Structure, Regulation, and Significance of Cyanobacterial and Chloroplast Adenosine Triphosphate Synthase in the Adaptability of Oxygenic Photosynthetic Organisms
Abstract
:1. Introduction
2. Structure and Functional Mechanism of ATP Synthase in Cyanobacteria and Chloroplast
3. Biogenesis of ATP Synthase in Cyanobacteria and Chloroplast
3.1. Transcription and Translation
3.2. Assembling of ATP Synthase in Cyanobacteria and Chloroplast
4. Regulation Strategy of ATP Synthase Activity in Cyanobacteria and Chloroplast
4.1. Redox Reaction of the γ Subunit
4.2. Conformational Change of the ε Subunit
4.3. Cellular ATP Synthase Inhibitor
5. Impact of ATP Synthase Activity on the Energy Metabolism and Environmental Adaptability of Oxygenic Photosynthetic Organisms
5.1. Role of ATP Synthase in Regulating the Material and Energy Metabolism of Oxygenic Photosynthetic Organisms
5.2. Importance of ATP Synthase for Environmental Adaptability of Oxygenic Photosynthetic Organisms
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neupane, P.; Bhuju, S.; Thapa, N.; Bhattarai, H.K. ATP Synthase: Structure, Function and Inhibition. Biomol. Concepts 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Yao, H.; Fan, D.; Zhu, X.; Losciale, P.; Zhang, Y.; Zhang, W.; Chow, W.S. The Energy Cost of Repairing Photoinactivated Photosystem II: An Experimental Determination in Cotton Leaf Discs. New Phytol. 2022, 235, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Kühlbrandt, W. Structure and Mechanisms of F-Type ATP Synthases. Annu. Rev. Biochem. 2019, 88, 515–549. [Google Scholar] [CrossRef]
- Weiss, M.C.; Sousa, F.L.; Mrnjavac, N.; Neukirchen, S.; Roettger, M.; Nelson-Sathi, S.; Martin, W.F. The Physiology and Habitat of the Last Universal Common Ancestor. Nat. Microbiol. 2016, 1, 16116. [Google Scholar] [CrossRef]
- Blankenship, R.E. Molecular Mechanisms of Photosynthesis; Blackwell Science: Oxford, UK, 2002; ISBN 978-0-632-04321-7. [Google Scholar]
- Lu, X.; Valtchev, V. Green Carbon: Towards a Greener World. Green Carbon 2023, 1, 1. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, S.; Ji, Y.; Wang, K.; Tan, T.; Nielsen, J. Opportunities of CO2-Based Biorefineries for Production of Fuels and Chemicals. Green Carbon 2023, 1, 75–84. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Y. Turning Light into Electricity, Biologically. Green Carbon 2023, 1, 14–19. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.-Q.; Xing, Y.-Z.; Zhao, Q.-Y.; Zhuang, H.-F.; Huang, W. Regulation of Chloroplast ATP Synthase Modulates Photoprotection in the CAM Plant Vanilla planifolia. Cells 2022, 11, 1647. [Google Scholar] [CrossRef] [PubMed]
- Yamori, W.; Takahashi, S.; Makino, A.; Price, G.D.; Badger, M.R.; von Caemmerer, S. The Roles of ATP Synthase and the Cytochrome b6/f Complexes in Limiting Chloroplast Electron Transport and Determining Photosynthetic Capacity. Plant Physiol. 2011, 155, 956–962. [Google Scholar] [CrossRef]
- Reiter, B.; Rosenhammer, L.; Marino, G.; Geimer, S.; Leister, D.; Rühle, T. CGL160-Mediated Recruitment of the Coupling Factor CF1 Is Required for Efficient Thylakoid ATP Synthase Assembly, Photosynthesis, and Chloroplast Development in Arabidopsis. Plant Cell 2023, 35, 488–509. [Google Scholar] [CrossRef]
