The Growth-Promoting and Colonization of the Pine Endophytic Pseudomonas abietaniphila for Pine Wilt Disease Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation of Plant Growth-Promoting Traits of Bacterial Strains In Vitro
2.2. Indole Acetic Acid (IAA) Production
2.3. Potassium Solubilization
2.4. Phosphate Solubilization
2.5. Siderophore Production
2.6. Nitrogen Fixation
2.7. Promoting Effect of the Strain on P. massoniana Seedlings
2.8. Induction of Resistance of P. massoniana to Pine Wilt Disease by P. abietaniphila BHJ04
2.9. Construction of the EGFP-Labelled Strain BHJ04 and Colonisation Assay
3. Statistical Analysis
4. Results
4.1. PGPE Traits of Strain BHJ04
4.2. Effect of BHJ04 on PWD in Pine Seedlings In Vivo
4.3. Dynamic Expression of Several Genes in P. massoniana
4.4. Colonisation of Roots, Stems, and Leaves of P. massoniana by Strain BHJ04
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- An, H.; Lee, S.; Cho, S.J. The Effects of Climate Change on Pine Wilt Disease in South Korea: Challenges and Prospects. Forests 2019, 10, 486. [Google Scholar] [CrossRef]
- Carnegie, A.J.; Venn, T.; Lawson, S.; Nagel, M.; Wardlaw, T.; Cameron, N.; Last, I. An analysis of pest risk and potential economic impact of pine wilt disease to Pinus plantations in Australia. Aust. For. 2018, 81, 24–36. [Google Scholar] [CrossRef]
- The State Forestry Administration of the People’s Republic of China. Report on China’s Forest Resources; The State Forestry Administration of the People’s Republic of China: BeiJing, China, 2019; p. 451. [Google Scholar]
- Zhao, B.G.; Futai, K.; Sutherland, J.R.; Takeuchi, Y. Pine Wilt Disease; Springer Publishing Company: New York, NY, USA, 2008. [Google Scholar]
- Hirata, A.; Nakamura, K.; Nakao, K.; Kominami, Y.; Tanaka, N.; Ohashi, H.; Takano, K.T.; Takeuchi, W.; Matsui, T. Potential distribution of pine wilt disease under future climate change scenarios. PLoS ONE 2017, 12, e0182837. [Google Scholar] [CrossRef]
- Kwon, T.S.; Shin, J.H.; Lim, J.H.; Kim, Y.K.; Lee, E.J. Management of pine wilt disease in Korea through preventative silvicultural control. For. Ecol. Manag. 2011, 216, 562–569. [Google Scholar] [CrossRef]
- Lee, S.C.; Lee, H.R.; Kim, D.S.; Kwon, J.H.; Huh, M.J.; Park, I.K. Emamectin benzoate 9.7% SL as a new formulation for a trunk-injections against pine wood nematode, Bursaphelenchus xylophilus. J. For. Res. 2019, 31, 1399–1403. [Google Scholar] [CrossRef]
- Ye, J.R.; Wu, X.Q. Research progress of pine wilt disease. For. Pest Dis. 2022, 41, 1–10. [Google Scholar]
- Alves, M.; Pereira, A.; Vicente, C.; Matos, P.; Henriques, J.; Lopes, H.; Nascimento, F.; Mota, M.; Correia, A.; Henriques, I. The role of bacteria in pine wilt disease: Insights from microbiome analysis. FEMS Microbiol. Ecol. 2018, 94, fiy077. [Google Scholar] [CrossRef]
- Feng, J.L.; Li, R.G.; Wang, C.; Yang, H.; Deng, W.J.; Du, G.C.; Guo, Q.Q. Nematicidal phytochemicals against pine wood nematode, Bursaphelenchus xylophilus (nematoda: Aphelenchoididae). J. Plant Dis. Prot. 2023, 130, 215–223. [Google Scholar] [CrossRef]
- Dou, G.M.; Yan, D.H. Research Progress on Biocontrol of Pine Wilt Disease by Microorganisms. Forests 2022, 13, 1047. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhao, Y.; Zhang, B.X.; Yang, M.Y.; Fan, S.T.; Li, C.Y. Reseach Progress on the Source and Biological Fuction of Plant Endophytic Bacteria. Spec. Wild Econ. Anim. Plant Res. 2020, 42, 60–67. [Google Scholar]
