Rapid Classification and Differentiation of Sepsis-Related Pathogens Using FT-IR Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Bacterial Isolates, Growth Conditions, and Sample Preparation
- ❖
- Details about the isolates, including any pertinent information regarding antibiotic resistance.
- ❖
- The majority of CRE isolates originated from rectal swabs. S. typhi was obtained from a faecal sample, while a substantial proportion of both resistant and sensitive Pseudomonas isolates were derived from respiratory specimens. In addition, a significant portion of isolates identified as AHS, diphtheroid, Bacillus, and CNS were determined to be contaminants.
2.2. FT-IR Spectroscopy
2.3. MALDI-TOF-MS
2.4. Data Analysis
3. Results and Discussions
3.1. QC Correction and Data Alignment
3.2. Classification and Discrimination of All Isolates
3.3. Differentiation between Isolates (Gram-Positive and Gram-Negative)
3.4. Differentiation between Isolates According to Their Antibiotic Resistance Profile
3.4.1. Differentiation between S. aureus Isolates
3.4.2. MRSA vs. MSSA
3.4.3. Enterococcus Species and VRE
3.5. Discrimination and Classifying Streptococcus and Candida Species
4. Study Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K.; International Forum of Acute Care, T. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Franco-Duarte, R.; Černáková, L.; Kadam, S.S.; Kaushik, K.; Salehi, B.; Bevilacqua, A.; Corbo, M.R.; Antolak, H.; Dybka-Stępień, K.; Leszczewicz, M.; et al. Advances in Chemical and Biological Methods to Identify Microorganisms—From Past to Present. Microorganisms 2019, 7, 130. [Google Scholar] [CrossRef]
- Almasoud, N.; Muhamadali, H.; Chisanga, M.; Alrabiah, H.; Lima, C.A.; Goodacre, R. Discrimination of bacteria using whole organism fingerprinting: The utility of modern physicochemical techniques for bacterial typing. Analyst 2021, 146, 770–788. [Google Scholar] [CrossRef]
- Clarridge, J.E., 3rd. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 2004, 17, 840–862. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- Sandrin, T.R.; Goldstein, J.E.; Schumaker, S. MALDI TOF MS profiling of bacteria at the strain level: A review. Mass. Spectrom. Rev. 2013, 32, 188–217. [Google Scholar] [CrossRef]
- Ha, S.M.; Kim, C.K.; Roh, J.; Byun, J.H.; Yang, S.J.; Choi, S.B.; Chun, J.; Yong, D. Application of the Whole Genome-Based Bacterial Identification System, TrueBac ID, Using Clinical Isolates That Were Not Identified With Three Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) Systems. Ann. Lab. Med. 2019, 39, 530–536. [Google Scholar] [CrossRef]
- Ashfaq, M.Y.; Da’na, D.A.; Al-Ghouti, M.A. Application of MALDI-TOF MS for identification of environmental bacteria: A review. J. Environ. Manag. 2022, 305, 114359. [Google Scholar] [CrossRef]
- Bizzini, A.; Greub, G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin. Microbiol. Infect. 2010, 16, 1614–1619. [Google Scholar] [CrossRef]
- Mortier, T.; Wieme, A.D.; Vandamme, P.; Waegeman, W. Bacterial species identification using MALDI-TOF mass spectrometry and machine learning techniques: A large-scale benchmarking study. Comput. Struct. Biotechnol. J. 2021, 19, 6157–6168. [Google Scholar] [CrossRef]
- Gao, W.; Li, B.; Ling, L.; Zhang, L.; Yu, S. MALDI-TOF MS method for differentiation of methicillin-sensitive and methicillin-resistant Staphylococcus aureus using (E)-Propyl alpha-cyano-4-Hydroxyl cinnamylate. Talanta 2022, 244, 123405. [Google Scholar] [CrossRef]
- Goodacre, R.; Timmins, É.M.; Burton, R.; Kaderbhai, N.; Woodward, A.M.; Kell, D.B.; Rooney, P.J. Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 1998, 144, 1157–1170. [Google Scholar] [CrossRef]