- Davis, G.A.; Kramer, D.M. Optimization of ATP Synthase c–Rings for Oxygenic Photosynthesis. Front. Plant Sci. 2020, 10, 1778. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Cheng, M.; Li, J.; Chen, H.; Zhang, Z.; Qi, H.; Zhang, Y.; Liu, J.; Chen, X.; Wang, A. The α-Subunit of the Chloroplast ATP Synthase of Tomato Reinforces Resistance to Gray Mold and Broad-Spectrum Resistance in Transgenic Tobacco. Phytopathology 2021, 111, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, S. Algae Cells with Deletion of the Segment D210-R226 in γ Subunit from Chloroplast ATP Synthase Have Lower Transmembrane Proton Gradient and Grow Slowly. Photosynthetica 2006, 44, 338–344. [Google Scholar] [CrossRef]
- Delphin, E.; Duval, J.-C.; Etienne, A.-L.; Kirilovsky, D. ΔpH-Dependent Photosystem II Fluorescence Quenching Induced by Saturating, Multiturnover Pulses in Red Algae1. Plant Physiol. 1998, 118, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Baumgartner, D.; Hagemann, M.; Muro-Pastor, A.M.; Maaß, S.; Becher, D.; Hess, W.R. AtpΘ Is an Inhibitor of FoF1 ATP Synthase to Arrest ATP Hydrolysis during Low-Energy Conditions in Cyanobacteria. Curr. Biol. 2022, 32, 136–148.e5. [Google Scholar] [CrossRef] [PubMed]
- Lou, W.; Tan, X.; Song, K.; Zhang, S.; Luan, G.; Li, C.; Lu, X. A Specific Single Nucleotide Polymorphism in the ATP Synthase Gene Significantly Improves Environmental Stress Tolerance of Synechococcus elongatus PCC 7942. Appl. Environ. Microbiol. 2018, 84, e01222-18. [Google Scholar] [CrossRef] [PubMed]
- Ungerer, J.; Wendt, K.E.; Hendry, J.I.; Maranas, C.D.; Pakrasi, H.B. Comparative Genomics Reveals the Molecular Determinants of Rapid Growth of the Cyanobacterium Synechococcus elongatus UTEX 2973. Proc. Natl. Acad. Sci. USA 2018, 115, E11761–E11770. [Google Scholar] [CrossRef] [PubMed]
- Burnap, R.L. Bioenergetics: To the Dark Side and Back with Cyanobacterial ATP Synthase. Curr. Biol. 2022, 32, R34–R36. [Google Scholar] [CrossRef] [PubMed]
- Borghese, R.; Turina, P.; Melandri, B.A. Deletion Mutagenesis Studies on the ATP Synthase of Rhodobacter Capsulatus. In Photosynthesis: Mechanisms and Effects; Garab, G., Ed.; Springer: Dordrecht, The Netherlands, 1998; pp. 1727–1730. ISBN 978-0-7923-5547-2. [Google Scholar]
- Feniouk, B.A.; Junge, W. Proton Translocation and ATP Synthesis by the FoF1-ATPase of Purple Bacteria. In The Purple Phototrophic Bacteria; Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T., Eds.; Advances in Photosynthesis and Respiration; Springer: Dordrecht, The Netherlands, 2009; Volume 28, pp. 475–493. ISBN 978-1-4020-8814-8. [Google Scholar]
- Junge, W.; Nelson, N. ATP Synthase. Annu. Rev. Biochem. 2015, 84, 631–657. [Google Scholar] [CrossRef]
- Courbon, G.M.; Rubinstein, J.L. CryoEM Reveals the Complexity and Diversity of ATP Synthases. Front. Microbiol. 2022, 13, 864006. [Google Scholar] [CrossRef]
- Hahn, A.; Vonck, J.; Mills, D.J.; Meier, T.; Kühlbrandt, W. Structure, Mechanism, and Regulation of the Chloroplast ATP Synthase. Science 2018, 360, eaat4318. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-H.; Williams, D.; Kandiah, E.; Fromme, P.; Chiu, P.-L. Structural Basis of Redox Modulation on Chloroplast ATP Synthase. Commun. Biol. 2020, 3, 482. [Google Scholar] [CrossRef]
- Murakami, S.; Kondo, K.; Katayama, S.; Hara, S.; Sunamura, E.; Yamashita, E.; Groth, G.; Hisabori, T. Structure of the γ–ε Complex of Cyanobacterial F1-ATPase Reveals a Suppression Mechanism of the γ Subunit on ATP Hydrolysis in Phototrophs. Biochem. J. 2018, 475, 2925–2939. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.E. The ATP Synthase: The Understood, the Uncertain and the Unknown. Biochem. Soc. Trans. 2013, 41, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Van Walraven, H.S.; Bakels, R.H.A. Function, Structure and Regulation of Cyanobacterial and Chloroplast ATP Synthase. Physiol. Plant. 1996, 96, 526–532. [Google Scholar] [CrossRef]
