Virulence and Antimicrobial Resistance of Listeria monocytogenes Isolated from Ready-to-Eat Food Products in Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Bacterial Isolation
2.3. Susceptibility Testing
2.4. DNA Extraction from Colonies
2.5. Polymerase Chain Reaction (PCR) for Serotype Testing
2.6. Polymerase Chain Reaction (PCR) for Virulence Testing
2.7. Polymerase Chain Reaction (PCR) for Antimicrobial Resistance Genes Testing
2.8. Statistical Analysis
3. Results
3.1. Prevalence, Serotype, and Virulence of L. monocytogenes in the RTE Food Products
3.2. Susceptibility to Antibiotics in L. monocytogenes Isolated in RTE Products
3.3. Antimicrobial Resistance Gene Presence in L. monocytogenes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Orsi, R.H.; Wiedmann, M. Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl. Microbiol. Biotechnol. 2016, 100, 5273–5287. [Google Scholar] [CrossRef] [PubMed]
- Matle, I.; Mbatha, K.R.; Madoroba, E. A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. Onderstepoort J. Vet. Res. 2020, 87, e1–e20. [Google Scholar] [CrossRef]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic Resistance in Bacteria—A Review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef] [PubMed]
- Roedel, A.; Dieckmann, R.; Brendebach, H.; Hammerl, J.A.; Kleta, S.; Noll, M.; Al Dahouk, S.; Vincze, S. Biocide-Tolerant Listeria monocytogenes Isolates from German Food Production Plants Do Not Show Cross-Resistance to Clinically Relevant Antibiotics. Appl. Environ. Microbiol. 2019, 85, e01253-19. [Google Scholar] [CrossRef]
- Guillet, C.; Join-Lambert, O.; Le Monnier, A.; Leclercq, A.; Mechaï, F.; Mamzer-Bruneel, M.F.; Bielecka, M.K.; Scortti, M.; Disson, O.; Berche, P.; et al. Human listeriosis caused by Listeria ivanovii. Emerg. Infect. Dis. 2010, 16, 136–138. [Google Scholar] [CrossRef] [PubMed]
- Quereda, J.J.; Morón-García, A.; Palacios-Gorba, C.; Dessaux, C.; García-Del Portillo, F.; Pucciarelli, M.G.; Ortega, A.D. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021, 12, 2509–2545. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Boland, J.A.; Kuhn, M.; Berche, P.; Chakraborty, T.; Domínguez-Bernal, G.; Goebel, W.; González-Zorn, B.; Wehland, J.; Kreft, J. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 2001, 14, 584–640. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, A.; Zeinali, T. Significance and Characteristics of Listeria monocytogenes in Poultry Products. Int. J. Food Sci. 2019, 2019, 7835253. [Google Scholar] [CrossRef] [PubMed]
- Osek, J.; Wieczorek, K. Listeria monocytogenes—How This Pathogen Uses Its Virulence Mechanisms to Infect the Hosts. Pathogens 2022, 11, 1491. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. The European Union One Health 2022 Zoonoses Report 2022. EFSA J. 2023, 21, 72–74. [Google Scholar]
- Zhang, Y.; Yeha, E.; Hallb, G.; Cripeb, J.; Bhagwatc, A.A.; Menget, J. Characterization of Listeria monocytogenes isolated from retail foods. J. Food Microbiol. 2007, 113, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Hof, H. An update on the medical management of Listeriosis. Expert. Opin. Pharmacother. 2004, 5, 1727–1735. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.M.; Lu, X.F.; Yin, L.; Liu, H.F.; Zhang, W.J.; Si, W. Occurrence and antimicrobial susceptibility of Listeria monocytogenes isolates from retail raw foods. Food Control. 2013, 32, 153–158. [Google Scholar] [CrossRef]
- EFSA, European Food Safety Authority European Centre for Disease Prevention and Control. The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, 6971. [Google Scholar]
- Borcan, A.M.; Huhulescu, S.; Munteanu, A.; Rafila, A. Listeria monocytogenes—Characterization of strains isolated from clinical severe cases. J. Med. Life 2014, 2, 42–48. [Google Scholar]
- SR EN ISO 11290-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria spp. International Standard Organisation: Geneva, Switzerland, 2017.
