Production of Esters in Escherichia coli Using Citrate Synthase Variants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains
2.2. Plasmid Construction
2.3. Media
2.4. Shake Flask Experiments
2.5. Bioreactor Experiments
2.6. Analytical Methods
3. Results
3.1. Ester Production
3.2. Citrate Synthase Variants
3.3. Effect of Casamino Acids
3.4. Ester Production in Batch Processes
4. Discussion
GltA Variants
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saerens, S.M.; Delvaux, F.R.; Verstrepen, K.J.; Thevelein, J.M. Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb. Biotechnol. 2010, 3, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Van Laere, S.D.; Saerens, S.M.; Verstrepen, K.J.; Van Dijck, P.; Thevelein, J.M.; Delvaux, F.R. Flavour formation in fungi: Characterisation of KlAtf, the Kluyveromyces lactis orthologue of the Saccharomyces cerevisiae alcohol acetyltransferases Atf1 and Atf2. Appl. Microbiol. Biotechnol. 2008, 78, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Löser, C.; Urit, T.; Bley, T. Perspectives for the biotechnological production of ethyl acetate by yeasts. Appl. Microbiol. Biotechnol. 2014, 98, 5397–5415. [Google Scholar] [CrossRef]
- Donate, P.M. Green synthesis from biomass. Chem. Biol. Technol. Agricult. 2014, 1, 4. [Google Scholar] [CrossRef]
- Kruis, A.J.; Bohnenkamp, A.C.; Patinios, C.; van Nuland, Y.M.; Levisson, M.; Mars, A.E.; van den Berg, C.; Kengen, S.W.M.; Weusthuis, R.A. Microbial production of short and medium chain esters: Enzymes, pathways, and applications. Biotechnol. Adv. 2019, 37, 107407. [Google Scholar] [CrossRef] [PubMed]
- Flamholz, A.; Noor, E.; Bar-Even, A.; Milo, R. eQuilibrator—The biochemical thermodynamics calculator. Nucleic Acids Res. 2012, 40, D770–D775. [Google Scholar] [CrossRef] [PubMed]
- Nancolas, B.; Bull, I.D.; Stenner, R.; Dufour, V.; Curnow, P. Saccharomyces cerevisiae Atf1p is an alcohol acetyltransferase and a thioesterase in vitro. Yeast 2017, 34, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Trinh, C.T. Microbial biosynthesis of lactate esters. Biotechnol. Biofuels 2019, 12, 226. [Google Scholar] [CrossRef] [PubMed]
- Vadali, R.V.; Horton, C.E.; Rudolph, F.B.; Bennett, G.N.; San, K.-Y. Production of isoamyl acetate in ackA-pta and/or ldh mutants of Escherichia coli with overexpression of yeast ATF2. Appl. Microbiol. Biotechnol. 2004, 63, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, G.M.; Tashiro, Y.; Atsumi, S. Expanding ester biosynthesis in Escherichia coli. Nat. Chem. Biol. 2014, 10, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.-S.; Xiong, M.; Zhang, K. Engineered biosynthesis of medium-chain esters in Escherichia coli. Metabol. Eng. 2015, 27, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Ku, J.T.; Chen, A.Y.; Lan, E.I. Metabolic engineering of Escherichia coli for efficient biosynthesis of butyl acetate. Microb. Cell Fact. 2022, 21, 28. [Google Scholar] [CrossRef] [PubMed]
- Malcorps, P.; Dufour, J.-P. Short-chain and medium-chain aliphatic-ester synthesis in Saccharomyces cerevisiae. Eur. J. Biochem. 1992, 210, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Minetoki, T. The purification, properties, and internal peptide sequences of alcohol acetyltransferase isolated from Saccharomyces cerevisiae Kyokai No. 7. Biosci. Biotechnol. Biochem. 1993, 7, 2095–2099. [Google Scholar] [CrossRef]
- Takamura, Y.; Nomura, G. Changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism of Escherichia coli K12. J. Gen. Microbiol. 1988, 134, 2249–2253. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.-Q.; Fu, X.-M.; Dong, S.-S.; Xiao, D.-G.; Dong, J. Modulating acetate ester and higher alcohol production in Saccharomyces cerevisiae through the cofactor engineering. J. Industr. Microbiol. Biotechnol. 2019, 46, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Ku, J.T.; Chen, A.Y.; Lan, E.I. Metabolic engineering design strategies for increasing acetyl-CoA flux. Metabolites 2020, 10, 166. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; Yang, C.; Oshima, T.; Mori, H.; Shimizu, K. Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures. Appl. Environ. Microbiol. 2004, 70, 2354–2366. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Eiteman, M.A. Production of citramalate by metabolically engineered Escherichia coli. Biotechnol. Bioeng. 2016, 113, 2670–2675. [Google Scholar] [CrossRef] [PubMed]
- Satowa, D.; Fujiwara, R.; Uchio, S.; Nakano, M.; Otomo, C.; Hirata, Y.; Matsumoto, T.; Noda, S.; Tanaka, T.; Kondo, A. Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply. Biotechnol. Bioeng. 2020, 117, 2153–2164. [Google Scholar] [CrossRef]
- Tovilla-Coutiño, D.B.; Momany, C.; Eiteman, M.A. Engineered citrate synthase alters acetate accumulation in Escherichia coli. Metabol. Eng. 2020, 61, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Tovilla-Coutiño, D.B.; Eiteman, M.A. Engineered citrate synthase improves citramalic acid generation in Escherichia coli. Biotechnol. Bioeng. 2020, 117, 2781–2790. [Google Scholar] [CrossRef] [PubMed]