- Nakano, A.; Kishikawa, J.; Nakanishi, A.; Mitsuoka, K.; Yokoyama, K. Structural Basis of Unisite Catalysis of Bacterial FOF1-ATPase. PNAS Nexus 2022, 1, pgac116. [Google Scholar] [CrossRef]
- Pogoryelov, D.; Reichen, C.; Klyszejko, A.L.; Brunisholz, R.; Muller, D.J.; Dimroth, P.; Meier, T. The Oligomeric State of c Rings from Cyanobacterial F-ATP Synthases Varies from 13 to 15. J. Bacteriol. 2007, 189, 5895–5902. [Google Scholar] [CrossRef]
- Cherepanov, D.A.; Mulkidjanian, A.Y.; Junge, W. Transient Accumulation of Elastic Energy in Proton Translocating ATP Synthase. FEBS Lett. 1999, 449, 1–6. [Google Scholar] [CrossRef]
- Sielaff, H.; Rennekamp, H.; Wächter, A.; Xie, H.; Hilbers, F.; Feldbauer, K.; Dunn, S.D.; Engelbrecht, S.; Junge, W. Domain Compliance and Elastic Power Transmission in Rotary FOF1-ATPase. Proc. Natl. Acad. Sci. USA 2008, 105, 17760–17765. [Google Scholar] [CrossRef]
- Van Walraven, H.S.; Lutter, R.; Walker, J.E. Organization and Sequences of Genes for the Subunits of ATP Synthase in the Thermophilic Cyanobacterium Synechococcus 6716. Biochem. J. 1993, 294, 239–251. [Google Scholar] [CrossRef]
- Cozens, A.L.; Walker, J.E. The Organization and Sequence of the Genes for ATP Synthase Subunits in the Cyanobacterium Synechococcus 6301. J. Mol. Biol. 1987, 194, 359–383. [Google Scholar] [CrossRef] [PubMed]
- Curtis, S.E. Structure, Organization and Expression of Cyanobacterial ATP Synthase Genes. Photosynth. Res. 1988, 18, 223–244. [Google Scholar] [CrossRef] [PubMed]
- Inohara, N.; Iwamoto, A.; Moriyama, Y.; Shimomura, S.; Maeda, M.; Futai, M. Two Genes, atpC1 and atpC2, for the γ Subunit of Arabidopsis thaliana Chloroplast ATP Synthase. J. Biol. Chem. 1991, 266, 7333–7338. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, J.E.G.; Bokelmann, C. Determinants of Translational Initiation Efficiency in the Atp Operon of Escherichia coli. Mol. Microbiol. 1988, 2, 455–465. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, J.E.G. Expression of The unc Genes in Escherichia coli. J. Bioenerg. Biomembr. 1988, 20, 19–39. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.E.; Saraste, M.; Gay, N.J. The UNC Operon Nucleotide Sequence, Regulation and Structure of ATP-Synthase. Biochim. Biophys. Acta BBA Rev. Bioenerg. 1984, 768, 164–200. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.M.; Dunn, S.D. RNase E-Dependent Cleavages in the 5′ and 3′ Regions of the Escherichia coli Unc mRNA. J. Bacteriol. 1992, 174, 3541–3548. [Google Scholar] [CrossRef] [PubMed]
- Lagoni, O.R.; Von Meyenburg, K.; Michelsen, O. Limited Differential mRNA Inactivation in the Atp (Unc) Operon of Escherichia coli. J. Bacteriol. 1993, 175, 5791–5797. [Google Scholar] [CrossRef]
- Dallmann, H.G.; Dunn, S.D. Translation through an uncDC mRNA Secondary Structure Governs the Level of uncC Expression in Escherichia coli. J. Bacteriol. 1994, 176, 1242–1250. [Google Scholar] [CrossRef]
- Matten, S.R.; Schneider, T.D.; Ringquist, S.; Brusilow, W.S.A. Identification of an Intragenic Ribosome Binding Site That Affects Expression of the uncB Gene of the Escherichia coli Proton-Translocating ATPase (Unc) Operon. J. Bacteriol. 1998, 180, 3940–3945. [Google Scholar] [CrossRef]
