Gut Microbial Adaptation to Varied Altitudes and Temperatures in Tibetan Plateau Yaks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction and High-Throughput Sequencing
2.3. Bioinformatics and Functional Analysis
2.4. Statistical Analysis
3. Results
3.1. Genomic Data Sequencing and Analysis
3.2. Gut Microbial Diversity Analysis
3.3. Gut Bacterial Composition Analysis
3.4. Gut Fungal Composition Analysis
3.5. Functional Predictive Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Feng, S.; Li, Y.; Zhang, C.; Chao, G.; Zhang, S. Gut microbiota and intestinal immunity-A crosstalk in irritable bowel syndrome. Immunology 2024, 172, 1–20. [Google Scholar] [CrossRef]
- Nazia, M.; Wu, Y.; Yin, J.; Lu, J.; Zhou, L.; Xiang, X. Comparison of the gut fungal communities among Hooded crane (Grus monacha), Greater white-fronted goose (Anser albifrons), and Bean goose (Anser fabalis) at Shengjin Lake, China. Glob. Ecol. Conserv. 2024, 49, e02767. [Google Scholar]
- Lui, J.C. Gut microbiota in regulation of childhood bone growth. Exp. Physiol. 2023, 109, 662–671. [Google Scholar] [CrossRef]
- Qiu, X.; Zhang, F.; Yang, X.; Wu, N.; Jiang, W.; Li, X.; Li, X.; Liu, Y. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis. Sci. Rep. 2015, 5, 10416. [Google Scholar] [CrossRef]
- Ost, K.S.; Round, J.L. Commensal fungi in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 723–734. [Google Scholar] [CrossRef]
- Nenciarini, S.; Renzi, S.; di Paola, M.; Meriggi, N.; Cavalieri, D. Ascomycetes yeasts: The hidden part of human microbiome. Wires Mech. Dis. 2024, 16, e1641. [Google Scholar] [CrossRef]
- You, N.; Zhuo, L.; Zhou, J.; Song, Y.; Shi, J. The Role of Intestinal Fungi and Its Metabolites in Chronic Liver Diseases. Gut Liver 2020, 14, 291–296. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, X.; Xie, Y.; Wu, C. Modulative effect of Physalis alkekengi on both gut bacterial and fungal micro-ecosystem. Chin. Herb. Med. 2023, 15, 564–573. [Google Scholar] [CrossRef]
- Ferrão, M.M.; Cerutti, M.G.; Stuart, C.D.M.; Perpétua, D.S.S.C.; Juliano, P.; Rangel, B.R.; Tiago, V.; Luiz, V.F.S. Role of gut microbiota in infectious and inflammatory diseases. Front. Microbiol. 2023, 14, 1098386. [Google Scholar]
- Shahila Ismail, K.I.; Kumar, C.V.S.; Aneesha, U.; Syama, P.S.; Sajini, K.P. Comparative analysis of gut bacteria of silkworm Bombyx mori L. on exposure to temperature through 16S rRNA high throughput metagenomic sequencing. J. Invertebr. Pathol. 2023, 201, 107992. [Google Scholar] [CrossRef]
- Jernfors, T.; Lavrinienko, A.; Vareniuk, I.; Landberg, R.; Fristedt, R.; Tkachenko, O.; Taskinen, S.; Tukalenko, E.; Mappes, T.; Watts, P.C. Association between gut health and gut microbiota in a polluted environment. Sci. Total Environ. 2024, 914, 169804. [Google Scholar] [CrossRef] [PubMed]
- Irene, M.; Giovanni, M. Gut microbiota analysis in inflammatory bowel disease: Novel findings from old data. United Eur. Gastroenterol. J. 2023, 12, 7–8. [Google Scholar]