- EUCAST, European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 7.0; European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2017. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests, M100S, 29th ed.; CLSI: Wayne, PA, USA, 2019; Volume 39. [Google Scholar]
- D’agostino, M.; Wagner, M.; Vazquez-Boland, J.A.; Kuchta, T.; Karpiskova, R.; Hoorfar, J.; Novella, S.; Scortti, M.; Ellison, J.; Murray, A.; et al. A Validated PCR-Based Method to Detect Listeria monocytogenes Using Raw Milk as a Food Model—Towards an International Standard. J. Food Prot. 2004, 67, 1646–1655. [Google Scholar] [CrossRef] [PubMed]
- Doumith, M.; Buchrieser, C.; Glaser, P.; Jacquet, C.; Martin, P. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J. Clin. Microbiol. 2004, 42, 3819–3822. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Lawrence, M.L.; Austin, F.W.; Ainsworth, A.J. A multiplex PCR for species- and virulence-specific determination of Listeria monocytogenes. J. Microbiol. Methods 2007, 71, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Morvan, A.; Moubareck, C.; Leclercq, A.; Hervé-Bazin, M.; Bremont, S.; Lecuit, M.; Courvalin, P.; Le Monnier, A. Antimicrobial resistance of Listeria monocytogenes strains isolated from humans in France. Antimicrob. Agents Chemother. 2010, 54, 2728–2731. [Google Scholar] [CrossRef]
- Mpondo, L.; Ebomah, K.E.; Okoh, A.I. Multidrug-Resistant Listeria Species Shows Abundance in Environmental Waters of a Key District Municipality in South Africa. Int. J. Environ. Res. Public Health 2021, 18, 481. [Google Scholar] [CrossRef]
- Srinivasan, V.; Nam, H.; Nguyen, L.; Tamilselvam, B.; Murinda, S.; Oliver, S. Prevalence of antimicrobial resistance genes in Listeria monocytogenes isolated from dairy farms. Foodbourne Pathog. Dis. 2005, 2, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Iwu, C.D.; Okoh, A.I. Characterization of Antibiogram Fingerprints in Listeria monocytogenes Recovered from Irrigation Water and Agricultural Soil Samples. PLoS ONE 2020, 15, e0228956. [Google Scholar] [CrossRef] [PubMed]
- Rakhmawati, T.W.; Nysen, R.; Aerts, M. Statistical analysis of the Listeria monocytogenes EU-wide baseline survey in certain ready-to-eat foods Part A: Listeria monocytogenes prevalence estimates. EFSA Support. Publ. 2013, 10, EN-441. [Google Scholar] [CrossRef]
- Caplan, E.M.; Caplan, D.M.; Ivana, S. Incidence of Listeria species from Food Products. Bull. UASVM Vet. Med. 2011, 68, 1843–5270. [Google Scholar]
- Coroneo, V.; Carraro, V.; Aissani, N.; Sanna, A.; Ruggeri, A.; Succa, S.; Sanna, C. Detection of virulence genes and growth potential in Listeria monocytogenes strains isolated from ricotta salata cheese. J. Food Sci. 2016, 81, M114–M120. [Google Scholar] [CrossRef] [PubMed]
- Parussolo, L.; Sfaciotte, R.A.P.; Dalmina, K.A.; Melo, F.D.; Da Costa, U.M.; Ferraz, S.M. Detection of virulence genes and antimicrobial susceptibility profile of Listeria monocytogenes isolates recovered from artisanal cheese produced in the Southern region of Brazil. Acad. Bras. Cienc. 2021, 93, e20190200. [Google Scholar]
- Almeida, R.M.; Barbosa, A.V.; Lisbôa, R.C.; Santos, A.F.M.; Hofer, E.; Vallim, D.F.; Hofer, C.B. Virulence genes and genetic relationship of L. monocytogenes isolated from human and food sources in Brazil. Braz. J. Infect. Dis. 2017, 21, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, M.A.; Kroning, I.S.; Decol, L.T.; Franco, B.D.G.M.; Silva, W.P. Occurrence and phenotypic and molecular characterization of Listeria monocytogenes and Salmonella spp. in slaughterhouses in southern Brazil. Food. Res. Int. 2017, 100, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Jamali, H.; Radmehr, B.; Thong, K. Prevalence, characterization, and antimicrobial resistance of Listeria species and Listeria monocytogenes isolates from raw milk in farm bulk tanks. Food Control. 2013, 34, 121–125. [Google Scholar] [CrossRef]