- Pati, S.; DiSilvestre, D.; Brusilow, W.S.A. Regulation of the Escherichia coli uncH Gene by mRNA Secondary Structure and Translational Coupling. Mol. Microbiol. 1992, 6, 3559–3566. [Google Scholar] [CrossRef]
- Kroeger, T.S.; Watkins, K.P.; Friso, G.; van Wijk, K.J.; Barkan, A. A Plant-Specific RNA-Binding Domain Revealed through Analysis of Chloroplast Group II Intron Splicing. Proc. Natl. Acad. Sci. USA 2009, 106, 4537–4542. [Google Scholar] [CrossRef] [PubMed]
- Zoschke, R.; Nakamura, M.; Liere, K.; Sugiura, M.; Börner, T.; Schmitz-Linneweber, C. An Organellar Maturase Associates with Multiple Group II Introns. Proc. Natl. Acad. Sci. USA 2010, 107, 3245–3250. [Google Scholar] [CrossRef] [PubMed]
- Yap, A.; Kindgren, P.; Colas des Francs-Small, C.; Kazama, T.; Tanz, S.K.; Toriyama, K.; Small, I. AEF1/MPR25 Is Implicated in RNA Editing of Plastid atpF and Mitochondrial Nad5, and Also Promotes atpF Splicing in Arabidopsis and Rice. Plant J. 2015, 81, 661–669. [Google Scholar] [CrossRef]
- Watkins, K.P.; Kroeger, T.S.; Cooke, A.M.; Williams-Carrier, R.E.; Friso, G.; Belcher, S.E.; Van Wijk, K.J.; Barkan, A. A Ribonuclease III Domain Protein Functions in Group II Intron Splicing in Maize Chloroplasts. Plant Cell 2007, 19, 2606–2623. [Google Scholar] [CrossRef] [PubMed]
- Till, B.; Schmitz-Linneweber, C.; Williams-Carrier, R.; Barkan, A. CRS1 Is a Novel Group II Intron Splicing Factor That Was Derived from a Domain of Ancient Origin. RNA 2001, 7, 1227–1238. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, W.; Che, L.; Rochaix, J.-D.; Lu, C.; Li, W.; Peng, L. PPR Protein BFA2 Is Essential for the Accumulation of the atpH/F Transcript in Chloroplasts. Front. Plant Sci. 2019, 10, 446. [Google Scholar] [CrossRef]
- Pfalz, J.; Bayraktar, O.A.; Prikryl, J.; Barkan, A. Site-Specific Binding of a PPR Protein Defines and Stabilizes 5′ and 3′ mRNA Termini in Chloroplasts. EMBO J. 2009, 28, 2042–2052. [Google Scholar] [CrossRef] [PubMed]
- McCormac, D.J.; Barkan, A. A Nuclear Gene in Maize Required for the Translation of the Chloroplast atpB/E mRNA. Plant Cell 1999, 11, 1709–1716. [Google Scholar] [CrossRef]
- Zoschke, R.; Kroeger, T.; Belcher, S.; Schöttler, M.A.; Barkan, A.; Schmitz-Linneweber, C. The Pentatricopeptide repeat-SMR Protein ATP4 Promotes Translation of the Chloroplast atpB/E mRNA. Plant J. 2012, 72, 547–558. [Google Scholar] [CrossRef]
- Zoschke, R.; Qu, Y.; Zubo, Y.O.; Börner, T.; Schmitz-Linneweber, C. Mutation of the Pentatricopeptide Repeat-SMR Protein SVR7 Impairs Accumulation and Translation of Chloroplast ATP Synthase Subunits in Arabidopsis thaliana. J. Plant Res. 2013, 126, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Drapier, D.; Rimbault, B.; Vallon, O.; Wollman, F.-A.; Choquet, Y. Intertwined Translational Regulations Set Uneven Stoichiometry of Chloroplast ATP Synthase Subunits. EMBO J. 2007, 26, 3581–3591. [Google Scholar] [CrossRef] [PubMed]
- Rühle, T.; Leister, D. Assembly of F1FO-ATP Synthases. Biochim. Biophys. Acta BBA Bioenerg. 2015, 1847, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Pu, H.; Duan, Z.; Li, Y.; Liu, B.; Zhang, Q.; Li, W.; Rochaix, J.-D.; Liu, L.; Peng, L. Nucleus-Encoded Protein BFA1 Promotes Efficient Assembly of the Chloroplast ATP Synthase Coupling Factor 1. Plant Cell 2018, 30, 1770–1788. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Lipscomb, B.; Wu, I.; Richter, M.L. In Vitro Assembly of the Core Catalytic Complex of the Chloroplast ATP Synthase. J. Biol. Chem. 1995, 270, 9763–9769. [Google Scholar] [CrossRef]
