Exploring the Role of a Putative Secondary Metabolite Biosynthesis Pathway in Mycobacterium abscessus Pathogenesis Using a Xenopus laevis Tadpole Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Husbandry
2.2. Mycobacterium abscessus
2.3. Mab Inoculation of Tadpoles and Frogs
2.4. Colony Formation Assay
2.5. Confocal Microscopy
2.6. Q-PCR
2.7. Statistical Analysis
3. Results
3.1. Survival of Mab Infected Tadpoles
3.2. Relative Expression Responses of Innate Immune Genes
3.3. Tracking Macrophage Recruitment and Infection Using Tail Wound Inoculation Assay
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prevots, D.R.; Marras, T.K. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: A review. Clin. Chest Med. 2015, 36, 13–34. [Google Scholar] [CrossRef]
- Lee, M.R.; Sheng, W.H.; Hung, C.C.; Yu, C.J.; Lee, L.N.; Hsueh, P.R. Mycobacterium abscessus Complex Infections in Humans. Emerg. Infect. Dis. 2015, 21, 1638–1646. [Google Scholar] [CrossRef]
- Bernut, A.; Herrmann, J.L.; Kissa, K.; Dubremetz, J.F.; Gaillard, J.L.; Lutfalla, G.; Kremer, L. Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation. Proc. Natl. Acad. Sci. USA 2014, 111, E943–E952. [Google Scholar] [CrossRef] [PubMed]
- Winthrop, K.L.; Marras, T.K.; Adjemian, J.; Zhang, H.; Wang, P.; Zhang, Q. Incidence and Prevalence of Nontuberculous Mycobacterial Lung Disease in a Large U.S. Managed Care Health Plan, 2008-2015. Ann. Am. Thorac. Soc. 2020, 17, 178–185. [Google Scholar] [CrossRef]
- Bryant, J.M.; Grogono, D.M.; Greaves, D.; Foweraker, J.; Roddick, I.; Inns, T.; Reacher, M.; Haworth, C.S.; Curran, M.D.; Harris, S.R.; et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: A retrospective cohort study. Lancet 2013, 381, 1551–1560. [Google Scholar] [CrossRef]
- Nessar, R.; Cambau, E.; Reyrat, J.M.; Murray, A.; Gicquel, B. Mycobacterium abscessus: A new antibiotic nightmare. J. Antimicrob. Chemother. 2012, 67, 810–818. [Google Scholar] [CrossRef]
- Waglechner, N.; Tullis, E.; Stephenson, A.L.; Waters, V.; McIntosh, F.; Ma, J.; Jamieson, F.B.; Behr, M.A.; Batt, J.; Lee, R.S. Genomic epidemiology of Mycobacterium abscessus in a Canadian cystic fibrosis centre. Sci. Rep. 2022, 12, 16116. [Google Scholar] [CrossRef]
- Medjahed, H.; Reyrat, J.M. Construction of Mycobacterium abscessus defined glycopeptidolipid mutants: Comparison of genetic tools. Appl. Environ. Microbiol. 2009, 75, 1331–1338. [Google Scholar] [CrossRef]
- Gutiérrez, A.V.; Viljoen, A.; Ghigo, E.; Herrmann, J.L.; Kremer, L. Glycopeptidolipids, a Double-Edged Sword of the Mycobacterium abscessus Complex. Front. Microbiol. 2018, 9, 1145. [Google Scholar] [CrossRef] [PubMed]
- Catherinot, E.; Clarissou, J.; Etienne, G.; Ripoll, F.; Emile, J.F.; Daffé, M.; Perronne, C.; Soudais, C.; Gaillard, J.L.; Rottman, M. Hypervirulence of a rough variant of the Mycobacterium abscessus type strain. Infect. Immun. 2007, 75, 1055–1058. [Google Scholar] [CrossRef]
- Medjahed, H.; Gaillard, J.-L.; Reyrat, J.-M. Mycobacterium abscessus: A new player in the mycobacterial field. Trends Microbiol. 2010, 18, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.D. Host Immune Response to Rapidly Growing Mycobacteria, and Emerging Cause of Chronic Lung Disease. Am. J. Respir. Cell Mol. Biol. 2009, 43, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Malcolm, K.C.; Nichols, E.M.; Caceres, S.M.; Kret, J.E.; Martiniano, S.L.; Sagel, S.D.; Chan, E.D.; Caverly, L.; Solomon, G.M.; Reynolds, P.; et al. Mycobacterium abscessus induces a limited pattern of neutrophil activation that promotes pathogen survival. PLoS ONE 2013, 8, e57402. [Google Scholar] [CrossRef] [PubMed]