- Schneider, K.M.; Elfers, C.; Ghallab, A.; Schneider, C.V.; Galvez, E.J.C.; Mohs, A.; Gui, W.; Candels, L.S.; Wirtz, T.H.; Zuehlke, S.; et al. Intestinal dysbiosis amplifies acetaminophen induced acute liver injury. Cell. Mol. Gastroenterol. Hepatol. 2020, 11, 909–933. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Cao, J.W.; Lv, H.L.; Geng, Y.; Guo, M.Y. Polyethylene microplastics induced gut microbiota dysbiosis leading to liver injury via the TLR2/NF-κB/NLRP3 pathway in mice. Sci. Total Environ. 2024, 917, 170518. [Google Scholar] [CrossRef]
- Wang, N.; Gao, X.; Huo, Y.; Li, Y.; Cheng, F.; Zhang, Z. Lead exposure aggravates glucose metabolism disorders through gut microbiota dysbiosis and intestinal barrier damage in high-fat diet-fed mice. J. Sci. Food Agric. 2023, 104, 3057–3068. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Ma, Y.; Deng, X.; Li, A.; Li, X.; Kong, X.; Liu, Y.; Liu, X.; Guo, K.; Yang, Y.; et al. Intestinal dysbiosis exacerbates susceptibility to the anti-NMDA receptor encephalitis-like phenotype by changing blood brain barrier permeability and immune homeostasis. Brain Behav. Immun. 2024, 116, 34–51. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, X.; Wan, R.; Cheng, R.; Zhang, G.; Zhang, Q.; Yu, H.; Wei, Q. Single-cell transcriptomic survey of cell diversity and functional changes in yak hearts at different altitude. Proteomics 2023, 23, 2200345. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Xia, B.; Wen, W.; An, T.; Luo, X.; Sun, Q. A metagenome-wide association study of gut microbiota in the yak. In Proceedings of the International Symposium on Microbiology in the Omics Era, Chongqing, China, 27–30 June 2014; p. 1. [Google Scholar]
- Zhao, H.; Wang, N.; Cheng, H.; Wang, Y.; Liu, X.; Qiao, B.; Zhao, L. Mapping conservation priorities for wild yak (Bos mutus) habitats on the Tibetan Plateau, China. Sci. Total Environ. 2024, 914, 169803. [Google Scholar] [CrossRef]
- Cai, S.; Li, J.; Hu, F.Z.; Zhang, K.; Luo, Y.; Janto, B.; Boissy, R.; Ehrlich, G.; Dong, X. Cellulosilyticum ruminicola, a newly described rumen bacterium that possesses redundant fibrolytic-protein-encoding genes and degrades lignocellulose with multiple carbohydrate- borne fibrolytic enzymes. Appl. Environ. Microbiol. 2010, 76, 3818–3824. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, Y.; Dong, Q.; Yang, X.; Liu, Y.; Liu, W.; Shi, G.; Liu, W.; Zhang, C.; Yu, Y. Symbiotic diazotrophs in response to yak grazing and Tibetan sheep grazing in Qinghai-Tibetan plateau grassland soils. Front. Microbiol. 2023, 14, 1257521. [Google Scholar] [CrossRef]
- Wu, D.; Vinitchaikul, P.; Deng, M.; Zhang, G.; Sun, L.; Wang, H.; Gou, X.; Mao, H.; Yang, S. Exploration of the effects of altitude change on bacteria and fungi in the rumen of yak (Bos grunniens). Arch. Microbiol. 2021, 203, 835–846. [Google Scholar] [CrossRef]
- Hu, B.; Wang, J.; Li, Y.; Ge, J.; Pan, J.; Li, G.; He, Y.; Zhong, H.; Wang, B.; Huang, Y.; et al. Gut microbiota facilitates adaptation of the plateau zokor (Myospalax baileyi) to the plateau living environment. Front. Microbiol. 2023, 14, 1136845. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Su, J.; Li, F.; Tian, X.; Liu, Z.; Ding, G.; Bai, J.; Li, Z.; Ma, Z.; Peppelenbosch, M.P. Yak Gut Microbiota: A Systematic Review and Meta-Analysis. Front. Vet. Sci. 2022, 9, 889594. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Liu, B.; Li, F.; He, Y.; Wang, L.; Fakhar-E-Alam Kulyar, M.; Li, H.; Fu, Y.; Zhu, H.; Wang, Y.; et al. Integrated Bacterial and Fungal Diversity Analysis Reveals the Gut Microbial Alterations in Diarrheic Giraffes. Front. Microbiol. 2021, 12, 712092. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Xiang, X.; Fan, J.; Zhang, B. Effect of altitude on the diversity of gut microbiota of yaks grazing on the Qinghai-Tibet Plateau. Microbiol. China 2022, 49, 620–634. [Google Scholar] [CrossRef]