- Grahl, S.; Reiter, B.; Gügel, I.L.; Vamvaka, E.; Gandini, C.; Jahns, P.; Soll, J.; Leister, D.; Rühle, T. The Arabidopsis Protein CGLD11 Is Required for Chloroplast ATP Synthase Accumulation. Mol. Plant 2016, 9, 885–899. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Duan, Z.; Zhang, J.; Peng, L. BIOGENESIS FACTOR REQUIRED FOR ATP SYNTHASE 3 Facilitates Assembly of the Chloroplast ATP Synthase Complex. Plant Physiol. 2016, 171, 1291–1306. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.G.; Jagendorf, A.T. Chloroplast Molecular Chaperone-Assisted Refolding and Reconstitution of an Active Multisubunit Coupling Factor CF1 Core. Proc. Natl. Acad. Sci. USA 1994, 91, 11497–11501. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Chi, W.; Ouyang, M.; He, B.; Chen, F.; Zhang, L. PAB Is an Assembly Chaperone That Functions Downstream of Chaperonin 60 in the Assembly of Chloroplast ATP Synthase Coupling Factor 1. Proc. Natl. Acad. Sci. USA 2015, 112, 4152–4157. [Google Scholar] [CrossRef]
- Rühle, T.; Razeghi, J.A.; Vamvaka, E.; Viola, S.; Gandini, C.; Kleine, T.; Schünemann, D.; Barbato, R.; Jahns, P.; Leister, D. The Arabidopsis Protein CONSERVED ONLY IN THE GREEN LINEAGE160 Promotes the Assembly of the Membranous Part of the Chloroplast ATP Synthase. Plant Physiol. 2014, 165, 207–226. [Google Scholar] [CrossRef]
- Benz, M.; Bals, T.; Gügel, I.L.; Piotrowski, M.; Kuhn, A.; Schünemann, D.; Soll, J.; Ankele, E. Alb4 of Arabidopsis Promotes Assembly and Stabilization of a Non Chlorophyll-Binding Photosynthetic Complex, the CF1CFO–ATP Synthase. Mol. Plant 2009, 2, 1410–1424. [Google Scholar] [CrossRef]
- Strand, D.D.; Karcher, D.; Ruf, S.; Schadach, A.; Schöttler, M.A.; Sandoval-Ibañez, O.; Hall, D.; Kramer, D.M.; Bock, R. Characterization of Mutants Deficient in N-Terminal Phosphorylation of the Chloroplast ATP Synthase Subunit β. Plant Physiol. 2023, 191, 1818–1835. [Google Scholar] [CrossRef]
- Sunamura, E.-I.; Konno, H.; Imashimizu, M.; Mochimaru, M.; Hisabori, T. A Conformational Change of the γ Subunit Indirectly Regulates the Activity of Cyanobacterial F1-ATPase. J. Biol. Chem. 2012, 287, 38695–38704. [Google Scholar] [CrossRef] [PubMed]
- Konno, H.; Murakami-Fuse, T.; Fujii, F.; Koyama, F.; Ueoka-Nakanishi, H.; Pack, C.-G.; Kinjo, M.; Hisabori, T. The Regulator of the F1 Motor: Inhibition of Rotation of Cyanobacterial F1-ATPase by the ε Subunit. EMBO J. 2006, 25, 4596–4604. [Google Scholar] [CrossRef]
- Sunamura, E.-I.; Konno, H.; Imashimizu-Kobayashi, M.; Sugano, Y.; Hisabori, T. Physiological Impact of Intrinsic ADP Inhibition of Cyanobacterial FOF1 Conferred by the Inherent Sequence Inserted into the γ Subunit. Plant Cell Physiol. 2010, 51, 855–865. [Google Scholar] [CrossRef]
- Kim, Y.; Konno, H.; Sugano, Y.; Hisabori, T. Redox Regulation of Rotation of the Cyanobacterial F1-ATPase Containing Thiol Regulation Switch. J. Biol. Chem. 2011, 286, 9071–9078. [Google Scholar] [CrossRef] [PubMed]
- Kondo, K.; Takeyama, Y.; Sunamura, E.; Madoka, Y.; Fukaya, Y.; Isu, A.; Hisabori, T. Amputation of a C-Terminal Helix of the γ Subunit Increases ATP-Hydrolysis Activity of Cyanobacterial F1 ATP Synthase. Biochim. Biophys. Acta BBA Bioenerg. 2018, 1859, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Inabe, K.; Kondo, K.; Yoshida, K.; Wakabayashi, K.; Hisabori, T. The N-Terminal Region of the ε Subunit from Cyanobacterial ATP Synthase Alone Can Inhibit ATPase Activity. J. Biol. Chem. 2019, 294, 10094–10103. [Google Scholar] [CrossRef] [PubMed]