- Rajpurohit, H.; Eiteman, M.A. Citrate synthase variants improve yield of acetyl-CoA derived 3-hydroxybutyrate in Escherichia coli. Microb. Cell Fact. 2024, 23, 173. [Google Scholar] [CrossRef]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Nat. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef] [PubMed]
- Cherepanov, P.P.; Wackernagel, W. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 1995, 158, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Amman, E.; Ochs, B.; Abel, K.-J. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 1988, 69, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Eiteman, M.A.; Chastain, M.J. Optimization of the ion-exchange analysis of organic acids from fermentation. Anal. Chim. Acta 1997, 338, 69–75. [Google Scholar] [CrossRef]
- Chacón, M.G.; Marriott, A.; Kendrick, E.G.; Styles, M.Q.; Leak, D.J. Esterification of geraniol as a strategy for increasing product titre and specificity in engineered Escherichia coli. Microb. Cell Fact. 2019, 18, 105. [Google Scholar] [CrossRef] [PubMed]
- Layton, D.S.; Trinh, C.T. Engineering modular ester fermentative pathways in Escherichia coli. Metabol. Eng. 2014, 26, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Manderson, D.; Dempster, R.; Chisti, Y. A recombinant vaccine against hydatidosis: Production of the antigen in Escherichia coli. J. Ind. Microbiol. Biotechnol. 2006, 33, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Chauhan, A.S.; Shah, R.L.; Gupta, J.A.; Rathore, A.S. Amino acid supplementation for enhancing recombinant protein production in E. coli. Biotechnol. Bioeng. 2020, 117, 2420–2433. [Google Scholar] [CrossRef] [PubMed]
- Lawford, H.G.; Rousseau, J.D. Studies on nutrient requirements and cost-effective supplements for ethanol production by recombinant E. coli. In ABAB Symposium, Proceedings of the Seventeenth Symposium on Biotechnology for Fuels and Chemicals, Vali, CO, USA, 7–11 May 1995; Humana Press: Totowa, NJ, USA, 1996; Volume 57/58, pp. 307–327. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.S.; Donald, L.J.; Hosfield, D.J.; Duckworth, H.W. Active site mutants of Escherichia coli citrate synthase. J. Biol. Chem. 1994, 269, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Horton, C.E.; Bennett, G.N. Ester production in E. coli and C. acetobutylicum. Enzym. Microb. Technol. 2006, 38, 937–943. [Google Scholar] [CrossRef]
- Bohnenkamp, A.C.; Kruis, A.J.; Mars, A.E.; Sijffels, R.H.; van der Oost, J.; Kengen, S.W.M.; Weusthuis, R.A. Multilevel optimization of anaerobic ethyl acetate production in engineered Escherichia coli. Biotechnol. Biofuels 2020, 13, 65. [Google Scholar] [CrossRef]
- Wilbanks, B.; Trinh, C.T. Comprehensive characterization of toxicity of fermentative metabolites on microbial growth. Biotechnol. Biofuels 2017, 10, 262. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Vadlani, P.V.; Harrison, M.L.; Bennett, G.N.; San, K.Y. Aerobic production of isoamyl acetate by overexpression of the yeast alcohol acetyl-transferases AFT1 and AFT2 in Escherichia coli and using low-cost fermentation ingredients. Bioproc. Biosyst. Eng. 2008, 31, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Saerens, S.M.; Delvaux, F.; Verstrepen, K.J.; Van Dijck, P.; Thevelein, J.M.; Delvaux, F.R. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl. Environ. Microbiol. 2008, 74, 454–461. [Google Scholar] [CrossRef]
- Nolan, R.A. Amino acids and growth factors in vitamin-free casamino acids. Mycologia 1971, 63, 1231–1234. [Google Scholar] [CrossRef]
- Soma, K.; Tsuruno, K.; Wada, M.; Yokota, A.; Hanai, T. Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch. Metabol. Eng. 2014, 23, 175–184. [Google Scholar] [CrossRef]
Designation | Genotype |
---|---|
ATCC 9637 | Wild-type E. coli W |
MEC1365 | E. coli W ΔldhA ΔpoxB Δpta-ackA |
MEC1380 | E. coli W ΔldhA ΔpoxB Δpta-ackA ΔgltA::Kan |
MEC1381 | E. coli W ΔldhA ΔpoxB Δpta-ackA ΔgltA |
MEC1394 | E. coli W ΔldhA ΔpoxB Δpta-ackA ΔgltA::gltA[A267T] |
MEC1410 | E. coli W ΔldhA ΔpoxB Δpta-ackA ΔgltA::gltA[F383M] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shipmon, J.C.; Rathinasabapathi, P.; Broich, M.L., II; Hemansi; Eiteman, M.A. Production of Esters in Escherichia coli Using Citrate Synthase Variants. Microorganisms 2024, 12, 1338. https://doi.org/10.3390/microorganisms12071338
Shipmon JC, Rathinasabapathi P, Broich ML II, Hemansi, Eiteman MA. Production of Esters in Escherichia coli Using Citrate Synthase Variants. Microorganisms. 2024; 12(7):1338. https://doi.org/10.3390/microorganisms12071338
Chicago/Turabian StyleShipmon, Jacoby C., Pasupathi Rathinasabapathi, Michael L. Broich, II, Hemansi, and Mark A. Eiteman. 2024. "Production of Esters in Escherichia coli Using Citrate Synthase Variants" Microorganisms 12, no. 7: 1338. https://doi.org/10.3390/microorganisms12071338
APA StyleShipmon, J. C., Rathinasabapathi, P., Broich, M. L., II, Hemansi, & Eiteman, M. A. (2024). Production of Esters in Escherichia coli Using Citrate Synthase Variants. Microorganisms, 12(7), 1338. https://doi.org/10.3390/microorganisms12071338