- Diacovich, L.; Gorvel, J.P. Bacterial manipulation of innate immunity to promote infection. Nat. Rev. Microbiol. 2010, 8, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.M.; Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 2009, 136, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Byrd Thomas, F.; Lyons, C.R. Preliminary Characterization of aMycobacterium abscessus Mutant in Human and Murine Models of Infection. Infect. Immun. 1999, 67, 4700–4707. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Shoen, C.; Cynamon, M.; Dimitrakopoulou, D.; Paiola, M.; Pavelka, M.S., Jr.; Robert, J. Developing Tadpole Xenopus laevis as a Comparative Animal Model to Study Mycobacterium abscessus Pathogenicity. Int. J. Mol. Sci. 2021, 22, 806. [Google Scholar] [CrossRef] [PubMed]
- Rose, C.S.; James, B. Plasticity of lung development in the amphibian, Xenopus laevis. Biology Open 2013, 2, 1324–1335. [Google Scholar] [CrossRef] [PubMed]
- Hyoe, R.K.; Robert, J. A Xenopus tadpole alternative model to study innate-like T cell-mediated anti-mycobacterial immunity. Dev. Comp. Immunol. 2019, 92, 253–259. [Google Scholar] [CrossRef]
- Ripoll, F.; Pasek, S.; Schenowitz, C.; Dossat, C.; Barbe, V.; Rottman, M.; Macheras, E.; Heym, B.; Herrmann, J.L.; Daffé, M.; et al. Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PLoS ONE 2009, 4, e5660. [Google Scholar] [CrossRef]
- Paredes, R.; Ishibashi, S.; Borrill, R.; Robert, J.; Amaya, E. Xenopus: An in vivo model for imaging the inflammatory response following injury and bacterial infection. Dev. Biol. 2015, 408, 213–228. [Google Scholar] [CrossRef]
- Gregoire, S.A.; Byam, J.; Pavelka, M.S. galK-based suicide vector mediated allelic exchange in Mycobacterium abscessus. Microbiology 2017, 163, 1399–1408. [Google Scholar] [CrossRef]
- Zahn, N.; James-Zorn, C.; Ponferrada, V.G.; Adams, D.S.; Grzymkowski, J.; Buchholz, D.R.; Nascone-Yoder, N.M.; Horb, M.; Moody, S.A.; Vize, P.D.; et al. Normal Table of Xenopus development: A new graphical resource. Development 2022, 149, dev200356. [Google Scholar] [CrossRef]
- Edholm, E.S.; Banach, M.; Hyoe Rhoo, K.; Pavelka, M.S., Jr.; Robert, J. Distinct MHC class I-like interacting invariant T cell lineage at the forefront of mycobacterial immunity uncovered in Xenopus. Proc. Natl. Acad. Sci. USA 2018, 115, E4023–E4031. [Google Scholar] [CrossRef] [PubMed]
- Rhoo, K.H.; Edholm, E.S.; Forzán, M.J.; Khan, A.; Waddle, A.W.; Pavelka, M.S., Jr.; Robert, J. Distinct Host-Mycobacterial Pathogen Interactions between Resistant Adult and Tolerant Tadpole Life Stages of Xenopus laevis. J. Immunol. 2019, 203, 2679–2688. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Barber, R.D.; Harmer, D.W.; Coleman, R.A.; Clark, B.J. GAPDH as a housekeeping gene: Analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol. Genomics 2005, 21, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Kong, D.; He, X.; Zhang, Z.; Han, M.; Xie, X.; Wang, P.; Cheng, H.; Tao, M.; Zhang, L.; et al. Characterization of streptonigrin biosynthesis reveals a cryptic carboxyl methylation and an unusual oxidative cleavage of a N-C bond. J. Am. Chem. Soc. 2013, 135, 1739–1748. [Google Scholar] [CrossRef]
