Pfaffia paniculata Extract, a Potential Antimicrobial Agent against Candida spp., Pseudomonas aeruginosa, and Streptococcus mutans Biofilms
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Chemical Reagents
2.2. Equipment
2.3. Plant Extract
2.4. Microbial Strains
2.5. Antifungal and Antibacterial Action of P. paniculata against Planktonic Microorganisms
2.6. Antifungal and Antibacterial Action of P. paniculata against Monotypic Biofilms
2.7. Evaluation of the Structure of the Monotypic Biofilms (Biomass) Using Crystal Violet Staining
2.8. Evaluation of the Metabolic Activity of Monotypic Biofilms by MTT Assay
2.9. Scanning Electron Microscopy (SEM)
2.10. Evaluation of Cytocompatibility with P. paniculata Extract
2.10.1. Preparation of Sample Plates
2.10.2. Evaluation of Metabolic Activity of Fibroblasts (FMM-1) by MTT Assay
2.10.3. Evaluation of Membrane Integrity Using the Crystal Violet Assay on Fibroblasts (FMM-1)
2.10.4. Evaluation of Lysosomal Activity by Neutral Red Assay on Fibroblasts (FMM-1)
2.11. Statistical Analysis
3. Results
3.1. Antimicrobial Inhibitory and Bactericidal Activity of P. paniculata Extracts against Planktonic Microorganisms
3.2. Biomass Density of Monotypic Biofilm after Treatments with P. paniculata Extracts
3.3. Metabolic Activity Reductions of Monotypic Biofilms after Treatments with P. paniculata Extracts
3.4. Observation of the Modifications of Monotype Biofilms by Scanning Electron Microscopy
3.5. Gingival Fibroblast Cell Viability Assayed by MTT, Crystal Violet, and Neutral Red
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Maillard, J.-Y.; Pascoe, M. Disinfectants and Antiseptics: Mechanisms of Action and Resistance. Nat. Rev. Microbiol. 2024, 22, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Kharat, A.S.; Makwana, N.; Nasser, M.; Gayen, S.; Yadav, B.; Kumar, D.; Veeraraghavan, B.; Mercier, C. Dramatic Increase in Antimicrobial Resistance in ESKAPE Clinical Isolates over the 2010–2020 Decade in India. Int. J. Antimicrob. Agents 2024, 63, 107125. [Google Scholar] [CrossRef] [PubMed]
- Brzezińska-Zając, A.; Sycińska-Dziarnowska, M.; Spagnuolo, G.; Szyszka-Sommerfeld, L.; Woźniak, K. Candida Species in Children Undergoing Orthodontic Treatment with Removable Appliances: A Pilot Study. Int. J. Environ. Res. Public Health 2023, 20, 4824. [Google Scholar] [CrossRef] [PubMed]
- Ahmady, L.; Gothwal, M.; Mukkoli, M.M.; Bari, V.K. Antifungal Drug Resistance in Candida: A Special Emphasis on Amphotericin B. APMIS 2024, 132, 291–316. [Google Scholar] [CrossRef] [PubMed]
- Fossen, J.D.; Campbell, J.R.; Gow, S.P.; Erickson, N.; Waldner, C.L. Antimicrobial Resistance in Enterococcus Isolated from Western Canadian Cow-Calf Herds. BMC Vet. Res. 2024, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- WHO. Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Wu, H.; Moser, C.; Wang, H.-Z.; Høiby, N.; Song, Z.-J. Strategies for Combating Bacterial Biofilm Infections. Int. J. Oral. Sci. 2015, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.; Yamada, K.M. Dynamic Cell–Matrix Interactions Modulate Microbial Biofilm and Tissue 3D Microenvironments. Curr. Opin. Cell Biol. 2016, 42, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Lebeaux, D.; Ghigo, J.-M.; Beloin, C. Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward Antibiotics. Microbiol. Mol. Biol. Rev. 2014, 78, 510–543. [Google Scholar] [CrossRef]
- Lima, S.M.D.F.; Sousa, M.G.D.C.; Freire, M.D.S.; Almeida, J.A.D.; Cantuária, A.P.D.C.; Silva, T.A.M.E.; Freitas, C.G.D.; Dias, S.C.; Franco, O.L.; Rezende, T.M.B. Immune Response Profile against Persistent Endodontic Pathogens Candida Albicans and Enterococcus Faecalis In Vitro. J. Endod. 2015, 41, 1061–1065. [Google Scholar] [CrossRef]