- Pan, C.; Zhang, T.; Li, H.; Wang, Y.; Zhao, W. Research Progress of the Influencing Factors of Yak Intestinal Microorganism. Chin. J. Anim. Sci. 2023, 59, 60–65. [Google Scholar] [CrossRef]
- Guo, X.Y.; Sha, Y.Z.; Pu, X.N.; Lü, W.B.; Liu, X.; Hu, J.; Luo, Y.; Wang, J.; Li, S.; Zhao, Z. Research Progress on the Effect of Ambient Temperature on Intestinal Microflora of Animals. Acta Vet. Zootech. Sin. 2022, 53, 2858–2866. [Google Scholar]
- Zeineldin, M.; Aldridge, B.; Lowe, J. Dysbiosis of the fecal microbiota in feedlot cattle with hemorrhagic diarrhea. Microb. Pathog. 2018, 115, 123–130. [Google Scholar] [CrossRef]
- Shah, T.; Ding, L.; Ud Din, A.; Hassan, F.U.; Ahmad, A.A.; Wei, H.; Wang, X.; Yan, Q.; Ishaq, M.; Ali, N.; et al. Differential Effects of Natural Grazing and Feedlot Feeding on Yak Fecal Microbiota. Front. Vet. Sci. 2022, 9, 791245. [Google Scholar] [CrossRef]
- Salamat, S.; Tabandeh, M.R.; Jahan-Mihan, A.; Mansoori, A. The effect of supplementation with a multi-species synbiotic on serum lipid profile, abundance of beneficial gut bacteria and firmicutes to bacteroidetes ratio in patients with dyslipidemia; a randomized, double-blind, placebo-controlled, clinical trial. Pharmanutrition 2024, 27, 100367. [Google Scholar] [CrossRef]
- Brown, E.L.; Essigmann, H.T.; Hoffman, K.L.; Petrosino, J.; Jun, G.; Brown, S.A.; Aguilar, D.; Hanis, C.L. C-Reactive Protein Levels Correlate with Measures of Dysglycemia and Gut Microbiome Profiles. Curr. Microbiol. 2023, 81, 45. [Google Scholar] [CrossRef] [PubMed]
- Kaakoush, N.O. Insights into the role of Erysipelotrichaceae in the human host. Front. Cell. Infect. Microbiol. 2015, 5, 84. [Google Scholar] [CrossRef] [PubMed]
- Hamed, N.; Abolghasem, D.; Mojtaba, M.; Mohammad, R.K. Marine Actinomycetes with Probiotic Potential and Bioactivity against Multidrug-resistant Bacteria. Int. J. Mol. Cell. Med. 2018, 7, 44–52. [Google Scholar]
- Binda, C.; Lopetuso, L.R.; Rizzatti, G.; Gibiino, G.; Cennamo, V.; Gasbarrini, A. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis. 2018, 50, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.C.; Purvis, H.T.; Najar, F.Z.; Sukharnikov, L.O.; Krehbiel, C.R.; Nagaraja, T.G.; Roe, B.A.; Desilva, U. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol. 2010, 76, 7482–7490. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Chen, D.; Fu, Y.; Shi, W.; Provin, T.; Han, A.; van Shaik, E.; Samuel, J.E.; de Figueiredo, P.; Zou, A.; et al. Direct cell extraction from fresh and stored soil samples: Impact on microbial viability and community compositions. Soil Biol. Biochem. 2021, 155, 108178. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Bayaerta; Niu, K. Biodiversity in mosaic communities: Soil microbial diversity associates with plant functional groups relating to soil available phosphorus in Tibetan alpine meadow. Eur. J. Soil Biol. 2023, 116, 103479. [Google Scholar] [CrossRef]