- Nabihah Nasir, N.; Sekar, M.; Ravi, S.; Wong, L.S.; Sisinthy, S.P.; Gan, S.H.; Subramaniyan, V.; Chidambaram, K.; Mat Rani, N.N.I.; Begum, M.Y.; et al. Chemistry, Biosynthesis and Pharmacology of Streptonigrin: An Old Molecule with Future Prospects for New Drug Design, Development and Therapy. Drug Des. Devel Ther. 2023, 17, 1065–1078. [Google Scholar] [CrossRef]
- Wu, Q.; Liang, J.; Lin, S.; Zhou, X.; Bai, L.; Deng, Z.; Wang, Z. Characterization of the biosynthesis gene cluster for the pyrrole polyether antibiotic calcimycin (A23187) in Streptomyces chartreusis NRRL 3882. Antimicrob. Agents. Chemother. 2011, 55, 974–982. [Google Scholar] [CrossRef]
- Lv, M.; Zhao, J.; Deng, Z.; Yu, Y. Characterization of the Biosynthetic Gene Cluster for Benzoxazole Antibiotics A33853 Reveals Unusual Assembly Logic. Chem. Biol. 2015, 22, 1313–1324. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
MAB_ORF# | stn Gene | Annotation/Description | E-Value * | % Identity/Similarity * |
---|---|---|---|---|
0284c | stnG | Major facilitator transporter | 1 × 10−19 | 29/50 |
0285 | stnH1 | Oxidoreductase, enoylreductase | 4 × 10−48 | 51/63 |
0286 | stnI | Polyketide cyclase/dehydrase | 4 × 10−54 | 54/69 |
0287 | stnJ | FadD, fatty acid—CoA ligase | 0.0 | 64/76 |
0288 | stnH2 | Monooxygenase | 5 × 10−127 | 53/63 |
0289 | stnK1 | Hydroxylase/monooxygenase | 0.0 | 64/74 |
0290 | stnL | PcaB, 3-carboxymuconate cycloisomerase | 2 × 10−155 | 58/69 |
0291 | NP | CdaR, transcriptional regulator | NA | NA |
0292 | stnO | ISXo8 transposase | 2 × 10−61 | 35/42 |
0294 | NP | Carboxyesterase type B | NA | NA |
0295 | stnM3 | PhzC, 2-dehydro-3-deoxyheptonate synthase | 7 × 10−158 | 59/69 |
0296 | stnM2 | PhzD, isochorismatase | 6 × 10−66 | 56/65 |
0297 | stnN | DhabA, 2,3-dihydroxybenzoate-2,3-dehydrogenase | 2 × 10−92 | 63/74 |
0298 | stnM1 | PhzE, anthranilate synthase | 0.0 | 64/74 |
0299 | NP | NbaD, aminocarboxymuconate-semialdehyde decarboxylase | NA | NA |
0304 | NP | Hypothetical | NA | NA |
0305 | NP | Aminotransferase | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, N.J.; Dimitrakopoulou, D.; Baglia, L.A.; Pavelka, M.S., Jr.; Robert, J. Exploring the Role of a Putative Secondary Metabolite Biosynthesis Pathway in Mycobacterium abscessus Pathogenesis Using a Xenopus laevis Tadpole Model. Microorganisms 2024, 12, 1120. https://doi.org/10.3390/microorganisms12061120
Miller NJ, Dimitrakopoulou D, Baglia LA, Pavelka MS Jr., Robert J. Exploring the Role of a Putative Secondary Metabolite Biosynthesis Pathway in Mycobacterium abscessus Pathogenesis Using a Xenopus laevis Tadpole Model. Microorganisms. 2024; 12(6):1120. https://doi.org/10.3390/microorganisms12061120
Chicago/Turabian StyleMiller, Nicholas James, Dionysia Dimitrakopoulou, Laurel A. Baglia, Martin S. Pavelka, Jr., and Jacques Robert. 2024. "Exploring the Role of a Putative Secondary Metabolite Biosynthesis Pathway in Mycobacterium abscessus Pathogenesis Using a Xenopus laevis Tadpole Model" Microorganisms 12, no. 6: 1120. https://doi.org/10.3390/microorganisms12061120
APA StyleMiller, N. J., Dimitrakopoulou, D., Baglia, L. A., Pavelka, M. S., Jr., & Robert, J. (2024). Exploring the Role of a Putative Secondary Metabolite Biosynthesis Pathway in Mycobacterium abscessus Pathogenesis Using a Xenopus laevis Tadpole Model. Microorganisms, 12(6), 1120. https://doi.org/10.3390/microorganisms12061120