- Røder, H.L.; Sørensen, S.J.; Burmølle, M. Studying Bacterial Multispecies Biofilms: Where to Start? Trends Microbiol. 2016, 24, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Malone, M.; Bjarnsholt, T.; McBain, A.J.; James, G.A.; Stoodley, P.; Leaper, D.; Tachi, M.; Schultz, G.; Swanson, T.; Wolcott, R.D. The Prevalence of Biofilms in Chronic Wounds: A Systematic Review and Meta-Analysis of Published Data. J. Wound Care 2017, 26, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liang, E.; Cheng, Y.; Mahmood, T.; Ge, F.; Zhou, K.; Bao, M.; Lv, L.; Li, L.; Yi, J.; et al. Is Combined Medication with Natural Medicine a Promising Therapy for Bacterial Biofilm Infection? Biomed. Pharmacother. 2020, 128, 110184. [Google Scholar] [CrossRef] [PubMed]
- Gebreyohannes, G.; Nyerere, A.; Bii, C.; Sbhatu, D.B. Challenges of Intervention, Treatment, and Antibiotic Resistance of Biofilm-Forming Microorganisms. Heliyon 2019, 5, e02192. [Google Scholar] [CrossRef] [PubMed]
- Farooqui, A.; Khan, A.; Borghetto, I.; Kazmi, S.U.; Rubino, S.; Paglietti, B. Synergistic Antimicrobial Activity of Camellia Sinensis and Juglans Regia against Multidrug-Resistant Bacteria. PLoS ONE 2015, 10, e0118431. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Leguizamón, G.; Fiori, A.; Lagrou, K.; Gaona, M.A.; Ibáñez, M.; Patarroyo, M.A.; Van Dijck, P.; Gómez-López, A. New Echinocandin Susceptibility Patterns for Nosocomial Candida Albicans in Bogotá, Colombia, in Ten Tertiary Care Centres: An Observational Study. BMC Infect. Dis. 2015, 15, 108. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, H.; Wei, S.; Zhou, X.; Xiao, X. Antimicrobial Effects of Chemical Compounds Isolated from Traditional Chinese Herbal Medicine (TCHM) Against Drug-Resistant Bacteria: A Review Paper. Mini Rev. Med. Chem. 2018, 19, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S. Natural Products and Disease Prevention, Relief and Treatment. Nutrients 2022, 14, 2396. [Google Scholar] [CrossRef] [PubMed]
- Chaieb, K.; Kouidhi, B.; Slama, R.B.; Fdhila, K.; Zmantar, T.; Bakhrouf, A. Cytotoxicity, Antibacterial, Antioxidant, and Antibiofilm Properties of Tunisian Juglans Regia Bark Extract. J. Herbs Spices Med. Plants 2013, 19, 168–179. [Google Scholar] [CrossRef]
- Sekita, Y.; Murakami, K.; Yumoto, H.; Hirao, K.; Amoh, T.; Fujiwara, N.; Hirota, K.; Fujii, H.; Matsuo, T.; Miyake, Y.; et al. Antibiofilm and Anti-Inflammatory Activities of Houttuynia Cordata Decoction for Oral Care. Evid. Based Complement. Altern. Med. 2017, 2017, 2850947. [Google Scholar] [CrossRef]
- Choi, H.-A.; Cheong, D.-E.; Lim, H.-D.; Kim, W.-H.; Ham, M.-H.; Oh, M.-H.; Wu, Y.; Shin, H.-J.; Kim, G.-J. Antimicrobial and Anti-Biofilm Activities of the Methanol Extracts of Medicinal Plants against Dental Pathogens Streptococcus Mutans and Candida Albicans. J. Microbiol. Biotechnol. 2017, 27, 1242–1248. [Google Scholar] [CrossRef]
- Carrol, D.H.; Chassagne, F.; Dettweiler, M.; Quave, C.L. Antibacterial Activity of Plant Species Used for Oral Health against Porphyromonas Gingivalis. PLoS ONE 2020, 15, e0239316. [Google Scholar] [CrossRef] [PubMed]
- Domingues, N.; Ramos, L.D.P.; Pereira, L.M.; Do Rosário Estevam Dos Santos, P.B.; Scorzoni, L.; Pereira, T.C.; Abu Hasna, A.; Carvalho, C.A.T.; De Oliveira, L.D. Antimicrobial Action of Four Herbal Plants over Mixed-species Biofilms of Candida Albicans with Four Different Microorganisms. Aust. Endod. J. 2023, 49, 262–271. [Google Scholar] [CrossRef]