- Naumann, D.; Keller, S.; Helm, D.; Schultz, C.; Schrader, B. FT-IR spectroscopy and FT-Raman spectroscopy are powerful analytical tools for the non-invasive characterization of intact microbial cells. J. Mol. Struct. 1995, 347, 399–405. [Google Scholar] [CrossRef]
- Lima, C.; Ahmed, S.; Xu, Y.; Muhamadali, H.; Parry, C.; McGalliard, R.J.; Carrol, E.D.; Goodacre, R. Simultaneous Raman and infrared spectroscopy: A novel combination for studying bacterial infections at the single cell level. Chem. Sci. 2022, 13, 8171–8179. [Google Scholar] [CrossRef]
- Shams, S.; Lima, C.; Xu, Y.; Ahmed, S.; Goodacre, R.; Muhamadali, H. Optical photothermal infrared spectroscopy: A novel solution for rapid identification of antimicrobial resistance at the single-cell level via deuterium isotope labeling. Front. Microbiol. 2023, 14, 1077106. [Google Scholar] [CrossRef]
- Suntsova, A.Y.; Guliev, R.R.; Popov, D.A.; Vostrikova, T.Y.; Dubodelov, D.V.; Shchegolikhin, A.N.; Laypanov, B.K.; Priputnevich, T.V.; Shevelev, A.B.; Kurochkin, I.N. Identification of microorganisms by Fourier-transform infrared spectroscopy. Bull. Russ. State Med. Univ. 2018, 4, 50–57. [Google Scholar] [CrossRef]
- McGalliard, R.; Muhamadali, H.; Almasoud, N.; Haldenby, S.; Romero-Soriano, V.; Allman, E.; Xu, Y.; Roberts, A.P.; Paterson, S.; Carrol, E.D.; et al. Bacterial discrimination by Fourier transform infrared spectroscopy, MALDI-mass spectrometry and whole-genome sequencing. Future Microbiol. 2024, 1–16. [Google Scholar] [CrossRef]
- Quintelas, C.; Ferreira, E.C.; Lopes, J.A.; Sousa, C. An Overview of the Evolution of Infrared Spectroscopy Applied to Bacterial Typing. Biotechnol. J. 2018, 13, 1700449. [Google Scholar] [CrossRef]
- Martak, D.; Valot, B.; Sauget, M.; Cholley, P.; Thouverez, M.; Bertrand, X.; Hocquet, D. Fourier-Transform InfraRed Spectroscopy Can Quickly Type Gram-Negative Bacilli Responsible for Hospital Outbreaks. Front. Microbiol. 2019, 10, 1440. [Google Scholar] [CrossRef] [PubMed]
- Amiali, N.M.; Mulvey, M.R.; Sedman, J.; Louie, M.; Simor, A.E.; Ismail, A.A. Rapid identification of coagulase-negative staphylococci by Fourier transform infrared spectroscopy. J. Microbiol. Methods 2007, 68, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Winder, C.L.; Gordon, S.V.; Dale, J.; Hewinson, R.G.; Goodacre, R. Metabolic fingerprints of Mycobacterium bovis cluster with molecular type: Implications for genotype–phenotype links. Microbiology 2006, 152, 2757–2765. [Google Scholar] [CrossRef] [PubMed]
- Muhamadali, H.; Xu, Y.; Ellis, D.I.; Allwood, J.W.; Rattray, N.J.W.; Correa, E.; Alrabiah, H.; Lloyd, J.R.; Goodacre, R. Metabolic Profiling of Geobacter sulfurreducens during Industrial Bioprocess Scale-Up. Appl. Environ. Microbiol. 2015, 81, 3288–3298. [Google Scholar] [CrossRef] [PubMed]
- Martens, H.; Nielsen, J.P.; Engelsen, S.B. Light Scattering and Light Absorbance Separated by Extended Multiplicative Signal Correction. Application to Near-Infrared Transmission Analysis of Powder Mixtures. Anal. Chem. 2003, 75, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Chen, Z.-P.; Zhong, L.-J.; Wang, S.-X.; Yu, R.-Q.; Nordon, A.; Littlejohn, D.; Holden, M. Maintaining the predictive abilities of multivariate calibration models by spectral space transformation. Anal. Chim. Acta 2011, 690, 64–70. [Google Scholar] [CrossRef]
- Novais, A.; Freitas, A.R.; Rodrigues, C.; Peixe, L. Fourier transform infrared spectroscopy: Unlocking fundamentals and prospects for bacterial strain typing. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 427–448. [Google Scholar] [CrossRef] [PubMed]