- Guo, S.H.; Yu, Y.T.; Wan, J.H.; Mao, Y.N.; Zhang, H.D.; Zhang, J.S.; Tian, X.Y.; Zhao, Q.M. Progress in research on the relationship between Proteobacteria and the imbalance of mammalian colonic intestinal flora. Chin. J. Microecol. 2022, 34, 479–484. [Google Scholar] [CrossRef]
- Shin, N.; Whon, T.W.; Bae, J. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef]
- Lv, H.; Teng, Q.; Chen, J.; Peng, L.; Ren, Z.; Ma, L.; Yang, W.; Yu, B.; Wu, Z.; Wan, C. Probiotic potential of a novel exopolysaccharide produced by Bifidobacterium animalis subsp. Lactis SF. Lwt 2024, 193, 115764. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, X.; Tian, X.; Zhao, M.; Mu, Y.; Yi, H.; Zhang, Z.; Zhang, L. Bifidobacterium improves oestrogen-deficiency-induced osteoporosis in mice by modulating intestinal immunity. Food Funct. 2024, 15, 1840–1851. [Google Scholar] [CrossRef]
- Pokusaeva, K.; Fitzgerald, G.F.; van Sinderen, D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 2011, 6, 285–306. [Google Scholar] [CrossRef]
- Singh, S.B.; Carroll-Portillo, A.; Lin, H.C. Desulfovibrio in the Gut: The Enemy within? Microorganisms 2023, 11, 1772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ding, H.; Yu, X.; Wang, Q.; Li, X.; Zhang, R.; Feng, J. Plasma non-transferrin-bound iron uptake by the small intestine leads to intestinal injury and intestinal flora dysbiosis in an iron overload mouse model and Caco-2 cells. Sci. China Life Sci. 2023, 66, 2041–2055. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.S.; Khadka, B. Evidence for the presence of key chlorophyll-biosynthesis-related proteins in the genus Rubrobacter (Phylum Actinobacteria) and its implications for the evolution and origin of photosynthesis. Photosynth. Res. 2016, 127, 201–218. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, F.B. Role of Williamsia and Segniliparus in human infections with the approach taxonomy, cultivation, and identification methods. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 10. [Google Scholar]
- Keikha, M. Williamsia spp. are emerging opportunistic bacteria. New Microbes New Infect. 2018, 21, 88–89. [Google Scholar] [CrossRef]
- Schumann, P.; Zhang, D.C.; França, L.; Margesin, R. Marmoricola silvestris sp. nov., a novel actinobacterium isolated from alpine forest soil. Int. J. Syst. Evol. Microbiol. 2018, 68, 1313–1318. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Zhang, S.; Zhong, Q.; Gong, G.; Wang, G.; Guo, X.; Xu, X. Effects of soil chemical properties and fractions of Pb, Cd, and Zn on bacterial and fungal communities. Sci. Total Environ. 2020, 715, 136904. [Google Scholar] [CrossRef]
- Chen, S.; Qi, G.; Ma, G.; Zhao, X. Biochar amendment controlled bacterial wilt through changing soil chemical properties and microbial community. Microbiol. Res. 2020, 231, 126373. [Google Scholar] [CrossRef]
- Escobar-Chavarría, O.; Benitez-Guzman, A.; Jiménez-Vázquez, I.; Carrisoza-Urbina, J.; Arriaga-Pizano, L.; Huerta-Yépez, S.; Baay-Guzmán, G.; Gutiérrez-Pabello, J.A. Necrotic Cell Death and Inflammasome NLRP3 Activity in Mycobacterium bovis-Infected Bovine Macrophages. Cells 2023, 12, 2079. [Google Scholar] [CrossRef]