- Oliveira, F.D. Pfaffia Paniculata (Martius) Kuntze: O Ginseng-Brasileiro. Rev. Bras. Farm. 1986, 1, 86–92. [Google Scholar] [CrossRef]
- Marchioretto, M.S.; Miotto, S.T.S.; Siqueira, J.C.D. O Gênero Pfaffia Mart. (Amaranthaceae) No Brasil. Hoehnea 2010, 37, 461–511. [Google Scholar] [CrossRef]
- Leal, P.F.; Kfouri, M.B.; Alexandre, F.C.; Fagundes, F.H.R.; Prado, J.M.; Toyama, M.H.; Meireles, M.A.A. Brazilian Ginseng Extraction via LPSE and SFE: Global Yields, Extraction Kinetics, Chemical Composition and Antioxidant Activity. J. Supercrit. Fluids 2010, 54, 38–45. [Google Scholar] [CrossRef]
- Carneiro, C.S.; Costa-Pinto, F.A.; da Silva, A.P.; Pinello, K.C.; da Silva, T.C.; Matsuzaki, P.; Nagamine, M.K.; Górniak, S.L.; Haraguchi, M.; Akisue, G.; et al. Pfaffia paniculata (Brazilian Ginseng) Methanolic Extract Reduces Angiogenesis in Mice. Exp. Toxicol. Pathol. 2007, 58, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Rahamouz-Haghighi, S.; Sharafi, A. Antiproliferative Assay of Suma or Brazilian Ginseng (Hebanthe Eriantha) Methanolic Extract on HCT116 and 4T1 Cancer Cell Lines, in Vitro Toxicity on Artemia Salina Larvae, and Antibacterial Activity. Nat. Prod. Res. 2024, 38, 1850–1854. [Google Scholar] [CrossRef]
- Nakai, S.; Takagi, N.; Miichi, H.; Hayashi, S.; Nishimoto, N.; Takemoto, T.; Kizu, H. Pfaffosides, Nortriterpenoid Saponins, from Pfaffia Paniculata. Phytochemistry 1984, 23, 1703–1705. [Google Scholar] [CrossRef]
- Takemoto, T.; Nishimoto, N.; Nakai, S.; Takagi, N.; Hayashi, S.; Odashima, S.; Wada, Y. Pfaffic Acid, a Novel Nortriterpene from Pfaffia Paniculata Kuntze. Tetrahedron Lett. 1983, 24, 1057–1060. [Google Scholar] [CrossRef]
- Nishimoto, N.; Nakai, S.; Takagi, N.; Hayashi, S.; Takemoto, T.; Odashima, S.; Kizu, H.; Wada, Y. Pfaffosides and Nortriterpenoid Saponins from Pfaffia Paniculata. Phytochemistry 1984, 23, 139–142. [Google Scholar] [CrossRef]
- Shiobara, Y.; Inoue, S.-S.; Kato, K.; Nishiguchi, Y.; Oishi, Y.; Nishimoto, N.; De Oliveira, F.; Akisue, G.; Akisue, M.K.; Hashimoto, G. A Nortriterpenoid, Triterpenoids and Ecdysteroids from Pfaffia Glomerata. Phytochemistry 1993, 32, 1527–1530. [Google Scholar] [CrossRef]
- Rates, S.M.K.; Gosmann, G. Gênero Pfaffia: Aspectos Químicos, Farmacológicos e Implicações Para o Seu Emprego Terapêutico. Rev. Bras. Farm. 2002, 12, 85–93. [Google Scholar] [CrossRef]
- Li, J.; Jadhav, A.; Khan, I. Triterpenoids from Brazilian Ginseng, Pfaffia Paniculata. Planta Med. 2010, 76, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Freitas, C.S.; Baggio, C.H.; Da Silva-Santos, J.E.; Rieck, L.; De Moraes Santos, C.A.; Júnior, C.C.; Ming, L.C.; Garcia Cortez, D.A.; Marques, M.C.A. Involvement of Nitric Oxide in the Gastroprotective Effects of an Aqueous Extract of Pfaffia Glomerata (Spreng) Pedersen, Amaranthaceae, in Rats. Life Sci. 2004, 74, 1167–1179. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.V.N.; De Paula Souza, K.; Rehder, V.L.G.; Vilela, G.F.; Montanari Júnior, Í.; Figueira, G.M.; Rath, S. Development of an Analytical Method for the Quantification of Pfaffic Acid in Brazilian Ginseng (Hebanthe Eriantha). J. Pharm. Biomed. Anal. 2013, 77, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Felipe, D.; Brambilla, L.; Porto, C.; Pilau, E.; Cortez, D. Phytochemical Analysis of Pfaffia Glomerata Inflorescences by LC-ESI-MS/MS. Molecules 2014, 19, 15720–15734. [Google Scholar] [CrossRef] [PubMed]
- M07-A10; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard—Tenth Edition. Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2015.