- Li, N.; Sheng, K.Y.; Zheng, Q.Y.; Hu, D.N.; Zhang, L.; Wang, J.W.; Zhang, W.Y. Inoculation with phosphate-solubilizing bacteria alters microbial community and activates soil phosphorus supply to promote maize growth. Land Degrad. Dev. 2023, 34, 777–788. [Google Scholar] [CrossRef]
- Juma, P.O.; Fujitani, Y.; Alessa, O.; Oyama, T.; Yurimoto, H.; Sakai, Y.; Tani, A. Siderophore for Lanthanide and Iron Uptake for Methylotrophy and Plant Growth Promotion in Methylobacterium aquaticum Strain 22A. Front. Microbiol. 2022, 13, 921635. [Google Scholar] [CrossRef]
- Qin, Y.; Xie, X.Q.; Khan, Q.; Wei, J.L.; Sun, A.N.; Su, Y.M.; Guo, D.J.; Li, Y.R.; Xing, Y.X. Endophytic nitrogen-fixing bacteria DX120E inoculation altered the carbon and nitrogen metabolism in sugarcane. Front. Microbiol. 2022, 13, 1000033. [Google Scholar] [CrossRef]
- Poveda, J.; González-Andrés, F. Bacillus as a source of phytohormones for use in agriculture. Appl. Microbiol. Biotechnol. 2021, 105, 8629–8645. [Google Scholar] [CrossRef] [PubMed]
- Mercado Blanco, J.; Abrantes, I.; Barra Caracciolo, A.; Bevivino, A.; Ciancio, A.; Grenni, P.; Hrynkiewicz, K.; Proença, D.N. Belowground microbiota and the health of tree crops. Front. Microbiol. 2018, 9, 347012. [Google Scholar] [CrossRef]
- Naing, A.H.; Maung, T.T.; Kim, C.K. The ACC deaminase-producing plant growth-promoting bacteria: Influences of bacterial strains and ACC deaminase activities in plant tolerance to abiotic stress. Physiol. Plant. 2021, 173, 1992–2012. [Google Scholar] [CrossRef]
- Orozco-Mosqueda, M.; Glick, B.R.; Santoyo, G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiol. Res. 2020, 235, 126439. [Google Scholar] [CrossRef]
- Glick, B.R. Beneficial Plant-Bacterial Interactions; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Nascimento, F.X.; Espada, M.; Barbosa, P.; Rossi, M.J.; Vicente, C.S.; Mota, M. Non-specific transient mutualism between the plant parasitic nematode, Bursaphelenchus xylophilus, and the opportunistic bacterium Serratia quinivorans BXF1, a plant-growth promoting pine endophyte with antagonistic effects. Environ. Microbiol. 2016, 18, 5265–5276. [Google Scholar] [CrossRef]
- Nascimento, F.X.; Vicente, C.S.; Barbosa, P.; Espada, M.; Glick, B.R.; Mota, M.; Oliveira, S. Evidence for the involvement of ACC deaminase from Pseudomonas putida UW4 in the biocontrol of pine wilt disease caused by Bursaphelenchus xylophilus. Biocontrol 2012, 58, 427–433. [Google Scholar] [CrossRef]
- Han, G.; Mannaa, M.; Kim, N.; Jeon, H.W.; Jung, H.; Lee, H.H.; Kim, J.; Park, J.; Park, A.R.; Kim, J.C.; et al. Response of Pine Rhizosphere Microbiota to Foliar Treatment with Resistance-Inducing Bacteria against Pine Wilt Disease. Microorganisms 2021, 9, 688. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-J.; Sniezko, R.A.; Ekramoddoullah, A.K.M. Association of a Novel Pinus monticola Chitinase Gene (PmCh4B) with Quantitative Resistance to Cronartium ribicola. Phytopathology 2011, 101, 904–911. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.J.; Wu, X.Q.; Wen, T.Y.; Hu, L.J. The Bursaphelenchus xylophilus candidate effector BxLip- 3 targets the class I chitinases to suppress immunity in pine. Mol. Plant Pathol. 2023, 24, 1033–1046. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Jeon, H.W.; Mannaa, M.; Jeong, S.-I.; Kim, J.; Kim, J.; Lee, C.; Park, A.R.; Kim, J.-C.; Seo, Y.-S. Induction of resistance against pine wilt disease caused by Bursaphelenchus xylophilus using selected pine endophytic bacteria. Plant Pathol. 2019, 68, 434–444. [Google Scholar] [CrossRef]