- Kumar, M.H.; Jyoti, M.U.; Sriprakash, M.; Kumar, S.P.; Kumar, M.N. Alteration of gut microbiota composition and function of Indian major carp, rohu (Labeo rohita) infected with Argulus siamensis. Microb. Pathog. 2022, 164, 105420. [Google Scholar]
- Ankjaer, B.F.; Jensen, F.H.; Kobel, C.M.; Greve, T. Short communication: First case of bacteraemia caused by Dielma fastidiosa in a patient hospitalized with diverticulitis. Apmis Acta Pathol. Microbiol. Immunol. Scand. 2024, 132, 130–133. [Google Scholar] [CrossRef]
- Ghosh, K.; Harikrishnan, R.; Mukhopadhyay, A.; Ringø, E. Fungi and Actinobacteria: Alternative Probiotics for Sustainable Aquaculture. Fishes 2023, 8, 575. [Google Scholar] [CrossRef]
- Shen, Y.J.; Ren, C.L.; Teng, Z.; Chen, X.Y.; Li, X.Y. Analysis of Skin and Gut Microbiota in the Rana chensinensis Tadpoles. Chin. J. Zool. 2021, 56, 417–431. [Google Scholar] [CrossRef]
- Cai, X.; Liu, Y.; Xie, Z.; Cen, Y.; Liu, R. Research advances in mutualistic symbiotic microbes diversities. Microbiol. China 2020, 47, 3899–3917. [Google Scholar] [CrossRef]
- Lin, L.; Trabi, E.B.; Xie, F.; Mao, S. Comparison of the fermentation and bacterial community in the colon of Hu sheep fed a low-grain, non-pelleted, or pelleted high-grain diet. Appl. Microbiol. Biotechnol. 2021, 105, 2071–2080. [Google Scholar] [CrossRef]
- Mitchell, M.; Nguyen, S.V.; Connor, M.; Fairley, D.J.; Donoghue, O.; Marshall, H.; Koolman, L.; McMullan, G.; Schaffer, K.E.; McGrath, J.W.; et al. Terrisporobacter hibernicus sp. nov., isolated from bovine faeces in Northern Ireland. Int. J. Syst. Evol. Microbiol. 2023, 73, 5667. [Google Scholar] [CrossRef]
- Böer, T.; Bengelsdorf, F.R.; Bömeke, M.; Daniel, R.; Poehlein, A. Genome-based metabolic and phylogenomic analysis of three Terrisporobacter species. PLoS ONE 2023, 18, e0290128. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Shao, N.; Shao, N.; Luo, Y.; Liu, H.; Cai, S.; Dong, X. Transcriptome and Zymogram Analyses Reveal a Cellobiose-Dose Related Reciprocal Regulatory Effect on Cellulase Synthesis in Cellulosilyticum ruminicola H1. Front. Microbiol. 2017, 8, 2497. [Google Scholar] [CrossRef]
- Jiao, W.; Sang, Y.; Wang, X.; Wang, S. Metabonomics and the gut microbiome analysis of the effect of 6-shogaol on improving obesity. Food Chem. 2022, 404, 134734. [Google Scholar] [CrossRef]
- Deng, Z.; Wu, N.; Wang, J.; Zhang, Q. Dietary fibers extracted from Saccharina japonica can improve metabolic syndrome and ameliorate gut microbiota dysbiosis induced by high fat diet. J. Funct. Food. 2021, 85, 104642. [Google Scholar] [CrossRef]
- Lynch, J.B.; Gonzalez, E.L.; Choy, K.; Faull, K.F.; Jewell, T.; Arellano, A.; Liang, J.; Yu, K.B.; Paramo, J.; Hsiao, E.Y. Gut microbiota Turicibacter strains differentially modify bile acids and host lipids. Nat. Commun. 2023, 14, 3669. [Google Scholar] [CrossRef]
- You, M.; Zhao, Q.; Liu, Y.; Zhang, W.; Shen, Z.; Ren, Z.; Xu, C. Insights into lignocellulose degradation: Comparative genomics of anaerobic and cellulolytic Ruminiclostridium-type species. Front. Microbiol. 2023, 14, 1288286. [Google Scholar] [CrossRef]
- Bernard, S.C.; Washington, M.K.; Lacy, D.B. Paeniclostridium sordellii uterine infection is dependent on the estrous cycle. PLoS Pathog. 2022, 18, e1010997. [Google Scholar] [CrossRef]