- M27-A3; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeats: Approved Standard—Third Edition. CLSI: Wayne, PA, USA, 2008.
- Marcos-Zambrano, L.J.; Escribano, P.; Bouza, E.; Guinea, J. Production of Biofilm by Candida and Non-Candida Spp. Isolates Causing Fungemia: Comparison of Biomass Production and Metabolic Activity and Development of Cut-off Points. Int. J. Med. Microbiol. 2014, 304, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Paula-Ramos, L.; Da Rocha Santos, C.E.; Camargo Reis Mello, D.; Nishiama Theodoro, L.; De Oliveira, F.E.; Back Brito, G.N.; Junqueira, J.C.; Jorge, A.O.C.; De Oliveira, L.D. Klebsiella Pneumoniae Planktonic and Biofilm Reduction by Different Plant Extracts: In Vitro Study. Sci. World J. 2016, 2016, 3521413. [Google Scholar] [CrossRef]
- Miranda, D.G.; Carrouel, F.; Silva, T.C.A.; Rozzatto, M.C.; Hasna, A.A.; Santos, C.E.R.; Morais, F.V.; De Oliveira, L.D.; De Paula Ramos, L. New Insights into Cutaneous Asepsis: Synergism between Pfaffia and Rosemary Extracts. Antibiotics 2024, 13, 226. [Google Scholar] [CrossRef]
- Costa, A.C.B.P.; Pereira, C.A.; Freire, F.; Junqueira, J.C.; Jorge, A.O.C. Methods for Obtaining Reliable and Reproducible Results in Studies of Candida Biofilms Formed in Vitro. Mycoses 2013, 56, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.V.; Prado, C.G.; Carvalho, R.R.; Dias, K.S.T.; Dias, A.L.T. Candida Albicans and Non-C. Albicans Candida Species: Comparison of Biofilm Production and Metabolic Activity in Biofilms, and Putative Virulence Properties of Isolates from Hospital Environments and Infections. Mycopathologia 2013, 175, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, J.P.; Osbourn, A.E. Fungal Resistance to Plant Antibiotics as a Mechanism of Pathogenesis. Microbiol. Mol. Biol. Rev. 1999, 63, 708–724. [Google Scholar] [CrossRef] [PubMed]
- Pham, Q.D.; Topgaard, D.; Sparr, E. Cyclic and Linear Monoterpenes in Phospholipid Membranes: Phase Behavior, Bilayer Structure, and Molecular Dynamics. Langmuir 2015, 31, 11067–11077. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.A.R.A.; Tanimoto, A.; Quaglio, A.E.V.; Almeida, L.D.; Severi, J.A.; Di Stasi, L.C. Anti-Inflammatory Effects of Brazilian Ginseng (Pfaffia Paniculata) on TNBS-Induced Intestinal Inflammation: Experimental Evidence. Int. Immunopharmacol. 2015, 28, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Coêlho, M.L.; Ferreira, J.H.L.; De Siqueira Júnior, J.P.; Kaatz, G.W.; Barreto, H.M.; De Carvalho Melo Cavalcante, A.A. Inhibition of the NorA Multi-Drug Transporter by Oxygenated Monoterpenes. Microb. Pathog. 2016, 99, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.N.; Trentin, D.D.S.; Zimmer, K.R.; Treter, J.; Brandelli, C.L.C.; Frasson, A.P.; Tasca, T.; Silva, A.G.D.; Silva, M.V.D.; Macedo, A.J. Anti-Infective Effects of Brazilian Caatinga Plants against Pathogenic Bacterial Biofilm Formation. Pharm. Biol. 2015, 53, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Oniyangi, O.; Cohall, D.H. Phytomedicines (Medicines Derived from Plants) for Sickle Cell Disease. Cochrane Database Syst. Rev. 2018, 2018, CD004448. [Google Scholar] [CrossRef] [PubMed]
- Eberlin, S.; Del Carmen Velazquez Pereda, M.; De Campos Dieamant, G.; Nogueira, C.; Werka, R.M.; De Souza Queiroz, M.L. Effects of a Brazilian Herbal Compound as a Cosmetic Eyecare for Periorbital Hyperchromia (“Dark Circles”). J. Cosmet. Dermatol. 2009, 8, 127–135. [Google Scholar] [CrossRef]