- Lee, Y.S.; Anees, M.; Park, Y.S.; Kim, S.B.; Jung, W.J.; Kim, K.Y. Purification and properties of a Meloidogyne-antagonistic chitinase from Lysobacter capsici YS1215. Nematology 2014, 16, 63–72. [Google Scholar] [CrossRef]
- Park, A.R.; Jeong, S.I.; Jeon, H.W.; Kim, J.; Kim, N.; Ha, M.T.; Mannaa, M.; Kim, J.; Lee, C.W.; Min, B.S.; et al. A Diketopiperazine, Cyclo-(L-Pro-L-Ile), Derived From Bacillus thuringiensis JCK-1233 Controls Pine Wilt Disease by Elicitation of Moderate Hypersensitive Reaction. Front. Plant Sci. 2020, 11, 552809. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrov, V.G.; Blagodyr, R.N.; Il’ev, I.P. Phosphorus acid isolation from apatite produced by silicate bacteria. Mikrobiolohichnyi Zh. 1967, 29, 11–14. [Google Scholar]
- Meena, V.S.; Maurya, B.R.; Verma, J.P.; Aeron, A.; Bajpai, V.K. Potassium solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste mica. Ecol. Eng. 2015, 81, 340–347. [Google Scholar] [CrossRef]
- Yaghoubi Khanghahi, M.; Pirdashti, H.; Rahimian, H.; Nematzadeh, G.; Ghajar Sepanlou, M. Potassium solubilising bacteria (KSB) isolated from rice paddy soil: From isolation, identification to K use efficiency. Symbiosis 2017, 76, 13–23. [Google Scholar] [CrossRef]
- Teng, Z.; Chen, Z.; Zhang, Q.; Yao, Y.; Song, M.; Li, M. Isolation and characterization of phosphate solubilizing bacteria from rhizosphere soils of the Yeyahu Wetland in Beijing, China. Environ. Sci. Pollut. Res. Int. 2019, 26, 33976–33987. [Google Scholar] [CrossRef]
- Pérez-Miranda, S.; Cabirol, N.; George-Téllez, R.; Zamudio-Rivera, L.S.; Fernández, F.J. O-CAS, a fast and universal method for siderophore detection. J. Microbiol. Methods 2007, 70, 127–131. [Google Scholar] [CrossRef]
- Viglierchio, D.R.; Yamaashita, T.T. On the Methodology of Nematode Extraction from Field Samples: Density Flotation Techniques. J. Nematol. 1983, 15, 444. [Google Scholar] [PubMed]
- Kwon, H.R.; Choi, G.J.; Choi, Y.H.; Jang, K.S.; Sung, N.D.; Kang, M.S.; Moon, Y.; Lee, S.K.; Kim, J.C. Suppression of pine wilt disease by an antibacterial agent, oxolinic acid. Pest Manag. Sci. 2010, 66, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.F.; Liang, G.H.; Zhang, F.P. Effect of Bursaphelenchus xylophilus infestation to the gene expression of Pinus massoniana. J. For. Environ. 2022, 38, 481–487. [Google Scholar]
- Williams, D.; Luca, V.D. Plant cytochrome P450s directing monoterpene indole alkaloid (MIA) and benzylisoquinoline alkaloid (BIA) biosynthesis. Phytochem. Rev. 2022, 22, 309–338. [Google Scholar] [CrossRef]
- Guo, Y.J.; Lin, Q.N.; Chen, L.; Carballar-Lejarazú, R.; Wu, S.Q. Characterization of bacterial communities associated with the pinewood nematode insect vector Monochamus alternatus Hope and the host tree Pinus massoniana. BMC Genom. 2020, 21, 337. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, F.X.; Hasegawa, K.; Mota, M.; Vicente, C.S. Bacterial role in pine wilt disease development—Review and future perspectives: Bacteria in pine wilt disease. Environ. Microbiol. Rep. 2015, 7, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.; Ponpandian, L.N.; Rim, S.O.; Shanmugam, G.; Jeon, J.; Hwang, B.S.; Kim, J.; Lee, S.K.; Seo, S.-T.; Koh, S.-H. Molecular characterization of bacterial endophytes from four Pinus species and their nematicidal activity against pine wood nematode. Korea Soc. Appl. Entomol. 2018, 359. [Google Scholar]
