.27 ± 0.04 | 0.82 | 0.67 ± 0.04 |
Ribosomal protein | 0.37 | 0.50 ± 0.05 | 0.78 | 0.61 ± 0.06 |
Acetyl-CoA carboxylase | 3.32 | 3.46 ± 0.20 | 0.93 | 1.02 ± 0.05 |
Alcohol dehydrogenase | 0.74 | 0.40 ± 0.04 | 2.07 | 1.18 ± 0.09 |
Aldehyde dehydrogenase | 0.48 | 0.57 ± 0.02 | 0.61 | 0.89 ± 0.06 |
Aldehyde reductase | 1.06 | 0.85 ± 0.05 | 1.28 | 1.58 ± 0.07 |
Amine oxidase | 1.71 | 0.81 ± 0.03 | 3.16 | 4.16 ± 0.25 |
Amino acid permease | 1.38 | 2.61 ± 0.05 | 2.45 | 5.69 ± 0.34 |
ATP synthase subunit 6 | 0.00 | 0.05 ± 0.01 | 0.37 | 0.81 ± 0.08 |
Erg1 | 0.53 | 0.27 ± 0.04 | 0.67 | 0.85 ± 0.09 |
Erg3 | 1.07 | 1.93 ± 0.09 | 0.80 | 0.61 ± 0.04 |
Erg24 | 0.46 | 0.25 ± 0.03 | 0.62 | 0.86 ± 0.07 |
Erg25 | 0.69 | 0.77 ± 0.05 | 0.78 | 0.82 ± 0.07 |
Carnitine acetyl transferase | 1.03 | 0.89 ± 0.09 | 0.48 | 0.33 ± 0.06 |
Catalase | 1.05 | 1.47 ± 0.08 | 2.19 | 1.74 ± 0.19 |
Cytochrome b | 0.01 | 0.03 ± 0.01 | 0.21 | 0.42 ± 0.05 |
Cytochrome c oxidase | 0.01 | 0.01 ± 0.01 | 0.53 | 0.37 ± 0.05 |
RNA helicase | 2.07 | 1.71 ± 0.02 | 6.59 | 8.77 ± 0.36 |
Dienelactone hydrolase | 0.70 | 1.29 ± 0.04 | 1.24 | 1.61 ± 0.18 |
Epoxide hydrolase | 0.71 | 1.43 ± 0.02 | 1.11 | 1.64 ± 0.17 |
Exopolygalacturonase | 0.33 | 0.43 ± 0.06 | 0.48 | 0.32 ± 0.03 |
Exo-β-1,3-glucanase | 0.47 | 0.17 ± 0.03 | 0.42 | 0.22 ± 0.04 |
Fatty acid synthase β subunit | 2.60 | 4.92 ± 0.38 | 1.03 | 1.44 ± 0.12 |
Fatty acyl-CoA oxidase | 0.7 | 1.19 ± 0.22 | 0.45 | 0.32 ± 0.05 |
FMN dependent dehydrogenase | 0.81 | 0.72 ± 0.03 | 1.28 | 1.78 ± 0.15 |
Glutathione S-transferase | 0.44 | 0.49 ± 0.02 | 1.02 | 1.55 ± 0.12 |
Glycerol kinase | 0.31 | 0.76 ± 0.05 | 1.13 | 1.67 ± 0.09 |
Glyoxylate reductase | 0.71 | 0.74 ± 0.03 | 1.21 | 1.87 ± 0.17 |
Maleylacetoacetate isomerase | 1.03 | 2.27 ± 0.07 | 2.77 | 3.96 ± 0.27 |
MAP kinase kinasekinase | 2.53 | 3.46 ± 0.21 | 1.10 | 1.35 ± 0.11 |
NADH dehydrogenase subunit 1 | 0.04 | 0.03 ± 0.01 | 0.27 | 0.32 ± 0.02 |
NADH dehydrogenase subunit 4 | 0.02 | 0.01 ± 0.01 | 0.42 | 0.28 ± 0.02 |
NADH-ubiquinone oxidoreductase | 0.40 | 0.44 ± 0.06 | 0.72 | 0.91 ± 0.08 |
Nitrate reductase | 1.87 | 2.12 ± 0.27 | 2.28 | 3.65 ± 0.16 |
Nitrite reductase | 2.45 | 5.23 ± 0.29 | 2.5 | 4.25 ± 0.18 |
Oxaloacetate hydrolase | 0.01 | 0.02 ± 0.01 | 0.37 | 0.42 ± 0.03 |
Pectate lyase | 0.49 | 0.31 ± 0.04 | 0.87 | 0.66 ± 0.05 |
Phenyloxazoline synthase | 0.80 | 1.32 ± 0.07 | 1.19 | 1.46 ± 0.13 |
Phosphatidylserine decarboxylase | 0.81 | 0.84 ± 0.04 | 1.19 | 1.56 ± 0.17 |
Phospholipase C | 2.20 | 3.09 ± 0.05 | 0.96 | 1.28 ± 0.11 |
Pre-mRNA-splicing factor | 0.81 | 1.01 ± 0.10 | 1.18 | 1.39 ± 0.15 |
Protein-L-isoaspartate O-methyltransferase | 0.66 | 0.62 ± 0.01 | 1.19 | 1.37 ± 0.12 |
Superoxide dismutase | 1.02 | 1.24 ± 0.03 | 2.35 | 3.90 ± 0.25 |
Thioredoxin | 0.65 | 0.43 ± 0.02 | 0.86 | 0.67 ± 0.06 |
Ubiquitin carboxyl-terminal hydrolase | 2.20 | 5.50 ± 0.14 | 0.94 | 1.38 ± 0.17 |
α-L-Rhamnosidase | 0.82 | 1.93 ± 0.14 | 0.36 | 0.54 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuan, R.; Liu, S.; Zhou, C.; Wang, S.; Zheng, Y.; Yuan, Y. Transcriptome Analysis of mfs2-Defective Penicillium digitatum Mutant to Reveal Importance of Pdmfs2 in Developing Fungal Prochloraz Resistance. Microorganisms 2024, 12, 888. https://doi.org/10.3390/microorganisms12050888
Cuan R, Liu S, Zhou C, Wang S, Zheng Y, Yuan Y. Transcriptome Analysis of mfs2-Defective Penicillium digitatum Mutant to Reveal Importance of Pdmfs2 in Developing Fungal Prochloraz Resistance. Microorganisms. 2024; 12(5):888. https://doi.org/10.3390/microorganisms12050888
Chicago/Turabian StyleCuan, Rongrong, Shaoting Liu, Chuanyou Zhou, Shengqiang Wang, Yongliang Zheng, and Yongze Yuan. 2024. "Transcriptome Analysis of mfs2-Defective Penicillium digitatum Mutant to Reveal Importance of Pdmfs2 in Developing Fungal Prochloraz Resistance" Microorganisms 12, no. 5: 888. https://doi.org/10.3390/microorganisms12050888
APA StyleCuan, R., Liu, S., Zhou, C., Wang, S., Zheng, Y., & Yuan, Y. (2024). Transcriptome Analysis of mfs2-Defective Penicillium digitatum Mutant to Reveal Importance of Pdmfs2 in Developing Fungal Prochloraz Resistance. Microorganisms, 12(5), 888. https://doi.org/10.3390/microorganisms12050888