- Sharma, S.; Mohler, J.; Mahajan, S.D.; Schwartz, S.A.; Bruggemann, L.; Aalinkeel, R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023, 11, 1614. [Google Scholar] [CrossRef]
Pfaffia paniculata Glycolic Extract | ||
---|---|---|
Microorganisms | MIC (mg/mL) | MMC (mg/mL) |
C. albicans | 0.24 | 0.48 |
C. dubliniensis | 0.24 | 0.48 |
C. glabrata | 0.24 | 0.48 |
C. guilhermondii | 0.24 | 0.48 |
C. krusei | 0.48 | 0.48 |
C. tropicalis | 0.24 | 0.24 |
E. faecalis | 0.12 | Absent |
P. aeruginosa | 0.24 | 0.24 |
S. aureus | 0.48 | Absent |
S. epidermidis | 0.12 | Absent |
S. mutans | 0.24 | 0.48 |
Pfaffia paniculata Glycolic Extract | Nystatin | Chlorhexidine | |||
---|---|---|---|---|---|
Microorganisms | 0.48 mg/mL | 0.96 mg/mL | 1.93 mg/mL | 100,000 units/mL | 0.12% |
C. albicans | 40.50 | 41.50 | 45.60 | 34.39 | |
C. dubliniensis | 3.42 | 11.30 | 23.80 | 16.02 | |
C. glabrata | 19.80 | 25.25 | 26.06 | 21.80 | |
C. guilhermondii | 26.70 | 34.70 | 40.00 | 36.37 | |
C. krusei | 35.90 | 33.20 | 37.53 | 27.28 | |
C. tropicalis | 18.64 | 27.47 | 34.27 | 27.08 | |
P. aeruginosa | 8.30 | 17.69 | 23.53 | 22.61 | |
S. mutans | 14.30 | 15.63 | 14.72 | 18.18 |
Pfaffia paniculata Glycolic Extract | Nystatin | Chlorhexidine | |||
---|---|---|---|---|---|
Microorganisms | 0.48 mg/mL | 0.96 mg/mL | 1.93 mg/mL | 100,000 units/mL | 0.12% |
C. albicans | 65.90 | 74.30 | 77.40 | 63.34 | |
C. dubliniensis | 6.90 | 6.60 | 14.50 | 5.69 | |
C. glabrata | 66.40 | 70.40 | 70.10 | 63.75 | |
C. guilhermondii | 18.60 | 30.20 | 55.90 | 40.63 | |
C. krusei | 29.50 | 12.30 | 16.90 | 29.18 | |
C. tropicalis | 36.80 | 56.00 | 61.60 | 36.41 | |
P. aeruginosa | 0.11 | 33.80 | 78.60 | 51.58 | |
S. mutans | 23.2 | 15.4 | 20.30 | 20.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, D.G.; Ramos, L.d.P.; Attik, N.; Pereira, T.C.; Oliveira, L.D.d.; Marcucci, M.C.; Rodrigues, F.P.; Back Brito, G.N.; Carrouel, F. Pfaffia paniculata Extract, a Potential Antimicrobial Agent against Candida spp., Pseudomonas aeruginosa, and Streptococcus mutans Biofilms. Microorganisms 2024, 12, 1165. https://doi.org/10.3390/microorganisms12061165
Miranda DG, Ramos LdP, Attik N, Pereira TC, Oliveira LDd, Marcucci MC, Rodrigues FP, Back Brito GN, Carrouel F. Pfaffia paniculata Extract, a Potential Antimicrobial Agent against Candida spp., Pseudomonas aeruginosa, and Streptococcus mutans Biofilms. Microorganisms. 2024; 12(6):1165. https://doi.org/10.3390/microorganisms12061165
Chicago/Turabian StyleMiranda, Diego Garcia, Lucas de Paula Ramos, Nina Attik, Thaís Cristine Pereira, Luciane Dias de Oliveira, Maria Cristina Marcucci, Flavia Pires Rodrigues, Graziella Nuernberg Back Brito, and Florence Carrouel. 2024. "Pfaffia paniculata Extract, a Potential Antimicrobial Agent against Candida spp., Pseudomonas aeruginosa, and Streptococcus mutans Biofilms" Microorganisms 12, no. 6: 1165. https://doi.org/10.3390/microorganisms12061165
APA StyleMiranda, D. G., Ramos, L. d. P., Attik, N., Pereira, T. C., Oliveira, L. D. d., Marcucci, M. C., Rodrigues, F. P., Back Brito, G. N., & Carrouel, F. (2024). Pfaffia paniculata Extract, a Potential Antimicrobial Agent against Candida spp., Pseudomonas aeruginosa, and Streptococcus mutans Biofilms. Microorganisms, 12(6), 1165. https://doi.org/10.3390/microorganisms12061165