- Wongthong, S.; Tippayawat, P.; Wongwattanakul, M.; Poung-Ngern, P.; Wonglakorn, L.; Chanawong, A.; Heraud, P.; Lulitanond, A. Attenuated total reflection: Fourier transform infrared spectroscopy for detection of heterogeneous vancomycin—Intermediate Staphylococcus aureus. World J. Microbiol. Biotechnol. 2020, 36, 22. [Google Scholar] [CrossRef] [PubMed]
- Erukhimovitch, V.; Talyshinsky, M.; Souprun, Y.; Huleihel, M. Spectroscopic characterization of human and mouse primary cells, cell lines and malignant cells. Photochem. Photobiol. 2002, 76, 446–451. [Google Scholar] [CrossRef]
- Garcia-Rubio, R.; de Oliveira, H.C.; Rivera, J.; Trevijano-Contador, N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front. Microbiol. 2019, 10, 2993. [Google Scholar] [CrossRef]
- Masuoka, J. Surface glycans of Candida albicans and other pathogenic fungi: Physiological roles, clinical uses, and experimental challenges. Clin. Microbiol. Rev. 2004, 17, 281–310. [Google Scholar] [CrossRef] [PubMed]
- Balan, V.; Mihai, C.-T.; Cojocaru, F.-D.; Uritu, C.-M.; Dodi, G.; Botezat, D.; Gardikiotis, I. Vibrational Spectroscopy Fingerprinting in Medicine: From Molecular to Clinical Practice. Materials 2019, 12, 2884. [Google Scholar] [CrossRef] [PubMed]
- Filip, Z.; Herrmann, S.; Kubat, J. FT-IR spectroscopic characteristics of differently cultivated Bacillus subtilis. Microbiol. Res. 2004, 159, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Kardas, M.; Gozen, A.G.; Severcan, F. FTIR spectroscopy offers hints towards widespread molecular changes in cobalt-acclimated freshwater bacteria. Aquat. Toxicol. 2014, 155, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Warth, A.D.; Strominger, J.L. Structure of the peptidoglycan of bacterial spores: Occurrence of the lactam of muramic acid. Proc. Natl. Acad. Sci. USA 1969, 64, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J.; Flemming, H.-C. FTIR-spectroscopy in microbial and material analysis. Int. Biodeterior. Biodegrad. 1998, 41, 1–11. [Google Scholar] [CrossRef]
- Schaumann, R.; Knoop, N.; Genzel, G.H.; Losensky, K.; Rosenkranz, C.; Stîngu, C.S.; Schellenberger, W.; Rodloff, A.C.; Eschrich, K. A step towards the discrimination of beta-lactamase-producing clinical isolates of Enterobacteriaceae and Pseudomonas aeruginosa by MALDI-TOF mass spectrometry. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2012, 18, MT71. [Google Scholar] [CrossRef] [PubMed]
- Al-Qadiri, H.M.; Al-Holy, M.A.; Lin, M.; Alami, N.I.; Cavinato, A.G.; Rasco, B.A. Rapid detection and identification of Pseudomonas aeruginosa and Escherichia coli as pure and mixed cultures in bottled drinking water using fourier transform infrared spectroscopy and multivariate analysis. J. Agric. Food Chem. 2006, 54, 5749–5754. [Google Scholar] [CrossRef]
- Ohadian Moghadam, S.; Pourmand, M.R.; Aminharati, F. Biofilm formation and antimicrobial resistance in methicillin-resistant Staphylococcus aureus isolated from burn patients, Iran. J. Infect. Dev. Ctries. 2014, 8, 1511–1517. [Google Scholar] [CrossRef]
- He, X.; Li, S.; Yin, Y.; Xu, J.; Gong, W.; Li, G.; Qian, L.; Yin, Y.; He, X.; Guo, T.; et al. Membrane Vesicles Are the Dominant Structural Components of Ceftazidime-Induced Biofilm Formation in an Oxacillin-Sensitive MRSA. Front. Microbiol. 2019, 10, 571. [Google Scholar] [CrossRef]
- Lu, Q.; Guo, Y.; Yang, G.; Cui, L.; Wu, Z.; Zeng, X.; Pan, D.; Cai, Z. Structure and Anti-Inflammation Potential of Lipoteichoic Acids Isolated from Lactobacillus Strains. Foods 2022, 11, 1610. [Google Scholar] [CrossRef] [PubMed]
- Schneewind, O.; Missiakas, D. Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. J. Bacteriol. 2014, 196, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Naumann, D. Infrared spectroscopy in microbiology. Encycl. Anal. Chem. 2000, 102, 131. [Google Scholar]