- Mammina, C.; Aleo, A.; Romani, C.; Pellissier, N.; Nicoletti, P.; Pelcile, P.; Natasi, A.; Pontello, M.M. Characterization of Listeria monocytogenes isolates from human Listeriosis cases in Italy. J. Clin. Microbiol. 2009, 47, 2925–2930. [Google Scholar] [CrossRef]
- Oliveira, T.S.; Varjão, L.M.; Silva, L.N.N.; Pereira, R.C.B.; Hofer, E.; Vallim, D.C.; Almeida, R.C.C. Listeria monocytogenes at chicken slaughterhouse: Occurrence, genetic relationship among isolates and evaluation of antimicrobial susceptibility. Food Control. 2018, 88, 131–138. [Google Scholar] [CrossRef]
- Orsi, R.H.; Den Bakker, H.C.; Wiedmann, M. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int. J. Med. Microbiol. 2011, 301, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Van Stelten, A.; Simpson, J.M.; Ward, T.J.; Nightingale, K.K. Revelation by single-nucleotide polymorphism genotyping that mutations leading to a premature stop codon in inlA are common among Listeria monocytogenes isolates from ready-to-eat foods but not human listeriosis cases. Appl. Environ. Microbiol. 2010, 76, 2783–2790. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, C.; Doumith, M.; Gordon, J.I.; Martin, P.M.V.; Cossart, P.; Lecuit, M. A Molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes. J. Infect. Dis. 2004, 189, 2094–2100. [Google Scholar] [CrossRef]
- Phelps, C.C.; Vadia, S.; Arnett, E.; Tan, Y.; Zhang, X.; Pathak-Sharma, S.; Gavrilin, M.A.; Seveau, S. Relative Roles of Listeriolysin O, InlA, and InlB in Listeria monocytogenes Uptake by Host Cells. Infect. Immun. 2018, 86, e00555-18. [Google Scholar] [CrossRef] [PubMed]
- Rajabian, T.; Gavicherla, B.; Heisig, M.; Müller-Altrock, S.; Goebel, W.; Gray-Owen, S.D.; Ireton, K. The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria. Nat. Cell Biol. 2009, 11, 1212–1218. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, N.D.; Erol, I. Relation between serotype distribution and antibiotic resistance profiles of Listeria monocytogenes isolated from ground Turkey. J. Food Prot. 2010, 73, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Bilir Ormanci, F.S.; Erol, I.; Ayaz, N.D.; Iseri, O.; Sariguzel, D. Immunomagnetic separation and PCR detection of Listeria monocytogenes in turkey meat and antibiotic resistance of the isolates. Brit. Poult. Sci. 2008, 49, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Fallah, A.A.; Saei-Dehkordi, S.S.; Rahnama, M.; Tahmasby, H.; Mahzounieh, M. Prevalence and antimicrobial resistance patterns of Listeria species isolated from poultry products marketed in Iran. Food Control. 2012, 28, 327–332. [Google Scholar] [CrossRef]
- Aras, Z.; Ardıç, M. Occurrence and Antibiotic Susceptibility of Listeria Species in Turkey Meats. Korean J. Food Sci. Anim. Resour. 2015, 35, 669–673. [Google Scholar] [CrossRef]
- Pesavento, G.; Ducci, B.; Nieri, D.; Comodo, N.; Lo Nostro, A. Prevalence and antibiotic susceptibility of Listeria spp. isolated from raw meat and retail foods. Food Control. 2010, 21, 708–713. [Google Scholar] [CrossRef]
- Skovgaard, N.; Morgen, C.A. Detection of Listeria spp. in faeces from animals, in feeds, and in raw foods of animal origin. Int. J. Food Microbiol. 1988, 6, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.; Jones, R. Infection. Impact of EUCAST, CLSI and USCAST ceftaroline breakpoint changes on the susceptibility of methicillin-resistant Staphylococcus aureus isolates collected from US medical centres (2015–2018). J. Clin. Microbiol. 2020, 26, 658–659. [Google Scholar]
- Bankole, H.; Semassa, A.; Anihouvi, V.; Dougnon, T.; Legonou, M.; Toukourou, F. Insulation test of Listeria in raw milk in Benin. Int. J. Curr. Microbiol. App. Sci. 2013, 2, 396–400. [Google Scholar]