- Gonçalves, M.F.M.; Esteves, A.C.; Alves, A. Revealing the hidden diversity of marine fungi in Portugal with the description of two novel species, Neoascochyta fuci sp. nov. and Paraconiothyrium salinum sp. nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 5337–5354. [Google Scholar] [CrossRef]
- Lv, Z.; He, Z.; Hao, L.; Kang, X.; Ma, B.; Li, H.; Luo, Y.; Yuan, J.; He, N. Genome Sequencing Analysis of Scleromitrula shiraiana, a Causal Agent of Mulberry Sclerotial Disease With Narrow Host Range. Front. Microbiol. 2021, 11, 603927. [Google Scholar] [CrossRef]
- Golzar, H.; Thomas, G.; Jayasena, K.W.; Wright, D.; Wang, C.; Kehoe, M. Neoascochyta species cause leaf scorch on wheat in Australia. Australas. Plant Dis. Notes J. Australas. Plant Pathol. Soc. 2019, 14, 51–59. [Google Scholar] [CrossRef]
- Skanda, S.; Vijayakumar, B.S. Antioxidant and antibacterial potential of crude extract of soil fungus Periconia sp. (SSS-8). Arab. J. Sci. Eng. 2021, 47, 6707–6714. [Google Scholar] [CrossRef]
- Deng, W.; Li, Y.; Li, J.; Zhu, W.; Zhang, L.; Zou, L.; Zhao, K.; Li, T. Diversity and cellulose degradability of intestinal actinobacteria from captive giant panda. Chin. J. Appl. Environ. Biol. 2023, 29, 1467–1475. [Google Scholar] [CrossRef]
- Milton, M.E.; Minrovic, B.M.; Harris, D.L.; Kang, B.; Jung, D.; Lewis, C.P.; Thompson, R.J.; Melander, R.J.; Zeng, D.; Melander, C.; et al. Re-sensitizing Multidrug Resistant Bacteria to Antibiotics by Targeting Bacterial Response Regulators: Characterization and Comparison of Interactions between 2-Aminoimidazoles and the Response Regulators BfmR from Acinetobacter baumannii and QseB from Francisella spp. Front. Mol. Biosci. 2018, 5, 15. [Google Scholar]
- Wang, Y.; Zhou, R.; Yu, Q.; Feng, T.; Li, H. Gut microbiome adaptation to extreme cold winter in wild plateau pika (Ochotona curzoniae) on the Qinghai-Tibet Plateau. FEMS Microbiol. Lett. 2020, 367, fnaa134. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Li, F.; Kong, F.; Cui, Z.; Li, D.; Wang, Y.; Zhu, Q.; Shu, G.; Tian, Y.; Zhang, Y.; et al. Altitude-adaption of gut microbiota in Tibetan chicken. Poult. Sci. 2022, 101, 101998. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Tian, J.; Cidan, Y.; Wang, H.; Li, K.; Basang, W. IInfluence of Varied Environment Conditions on the Gut Microbiota of Yaks. Animals 2024, 14, 1570. [Google Scholar] [CrossRef]
Sample | Input | Filtered | Percentage of Input Passed Filter | Denoised | Merged | Percentage of Input Merged | Non-Chimeric | Percentage of Input Non-Chimeric |
---|---|---|---|---|---|---|---|---|
DXF1 | 136082 | 130346 | 95.78 | 120718 | 80331 | 59.03 | 53182 | 39.08 |
DXF2 | 141104 | 134633 | 95.41 | 124845 | 75867 | 53.77 | 46342 | 32.84 |
DXF3 | 136664 | 129770 | 94.96 | 125961 | 110875 | 81.13 | 76494 | 55.97 |
DXF4 | 146079 | 139693 | 95.63 | 130785 | 91788 | 62.83 | 65521 | 44.85 |
DXF5 | 136149 | 130234 | 95.66 | 121562 | 84270 | 61.9 | 60881 | 44.72 |
DXF6 | 143556 | 137327 | 95.66 | 129426 | 93680 | 65.26 | 64440 | 44.89 |
LZF1 | 136495 | 130353 | 95.5 | 122882 | 88264 | 64.66 | 61717 | 45.22 |
LZF2 | 148617 | 141799 | 95.41 | 134871 | 100535 | 67.65 | 69192 | 46.56 |
LZF3 | 144930 | 138497 | 95.56 | 129931 | 92348 | 63.72 | 62404 | 43.06 |
