Exosomal Small RNA Sequencing Profiles in Plasma from Subjects with Latent Mycobacterium tuberculosis Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Information and Sample Preparation
2.2. Exosome Isolation and RNA Extraction
2.3. Small RNA-Seq and Data Analysis
2.4. Real-Time Quantitative PCR (RT-qPCR)
2.5. Western Blot Analysis
2.6. Plasma-Derived Exosome Uptake by THP1 Cells
2.7. In Vitro Cell Culture Model under Mtb-Specific Antigen Stimuli
2.8. Transfection of miR-7850-5p Mimic/Inhibitor in THP1 Cells
2.9. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Isolation and Characterization of Plasma-Derived EVs
3.3. Expression Panels of the Plasma Exosomes in the HC and LTBI Groups
3.4. Transfer of Plasma-Derived Exosomes to THP1 Cells
3.5. Bioinformatics Analyses of Exosomes in LTBI Patients
3.6. Validation of DEmiRNAs Using Quantitative Real-Time PCR (qRT-PCR)
3.7. Expression Levels of SLC11A1 Regulated by miR-7850-5p in THP1 Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nissapatorn, V.; Kuppusamy, I.; Anuar, A.K.; Quek, K.F.; Latt, H.M. Tuberculosis: Clinical manifestations and outcomes. Southeast Asian J. Trop. Med. Public Health 2003, 34 (Suppl. 2), 147–152. [Google Scholar] [PubMed]
- Bagcchi, S. WHO’s Global Tuberculosis Report 2022. Microbe 2023, 4, e20. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.; Cioran, N.; van Hest, R.; Abubakar, I.; Story, A.; Chiotan, D.; de Vries, G.; Mahler, B. Tuberculosis Surveillance in Romania among Vulnerable Risk Groups between 2015 and 2017. Ther. Clin. Risk Manag. 2022, 18, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Tanimura, T.; Jaramillo, E.; Weil, D.; Raviglione, M.; Lönnroth, K. Financial burden for tuberculosis patients in low- and middle-income countries: A systematic review. Eur. Respir. J. 2014, 43, 1763–1775. [Google Scholar] [CrossRef] [PubMed]
- Getahun, H.; Matteelli, A.; Abubakar, I.; Aziz, M.A.; Baddeley, A.; Barreira, D.; Den Boon, S.; Borroto Gutierrez, S.M.; Bruchfeld, J.; Burhan, E.; et al. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries. Eur. Respir. J. 2015, 46, 1563–1576. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.H.; Guo, T.; Gao, X.Y.; Wu, X.L.; Xing, X.F.; Ji, J.F.; Li, Z.Y. Exosome-derived noncoding RNAs in gastric cancer: Functions and clinical applications. Mol. Cancer 2021, 20, 99. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Ma, J.; Gong, H.; Shao, J.; Li, J.; Zhan, Y.; Wang, Z.; Wang, C.; Li, W. Immune regulation and emerging roles of noncoding RNAs in Mycobacterium tuberculosis infection. Front. Immunol. 2022, 13, 987018. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.J.; Chau, Z.L.; Chen, S.Y.; Hill, J.J.; Korpany, K.V.; Liang, N.W.; Lin, L.H.; Lin, Y.H.; Liu, J.K.; Liu, Y.C.; et al. Exosome Processing and Characterization Approaches for Research and Technology Development. Adv. Sci. 2022, 9, e2103222. [Google Scholar] [CrossRef] [PubMed]
- Sinigaglia, A.; Peta, E.; Riccetti, S.; Venkateswaran, S.; Manganelli, R.; Barzon, L. Tuberculosis-Associated MicroRNAs: From Pathogenesis to Disease Biomarkers. Cells 2020, 9, 2160. [Google Scholar] [CrossRef]
- Zhan, X.; Yuan, W.; Zhou, Y.; Ma, R.; Ge, Z. Small RNA sequencing and bioinformatics analysis of RAW264.7-derived exosomes after Mycobacterium Bovis Bacillus Calmette-Guérin infection. BMC Genom. 2022, 23, 355. [Google Scholar] [CrossRef]
- Guio, H.; Aliaga-Tobar, V.; Galarza, M.; Pellon-Cardenas, O.; Capristano, S.; Gomez, H.L.; Olivera, M.; Sanchez, C.; Maracaja-Coutinho, V. Comparative Profiling of Circulating Exosomal Small RNAs Derived from Peruvian Patients with Tuberculosis and Pulmonary Adenocarcinoma. Front. Cell. Infect. Microbiol. 2022, 12, 909837. [Google Scholar] [CrossRef] [PubMed]