- Kang, M.K.; Kim, M.H.; Liu, M.J.; Jin, C.Z.; Park, S.H.; Lee, J.M.; Kim, J.; Park, D.J.; Park, H.R.; Kim, Y.H. Nematicidal activity of teleocidin B4 isolated from Streptomyces sp. against pine wood nematode, Bursaphelenchus xylophilus. Pest Manag. Sci. 2020, 77, 1607–1615. [Google Scholar] [CrossRef]
- Davis, J.M.; Wu, H.G.; Cooke, J.E.k.; Reed, J.M.; Luce, K.S.; Michler, C.H. Pathogen challenge, salicylic acid, and jasmonic acid regulate expression of chitinase gene homologs in pine. Mol. Plant-Microbe Interact. 2002, 15, 380–387. [Google Scholar] [CrossRef]
- Kolosova, N.; Breuil, C.; Bohlmann, J. Cloning and characterization of chitinases from interior spruce and lodgepole pine. Phytochemistry 2014, 101, 32–39. [Google Scholar] [CrossRef]
- Liu, J.J.; Ekramoddoullah, A.K.M.; Zamani, A. A Class IV Chitinase Is Up-Regulated by Fungal Infection and Abiotic Stresses and Associated with Slow-Canker-Growth Resistance to Cronartium ribicola in Western White Pine (Pinus monticola). Phytopathology 2005, 95, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, K.; Franke, J. Cytochrome P450 monooxygenase-mediated tailoring of triterpenoids and steroids in plants. Beilstein J. Org. Chem. 2022, 18, 1289–1310. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.R.; Ming, R.; Alam, M.; Schuler, M.A. Comparison of Cytochrome P450 Genes from Six Plant Genomes. Trop. Plant Biol. 2008, 1, 216–235. [Google Scholar] [CrossRef]
- Fukuda, K. Physiological process of the symptom development and resistance mechanism in pine wilt disease. J. For. Res. 1997, 2, 171–181. [Google Scholar] [CrossRef]
- da Silva, M.N.; Pintado, M.E.; Sarmento, B.; Stamford, N.P.; Vasconcelos, M.W. A biofertilizer with diazotrophic bacteria and a filamentous fungus increases Pinus pinaster tolerance to the pinewood nematode (Bursaphelenchus xylophilus). Biol. Control 2019, 132, 72–80. [Google Scholar] [CrossRef]
- Etesami, H.; Emami, S.; Alikhani, H.A. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects A review. J. Soil Sci. Plant Nutr. 2017, 17, 897–911. [Google Scholar] [CrossRef]
- Parastesh, F.; Alikhani, H.; Etesami, H.; Hasandokht, M.R. The effect of vermicompost enriched with phosphate solubilizing bacteria on phosphorus availability, pH and biological indices in a calcareous soil. J. Soil Manag. Sustain. Prod. 2019, 9, 25–46. [Google Scholar]
- Gulati, A.; Sharma, N.; Vyas, P.; Sood, S.; Rahi, P.; Pathania, V.; Prasad, R. Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Arch. Microbiol. 2010, 192, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Thoa, N.T.K.; Mai, D.T.H.; Hiu, B.L.; Duong, C.A.; Chau, N.N.B.; Nghiep, N.M.; Van Minh, N.; Quoc, N.B. Roles of β-Indole Acetic Acid (IAA) Producing Endophytic Bacteria on the Recovery of Plant Growth and Survival Ability of Sugarcane Infected White Leaf Disease (SWLD). Curr. Microbiol. 2022, 79, 389. [Google Scholar] [CrossRef]
- Zhao, D.; Zhao, H.; Zhao, D.; Zhu, X.F.; Wang, Y.Y.; Duan, Y.X. Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biol. Control 2018, 119, 12–19. [Google Scholar] [CrossRef]
- Anwar, M.S.; Rana, V.R.S.; Pande, V. Isolation, screening and characterization of Bacillus cereus and Enterobacter asburiae isolated from rhizospheric soils of Uttarakhand for different plant growth promotion (PGP) activities: An in vitro-study. Int. J. Basic Appl. Agric. Res. 2014, 12, 254–260. [Google Scholar]