- Majeran, W.; Wostrikoff, K.; Wollman, F.-A.; Vallon, O. Role of ClpP in the Biogenesis and Degradation of RuBisCO and ATP Synthase in Chlamydomonas reinhardtii. Plants 2019, 8, 191. [Google Scholar] [CrossRef]
- Ponomarenko, S.V. Evolutionary Modifications of Molecular Structure of ATP-Synthase γ-Subunit. J. Evol. Biochem. Physiol. 2007, 43, 467–475. [Google Scholar] [CrossRef]
- Kuo, P.H.; Ketchum, C.J.; Nakamoto, R.K. Stability and Functionality of Cysteine-less FOF1 ATP Synthase from Escherichia coli. FEBS Lett. 1998, 426, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-B.; Murray, C.I.; Chung, H.S.; Van Eyk, J.E. Redox Regulation of Mitochondrial ATP Synthase. Trends Cardiovasc. Med. 2013, 23, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Miki, J.; Maeda, M.; Mukohata, Y.; Futai, M. The g-subunit of ATP Synthase from Spinach Chloroplasts Primary Structure Deduced from the Cloned cDNA Sequence. FEBS Lett. 1988, 232, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Bald, D.; Noji, H.; Yoshida, M.; Hirono-Hara, Y.; Hisabori, T. Redox Regulation of the Rotation of F1-ATP Synthase. J. Biol. Chem. 2001, 276, 39505–39507. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Hagemann, M.; Georg, J.; Maaß, S.; Becher, D.; Hess, W.R. Expression of the Cyanobacterial FOF1 ATP Synthase Regulator AtpΘ Depends on Small DNA-Binding Proteins and Differential mRNA Stability. Microbiol. Spectr. 2022, 10, e02562-21. [Google Scholar] [CrossRef]
- Hisabori, T.; Sunamura, E.-I.; Kim, Y.; Konno, H. The Chloroplast ATP Synthase Features the Characteristic Redox Regulation Machinery. Antioxid. Redox Signal. 2013, 19, 1846–1854. [Google Scholar] [CrossRef] [PubMed]
- Schürmann, P.; Buchanan, B.B. The Ferredoxin/Thioredoxin System of Oxygenic Photosynthesis. Antioxid. Redox Signal. 2008, 10, 1235–1274. [Google Scholar] [CrossRef] [PubMed]
- Wolosiuk, R.A.; Buchanan, B.B. Thioredoxin and Glutathione Regulate Photosynthesis in Chloroplasts. Nature 1977, 266, 565–567. [Google Scholar] [CrossRef]
- Schürmann, P.; Jacquot, J.-P. Plant Thioredoxin Systems Revisited. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 371–400. [Google Scholar] [CrossRef]
- Collin, V.; Issakidis-Bourguet, E.; Marchand, C.; Hirasawa, M.; Lancelin, J.-M.; Knaff, D.B.; Miginiac-Maslow, M. The Arabidopsis Plastidial Thioredoxins. J. Biol. Chem. 2003, 278, 23747–23752. [Google Scholar] [CrossRef]
- Carrillo, L.R.; Froehlich, J.E.; Cruz, J.A.; Savage, L.J.; Kramer, D.M. Multi-level Regulation of the Chloroplast ATP Synthase: The Chloroplast NADPH Thioredoxin Reductase C (NTRC) Is Required for Redox Modulation Specifically under Low Irradiance. Plant J. 2016, 87, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Sekiguchi, T.; Yoshida, K.; Wakabayashi, K.-I.; Hisabori, T. Dissipation of the Proton Electrochemical Gradient in Chloroplasts Promotes the Oxidation of ATP Synthase by Thioredoxin-like Proteins. J. Biol. Chem. 2022, 298, 102541. [Google Scholar] [CrossRef] [PubMed]
- Buchert, F.; Bailleul, B.; Joliot, P. Disentangling Chloroplast ATP Synthase Regulation by Proton Motive Force and Thiol Modulation in Arabidopsis Leaves. Biochim. Biophys. Acta BBA Bioenerg. 2021, 1862, 148434. [Google Scholar] [CrossRef] [PubMed]
- Sielaff, H.; Duncan, T.M.; Börsch, M. The Regulatory Subunit ε in Escherichia coli FOF1-ATP Synthase. Biochim. Biophys. Acta BBA—Bioenerg. 2018, 1859, 775–788. [Google Scholar] [CrossRef] [PubMed]