- Gromski, P.S.; Muhamadali, H.; Ellis, D.I.; Xu, Y.; Correa, E.; Turner, M.L.; Goodacre, R. A tutorial review: Metabolomics and partial least squares-discriminant analysis—A marriage of convenience or a shotgun wedding. Anal. Chim. Acta 2015, 879, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Van der Mei, H.; Naumann, D.; Busscher, H. Grouping of oral streptococcal species using Fourier-transform infrared spectroscopy in comparison with classical microbiological identification. Arch. Oral Biol. 1993, 38, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Timmins, E.M.; Howell, S.A.; Alsberg, B.K.; Noble, W.C.; Goodacre, R. Rapid differentiation of closely related Candida species and strains by pyrolysis-mass spectrometry and Fourier transform-infrared spectroscopy. J. Clin. Microbiol. 1998, 36, 367–374. [Google Scholar] [CrossRef]
- Silva, S.; Tobaldini-Valerio, F.; Costa-De-Oliveira, S.; Henriques, M.; Azeredo, J.; Ferreira, E.C.; Lopes, J.A.; Sousa, C. Discrimination of clinically relevant Candida species by Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). RSC Adv. 2016, 6, 92065–92072. [Google Scholar] [CrossRef]
- López-Díez, E.C.; Winder, C.L.; Ashton, L.; Currie, F.; Goodacre, R. Monitoring the Mode of Action of Antibiotics Using Raman Spectroscopy: Investigating Subinhibitory Effects of Amikacin on Pseudomonas aeruginosa. Anal. Chem. 2005, 77, 2901–2906. [Google Scholar] [CrossRef]
Organisms Name | No of Isolates | Name of Isolates | Colour |
---|---|---|---|
AHS | 3 | Alpha-hemolytic streptococci | |
Bacillus | 5 | Bacillus species | |
Candida | 10 | C. parapsilosis, C. albicans and C. pelliculosa | |
CNS | 28 | Coagulase-negative staphylococci and teicoplanin resistant CNS | |
Corynebacterium diphtheriae | 4 | Diphtheria | |
E. coli | 27 | E. coli, ESBL: Extended-spectrum β-lactamases, CRE: Carbapenem-resistant Enterobacteriaceae | |
Enterobacter | 26 | E. cloacae, CRE and ESBL | |
Enterococcus | 20 | E. faecalis, E. faecium, other Enterococcus species and VRE (Vancomycin-resistant enterococci) | |
Klebsiella | 26 | K. oxytoca and K. pneumoniae, CRE and ESBL | |
Moraxella | 1 | Moraxella species | |
Pseudomonas | 22 | P. aeruginosa and meropenem resistant P. aeruginosa | |
Salmonella | 1 | S. typhi | |
Staphylococcus | 28 | S. aureus and MRSA (Methicillin-resistant Staphylococcus aureus) | |
Streptococcus | 11 | S. mitis, S. pyogenes and S. agalactiae | |
Total | 212 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.; Albahri, J.; Shams, S.; Sosa-Portugal, S.; Lima, C.; Xu, Y.; McGalliard, R.; Jones, T.; Parry, C.M.; Timofte, D.; et al. Rapid Classification and Differentiation of Sepsis-Related Pathogens Using FT-IR Spectroscopy. Microorganisms 2024, 12, 1415. https://doi.org/10.3390/microorganisms12071415
Ahmed S, Albahri J, Shams S, Sosa-Portugal S, Lima C, Xu Y, McGalliard R, Jones T, Parry CM, Timofte D, et al. Rapid Classification and Differentiation of Sepsis-Related Pathogens Using FT-IR Spectroscopy. Microorganisms. 2024; 12(7):1415. https://doi.org/10.3390/microorganisms12071415
Chicago/Turabian StyleAhmed, Shwan, Jawaher Albahri, Sahand Shams, Silvana Sosa-Portugal, Cassio Lima, Yun Xu, Rachel McGalliard, Trevor Jones, Christopher M. Parry, Dorina Timofte, and et al. 2024. "Rapid Classification and Differentiation of Sepsis-Related Pathogens Using FT-IR Spectroscopy" Microorganisms 12, no. 7: 1415. https://doi.org/10.3390/microorganisms12071415
APA StyleAhmed, S., Albahri, J., Shams, S., Sosa-Portugal, S., Lima, C., Xu, Y., McGalliard, R., Jones, T., Parry, C. M., Timofte, D., Carrol, E. D., Muhamadali, H., & Goodacre, R. (2024). Rapid Classification and Differentiation of Sepsis-Related Pathogens Using FT-IR Spectroscopy. Microorganisms, 12(7), 1415. https://doi.org/10.3390/microorganisms12071415