- Sikder, M.M.; Vestergård, M.; Kyndt, T.; Kudjordjie, E.N.; Nicolaisen, M. Phytohormones selectively affect plant parasitic nematodes associated with Arabidopsis roots. New Phytol. 2021, 232, 1272–1285. [Google Scholar] [CrossRef] [PubMed]
- Proena, D.N.; Heine, T.; Senges, C.H.R.; Bandow, J.E.; Tischler, D. Bacterial Metabolites Produced Under Iron Limitation Kill Pinewood Nematode and Attract Caenorhabditis elegans. Front. Microbiol. 2019, 10, 473882. [Google Scholar]
- Ramamoorthy, V.; Viswanathan, R.; Raguchander, T.; Prakasam, V.; Samiyappan, R. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot. 2001, 20, 1–11. [Google Scholar] [CrossRef]
- Mercado Blanco, J.; Bakker, P.A. Interactions between plants and beneficial Pseudomonas spp.: Exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 2007, 92, 367–389. [Google Scholar] [CrossRef] [PubMed]
- Poncheewin, W.; van Diepeningen, A.D.; van der Lee, T.A.; Suarez-Diez, M.; Schaap, P.J. Classification of the plant-associated lifestyle of Pseudomonas strains using genome properties and machine learning. Sci. Rep. 2022, 12, 10857. [Google Scholar] [CrossRef]
- Negi, Y.K.; Prabha, D.; Garg, S.K.; Kumar, J. Genetic Diversity Among Cold-Tolerant Fluorescent Pseudomonas Isolates from Indian Himalayas and Their Characterization for Biocontrol and Plant Growth-Promoting Activities. J. Plant Growth Regul. 2011, 30, 128–143. [Google Scholar] [CrossRef]
- Prabhukarthikeyan, S.R.; Keerthana, U.; Raguchander, T. Antibiotic-producing Pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in turmeric plants. Microbiol. Res. 2018, 210, 65. [Google Scholar] [CrossRef]
Gene | Primer Sequence (5′–3′) | F/R |
---|---|---|
Nicotianamine synthase (NAS) | TCCGCCGTCACCTTCT | F |
TTCGGTCCCGCCTAAT | R | |
Chitinase | CGAGGGCAAGGGATTCTA | F |
ATTCCTGGCTGTTGATGGC | R | |
DNA/RNA polymerases superfamily protein | TCAGTTCCGCTTATCACCCG | F |
CATCCGCACTTCGCTTCTC | R | |
Tetratricopeptide repeat-like superfamily protein isoform 9 | ATGTGCTCATCGGGCTCT | F |
AGGGTGACTTGGCTTGT | R | |
Cytochrome P450 monooxygenase superfamily | AATCCGTCGTAGGCAACA | F |
GCCCGCCACATAGAAAT | R | |
Cytochrome P450 | GTCGGAAACCTCCACCAAC | F |
TAGGGACTGAGCCCAAGC | R | |
Cell wall-associated hydrolase | CTCTAACCAAACTCCGAATACC | F |
CGCACTTCCGATACCTCCAT | R | |
Dehydration responsive protein | ATACTCATCTCGCCCACC | F |
GAGCGTTCTGTAAGCCTGT | R | |
Actin | CCTTGGCAATCCACATC | F |
TCACCACTACGGCAGAAC | R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Tang, Y.; Li, D.; Ye, J. The Growth-Promoting and Colonization of the Pine Endophytic Pseudomonas abietaniphila for Pine Wilt Disease Control. Microorganisms 2024, 12, 1089. https://doi.org/10.3390/microorganisms12061089
Peng Y, Tang Y, Li D, Ye J. The Growth-Promoting and Colonization of the Pine Endophytic Pseudomonas abietaniphila for Pine Wilt Disease Control. Microorganisms. 2024; 12(6):1089. https://doi.org/10.3390/microorganisms12061089
Chicago/Turabian StylePeng, Yueyuan, Yuwei Tang, Da Li, and Jianren Ye. 2024. "The Growth-Promoting and Colonization of the Pine Endophytic Pseudomonas abietaniphila for Pine Wilt Disease Control" Microorganisms 12, no. 6: 1089. https://doi.org/10.3390/microorganisms12061089
APA StylePeng, Y., Tang, Y., Li, D., & Ye, J. (2024). The Growth-Promoting and Colonization of the Pine Endophytic Pseudomonas abietaniphila for Pine Wilt Disease Control. Microorganisms, 12(6), 1089. https://doi.org/10.3390/microorganisms12061089