- Nowak, K.F.; Tabidze, V.; McCarty, R.E. The C-Terminal Domain of the ε Subunit of the Chloroplast ATP Synthase Is Not Required for ATP Synthesis. Biochemistry 2002, 41, 15130–15134. [Google Scholar] [CrossRef] [PubMed]
- Imashimizu, M.; Bernát, G.; Sunamura, E.-I.; Broekmans, M.; Konno, H.; Isato, K.; Rögner, M.; Hisabori, T. Regulation of FOF1-ATPase from Synechocystis sp. PCC 6803 by γ and ε Subunits Is Significant for Light/Dark Adaptation. J. Biol. Chem. 2011, 286, 26595–26602. [Google Scholar] [CrossRef]
- Guo, H.; Rubinstein, J.L. Cryo-EM of ATP Synthases. Curr. Opin. Struct. Biol. 2018, 52, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Falkner, G.; Horner, F.; Werdan, K.; Heldt, H.W. pH Changes in the Cytoplasm of the Blue-Green Alga Anacystis nidulans Caused by Light-Dependent Proton Flux into the Thylakoid Space. Plant Physiol. 1976, 58, 717–718. [Google Scholar] [CrossRef]
- Belkin, S.; Mehlhorn, R.J.; Packer, L. Proton Gradients in Intact Cyanobacteria. Plant Physiol. 1987, 84, 25–30. [Google Scholar] [CrossRef]
- Peschek, G.A.; Czerny, T.; Schmetterer, G.; Nitschmann, W.H. Transmembrane Proton Electrochemical Gradients in Dark Aerobic and Anaerobic Cells of the Cyanobacterium (Blue-Green Alga) Anacystis nidulans: Evidence for Respiratory Energy Transduction in the Plasma Membrane. Plant Physiol. 1985, 79, 278–284. [Google Scholar] [CrossRef]
- Romanowska, E.; Powikrowska, M.; Zienkiewicz, M.; Drozak, A.; Pokorska, B. High Light Induced Accumulation of Two Isoforms of the CF1 Alpha-Subunit in Mesophyll and Bundle Sheath Chloroplasts of C4 Plants. Acta Biochim. Pol. 2008, 55, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Schöttler, M.A.; Tóth, S.Z.; Boulouis, A.; Kahlau, S. Photosynthetic Complex Stoichiometry Dynamics in Higher Plants: Biogenesis, Function, and Turnover of ATP Synthase and the Cytochrome B6f Complex. J. Exp. Bot. 2015, 66, 2373–2400. [Google Scholar] [CrossRef]
- Blankenship, R.E.; Tiede, D.M.; Barber, J.; Brudvig, G.W.; Fleming, G.; Ghirardi, M.; Gunner, M.R.; Junge, W.; Kramer, D.M.; Melis, A.; et al. Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science 2011, 332, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Tredici, M.R. Photobiology of Microalgae Mass Cultures: Understanding the Tools for the next Green Revolution. Biofuels 2010, 1, 143–162. [Google Scholar] [CrossRef]
- Sobti, M.; Walshe, J.L.; Wu, D.; Ishmukhametov, R.; Zeng, Y.C.; Robinson, C.V.; Berry, R.M.; Stewart, A.G. Cryo-EM Structures Provide Insight into How E. coli F1FO ATP Synthase Accommodates Symmetry Mismatch. Nat. Commun. 2020, 11, 2615. [Google Scholar] [CrossRef]
- Munekage, Y.; Hashimoto, M.; Miyake, C.; Tomizawa, K.-I.; Endo, T.; Tasaka, M.; Shikanai, T. Cyclic Electron Flow around Photosystem I Is Essential for Photosynthesis. Nature 2004, 429, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Yamori, W.; Shikanai, T. Physiological Functions of Cyclic Electron Transport Around Photosystem I in Sustaining Photosynthesis and Plant Growth. Annu. Rev. Plant Biol. 2016, 67, 81–106. [Google Scholar] [CrossRef]
- Wu, G.; Ort, D.R. Mutation in the Cysteine Bridge Domain of the γ-Subunit Affects Light Regulation of the ATP Synthase but Not Photosynthesis or Growth in Arabidopsis. Photosynth. Res. 2008, 97, 185–193. [Google Scholar] [CrossRef]
- Kong, M.; Wang, F.; Yang, Z.; Mi, H. ATPG Is Required for the Accumulation and Function of Chloroplast ATP Synthase in Arabidopsis. Chin. Sci. Bull. 2013, 58, 3224–3232. [Google Scholar] [CrossRef]