- Mpundu, P.; Mbewe, A.; Muma, J.; Mwasinga, W.; Mukumbuta, N.; Munyeme, M. A global perspective of antibiotic-resistant Listeria monocytogenes prevalence in assorted ready to eat foods: A systematic review. Veter. World 2021, 14, 2219–2229. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Laguna, J.; Cardoso-Toset, F.; Meza-Torres, J.; Pizarro-Cerdá, J.; Quereda, J.J. Virulence potential of Listeria monocytogenes strains recovered from pigs in Spain. Vet. Rec. 2020, 187, e101. [Google Scholar] [CrossRef]
No of Sample/Year | Source | Serotype | Virulence Gene Detected | Antimicrobial Resistance Genes Detected |
---|---|---|---|---|
896, 897, 898, 899, 900, 901/2022 | Pork meat bacon | 1/2a-3a | hlyA, plcB, actA, prfA, inlJ | Tet(M), ampC |
669/2019 | Pork meat sausages | 1/2a-3c | hlyA, prfA, | Tet(M), Tet(C), Tet(K), dfrD |
1018, 1019/2020 | Fish fillet | 1/2a-3a | hlyA, prfA, | ampC, dfrD |
830/2020 | Trout fish butter creme | 1/2a-3a | hlyA, prfA, | Tet(M), ampC |
102, 103, 104, 105, 106, 107/2022 | Poultry meat salad | 1/2a-3a | hlyA, plcB, actA, prfA, inlJ | Tet(C), Tet(K), dfrD |
93, 94, 95, 96/2022 | Pork meat hotdog | 1/2a-3a | hlyA, plcB, actA, prfA, inlJ | ampC, dfrD |
2018, 2019, 2020, 2021, 2022/2022 | Beef meat salad | 1/2b | hlyA, plcB, actA, prfA, inlJ | Tet(C), Tet(M), Tet(K) |
330/2021 | Raw milk cheese | 1/2b | hlyA, prfA, inlJ | Tet(K), ampC |
Antimicrobial | No of Resistant L.monocytoegenes Isolate (%) | No of Intermediate Resistant L.monocytoegenes Isolate (%) |
---|---|---|
Ampicillin | 5 (19.23) | 2 (7.69%) |
Cephalothin | 4 (15.38%) | 0 |
Ciprofloxacin | 0 | 0 |
Clindamycin | 1 (3.84%) | 0 |
Chloramphenicol | 1 (3.84%) | 0 |
Gentamicin | 1 (3.84%) | 0 |
Levofloxacin | 0 | 0 |
Moxifloxacin | 0 | 0 |
Meticillin | 2 (7.69%) | 1 (3.84%) |
Oxacillin | 6 (23.07%) | 2 (7.69%) |
Penicillin G | 4 (15.38%) | 1 (3.84%) |
Rifampicin | 1 (3.84%) | 0 |
Trimethoprime-sulfamethoxazole | 7 (26.92) | 1 (3.84%) |
Tetracycline | 5 (19.23) | 0 |
Multiple Resistance Pattern | Origin of Strain | Resistance Pattern | No. of Isolates (%) |
---|---|---|---|
One type of antimicrobial | Fish fillet | SMX | 3 (11.53%) |
Two types of antimicrobials | Pork meat | SMX, OXA | 2 (7.69%) |
Trout fish | AMP, CEPH | 2 (7.69%) | |
Beef meat | MET, TET | 1 (3.84) | |
Poultry meat | PEN, GEN | 1 (3.84) | |
Pork meat | OXA, CHL | 1 (3.84) | |
Three types of antimicrobials | Beef meat | AMP, CEPH, TET | 1 (3.84) |
Pork meat | AMP, SMX, PEN | 1 (3.84) | |
Pork meat | CLIN, MET, OXA | 1 (3.84) | |
OXA, PEN, TET | 1 (3.84) | ||
Four types of antimicrobials | Beef meat | SMX, CEPH, RIF, TET | 1 (3.84) |
Poultry meat | AMP, OXA, PEN, TET | 1 (3.84) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duma, M.N.; Ciupescu, L.M.; Dan, S.D.; Crisan-Reget, O.L.; Tabaran, A. Virulence and Antimicrobial Resistance of Listeria monocytogenes Isolated from Ready-to-Eat Food Products in Romania. Microorganisms 2024, 12, 954. https://doi.org/10.3390/microorganisms12050954
Duma MN, Ciupescu LM, Dan SD, Crisan-Reget OL, Tabaran A. Virulence and Antimicrobial Resistance of Listeria monocytogenes Isolated from Ready-to-Eat Food Products in Romania. Microorganisms. 2024; 12(5):954. https://doi.org/10.3390/microorganisms12050954
Chicago/Turabian StyleDuma, Mihaela Niculina, Laurenţiu Mihai Ciupescu, Sorin Daniel Dan, Oana Lucia Crisan-Reget, and Alexandra Tabaran. 2024. "Virulence and Antimicrobial Resistance of Listeria monocytogenes Isolated from Ready-to-Eat Food Products in Romania" Microorganisms 12, no. 5: 954. https://doi.org/10.3390/microorganisms12050954
APA StyleDuma, M. N., Ciupescu, L. M., Dan, S. D., Crisan-Reget, O. L., & Tabaran, A. (2024). Virulence and Antimicrobial Resistance of Listeria monocytogenes Isolated from Ready-to-Eat Food Products in Romania. Microorganisms, 12(5), 954. https://doi.org/10.3390/microorganisms12050954