LZF4 | 142995 | 136314 | 95.33 | 128517 | 92418 | 64.63 | 65027 | 45.48 |
LZF5 | 137609 | 131661 | 95.68 | 123131 | 87433 | 63.54 | 56443 | 41.02 |
LZF6 | 148640 | 141526 | 95.21 | 133762 | 100860 | 67.86 | 69871 | 47.01 |
NMF1 | 142836 | 135583 | 94.92 | 126127 | 90361 | 63.26 | 64030 | 44.83 |
NMF2 | 149456 | 142494 | 95.34 | 133232 | 92148 | 61.66 | 60494 | 40.48 |
NMF3 | 149132 | 142325 | 95.44 | 133581 | 99781 | 66.91 | 71098 | 47.67 |
NMF4 | 144597 | 137914 | 95.38 | 129975 | 93392 | 64.59 | 65198 | 45.09 |
NMF5 | 144850 | 137844 | 95.16 | 128590 | 90033 | 62.16 | 63314 | 43.71 |
NMF6 | 141857 | 135316 | 95.39 | 128940 | 95302 | 67.18 | 60338 | 42.53 |
Sample | Input | Filtered | Percentage of Input Passed Filter | Denoised | Merged | Percentage of Input Merged | Non-Chimeric | Percentage of Input Non-Chimeric |
---|---|---|---|---|---|---|---|---|
DXF1 | 144836 | 134999 | 93.21 | 132574 | 123581 | 85.32 | 116040 | 80.12 |
DXF2 | 147173 | 137090 | 93.15 | 134980 | 123723 | 84.07 | 122130 | 82.98 |
DXF3 | 143732 | 137507 | 95.67 | 135999 | 131144 | 91.24 | 102926 | 71.61 |
DXF4 | 137044 | 130446 | 95.19 | 129048 | 121427 | 88.6 | 105729 | 77.15 |
DXF5 | 139231 | 131506 | 94.45 | 129800 | 120644 | 86.65 | 113252 | 81.34 |
DXF6 | 138441 | 133192 | 96.21 | 131755 | 126352 | 91.27 | 106313 | 76.79 |
LZF1 | 137122 | 127128 | 92.71 | 124315 | 106359 | 77.57 | 98881 | 72.11 |
LZF2 | 135112 | 126010 | 93.26 | 123606 | 111180 | 82.29 | 102463 | 75.84 |
LZF3 | 143958 | 134029 | 93.1 | 131588 | 114105 | 79.26 | 107885 | 74.94 |
LZF4 | 140049 | 128155 | 91.51 | 125217 | 106839 | 76.29 | 98141 | 70.08 |
LZF5 | 141776 | 130590 | 92.11 | 126389 | 103262 | 72.83 | 95692 | 67.5 |
LZF6 | 147691 | 134614 | 91.15 | 131005 | 111582 | 75.55 | 97802 | 66.22 |
NMF1 | 141888 | 125924 | 88.75 | 122186 | 95760 | 67.49 | 89502 | 63.08 |
NMF2 | 147307 | 140830 | 95.6 | 139462 | 129825 | 88.13 | 117810 | 79.98 |
NMF3 | 148348 | 135519 | 91.35 | 132111 | 113317 | 76.39 | 104332 | 70.33 |
NMF4 | 144240 | 134496 | 93.24 | 132665 | 126219 | 87.51 | 104606 | 72.52 |
NMF5 | 138385 | 130511 | 94.31 | 129528 | 125005 | 90.33 | 120755 | 87.26 |
NMF6 | 140573 | 132451 | 94.22 | 130433 | 121311 | 86.3 | 86740 | 61.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Wang, J.; Cidan, Y.; Wang, H.; Li, K.; Basang, W. Gut Microbial Adaptation to Varied Altitudes and Temperatures in Tibetan Plateau Yaks. Microorganisms 2024, 12, 1350. https://doi.org/10.3390/microorganisms12071350
Zhu Y, Wang J, Cidan Y, Wang H, Li K, Basang W. Gut Microbial Adaptation to Varied Altitudes and Temperatures in Tibetan Plateau Yaks. Microorganisms. 2024; 12(7):1350. https://doi.org/10.3390/microorganisms12071350
Chicago/Turabian StyleZhu, Yanbin, Jia Wang, Yangji Cidan, Hongzhuang Wang, Kun Li, and Wangdui Basang. 2024. "Gut Microbial Adaptation to Varied Altitudes and Temperatures in Tibetan Plateau Yaks" Microorganisms 12, no. 7: 1350. https://doi.org/10.3390/microorganisms12071350
APA StyleZhu, Y., Wang, J., Cidan, Y., Wang, H., Li, K., & Basang, W. (2024). Gut Microbial Adaptation to Varied Altitudes and Temperatures in Tibetan Plateau Yaks. Microorganisms, 12(7), 1350. https://doi.org/10.3390/microorganisms12071350