- Ermakova, M.; Heyno, E.; Woodford, R.; Massey, B.; Birke, H.; von Caemmerer, S. Enhanced Abundance and Activity of the Chloroplast ATP Synthase in Rice through the Overexpression of the AtpD Subunit. J. Exp. Bot. 2022, 73, 6891–6901. [Google Scholar] [CrossRef]
- Ni, J.; Song, W.; Ali, N.A.; Zhang, Y.; Xing, J.; Su, K.; Sun, X.; Zhao, X. The ATP Synthase γ Subunit ATPC1 Regulates RNA Editing in Chloroplasts. Int. J. Mol. Sci. 2023, 24, 9203. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.I.M.; Ramadan, A.M.; Amer, M.; Khan, T.K.; Mohamed, N.G.; Said, O.A. Deciphering the Enigma of RNA Editing in the ATP1_alpha Subunit of ATP Synthase in Triticum aestivum. Saudi J. Biol. Sci. 2023, 30, 103703. [Google Scholar] [CrossRef] [PubMed]
- Santamaría-Gómez, J.; Ochoa de Alda, J.A.G.; Olmedo-Verd, E.; Bru-Martínez, R.; Luque, I. Sub-Cellular Localization and Complex Formation by Aminoacyl-tRNA Synthetases in Cyanobacteria: Evidence for Interaction of Membrane-Anchored ValRS with ATP Synthase. Front. Microbiol. 2016, 7, 206468. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Wang, Y.; Cao, K.; Zou, Z. Overexpression of the ATP Synthase β Subunit Gene Enhanced the Ability of Tomato (Solanum lycopersicum L.) Plantlets to Resist Low Temperatures. Pak. J. Bot. 2022, 54, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Oravec, M.W.; Havey, M.J. Polymorphism in the Chloroplast ATP Synthase Beta-Subunit Is Associated with a Maternally Inherited Enhanced Cold Recovery in Cucumber. Plants 2021, 10, 1092. [Google Scholar] [CrossRef] [PubMed]
- Kohzuma, K.; Cruz, J.A.; Akashi, K.; Hoshiyasu, S.; Munekage, Y.N.; Yokota, A.; Kramer, D.M. The Long-term Responses of the Photosynthetic Proton Circuit to Drought. Plant Cell Environ. 2009, 32, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Ke, X.; Shi, Y.; Li, Y.; Zhang, C.; Wang, Y.; Hou, X. Chloroplast Inner Envelope Protein FtsH11 Is Involved in the Adjustment of Assembly of Chloroplast ATP Synthase under Heat Stress. Plant Cell Environ. 2023, 46, 850–864. [Google Scholar] [CrossRef]
- Rühle, T.; Leister, D.; Pasch, V. Chloroplast ATP Synthase: From Structure to Engineering. Plant Cell 2024, koae081. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, S.; Guo, X.; Lou, W.; Mao, S.; Luan, G.; Lu, X. Structure, Regulation, and Significance of Cyanobacterial and Chloroplast Adenosine Triphosphate Synthase in the Adaptability of Oxygenic Photosynthetic Organisms. Microorganisms 2024, 12, 940. https://doi.org/10.3390/microorganisms12050940
Yi S, Guo X, Lou W, Mao S, Luan G, Lu X. Structure, Regulation, and Significance of Cyanobacterial and Chloroplast Adenosine Triphosphate Synthase in the Adaptability of Oxygenic Photosynthetic Organisms. Microorganisms. 2024; 12(5):940. https://doi.org/10.3390/microorganisms12050940
Chicago/Turabian StyleYi, Siyan, Xin Guo, Wenjing Lou, Shaoming Mao, Guodong Luan, and Xuefeng Lu. 2024. "Structure, Regulation, and Significance of Cyanobacterial and Chloroplast Adenosine Triphosphate Synthase in the Adaptability of Oxygenic Photosynthetic Organisms" Microorganisms 12, no. 5: 940. https://doi.org/10.3390/microorganisms12050940
APA StyleYi, S., Guo, X., Lou, W., Mao, S., Luan, G., & Lu, X. (2024). Structure, Regulation, and Significance of Cyanobacterial and Chloroplast Adenosine Triphosphate Synthase in the Adaptability of Oxygenic Photosynthetic Organisms. Microorganisms, 12(5), 940. https://doi.org/10.3390/microorganisms12050940