- El-Mogy, M.; Lam, B.; Haj-Ahmad, T.A.; McGowan, S.; Yu, D.; Nosal, L.; Rghei, N.; Roberts, P.; Haj-Ahmad, Y. Diversity and signature of small RNA in different bodily fluids using next generation sequencing. BMC Genom. 2018, 19, 408. [Google Scholar] [CrossRef] [PubMed]
- Lyu, L.; Zhang, X.; Li, C.; Yang, T.; Wang, J.; Pan, L.; Jia, H.; Li, Z.; Sun, Q.; Yue, L.; et al. Small RNA Profiles of Serum Exosomes Derived from Individuals with Latent and Active Tuberculosis. Front. Microbiol. 2019, 10, 1174. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Li, C.; Zhang, X.; Ding, N.; Cao, T.; Jia, X.; Wang, J.; Pan, L.; Jia, H.; Li, Z.; et al. RNA Profiling Analysis of the Serum Exosomes Derived from Patients with Active and Latent Mycobacterium tuberculosis Infection. Front. Microbiol. 2017, 8, 1051. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. 2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Hough, K.P.; Chanda, D.; Duncan, S.R.; Thannickal, V.J.; Deshane, J.S. Exosomes in immunoregulation of chronic lung diseases. Allergy 2017, 72, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Mó, M.; Siljander, P.R.; Andreu, Z.; Zavec, A.B.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015, 4, 27066. [Google Scholar] [CrossRef] [PubMed]
- Nana-Sinkam, S.P.; Acunzo, M.; Croce, C.M.; Wang, K. Extracellular Vesicle Biology in the Pathogenesis of Lung Disease. Am. J. Respir. Crit. Care Med. 2017, 196, 1510–1518. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Kosaka, N.; Araya, J.; Kuwano, K.; Ochiya, T. Extracellular vesicles in lung microenvironment and pathogenesis. Trends Mol. Med. 2015, 21, 533–542. [Google Scholar] [CrossRef]
- Simpson, R.J.; Lim, J.W.; Moritz, R.L.; Mathivanan, S. Exosomes: Proteomic insights and diagnostic potential. Expert Rev. Proteom. 2009, 6, 267–283. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, S.; Schorey, J.S. Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory. J. Biol. Chem. 2007, 282, 25779–25789. [Google Scholar] [CrossRef] [PubMed]
- Vega, V.L.; Rodríguez-Silva, M.; Frey, T.; Gehrmann, M.; Diaz, J.C.; Steinem, C.; Multhoff, G.; Arispe, N.; De Maio, A. Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J. Immunol. 2008, 180, 4299–4307. [Google Scholar] [CrossRef] [PubMed]
- Wolfers, J.; Lozier, A.; Raposo, G.; Regnault, A.; Théry, C.; Masurier, C.; Flament, C.; Pouzieux, S.; Faure, F.; Tursz, T.; et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. 2001, 7, 297–303. [Google Scholar] [CrossRef]
- Machtinger, R.; Laurent, L.C.; Baccarelli, A.A. Extracellular vesicles: Roles in gamete maturation, fertilization and embryo implantation. Hum. Reprod. Update 2016, 22, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Qiang, L.; Zhang, Y.; Lei, Z.; Lu, Z.; Tan, S.; Ge, P.; Chai, Q.; Zhao, M.; Zhang, X.; Li, B.; et al. A mycobacterial effector promotes ferroptosis-dependent pathogenicity and dissemination. Nat. Commun. 2023, 14, 1430. [Google Scholar] [CrossRef] [PubMed]
- Amaral, E.P.; Costa, D.L.; Namasivayam, S.; Riteau, N.; Kamenyeva, O.; Mittereder, L.; Mayer-Barber, K.D.; Andrade, B.B.; Sher, A. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J. Exp. Med. 2019, 216, 556–570. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.I.; Ahmed, W.; Nasir, M.; Mushtaq, M.H.; Sheikh, A.A.; Shaheen, A.Y.; Mahmood, A. Immune boosting role of vitamin E against pulmonary tuberculosis. Pak. J. Pharm. Sci. 2019, 32, 269–276. [Google Scholar]
- Seyedrezazadeh, E.; Ostadrahimi, A.; Mahboob, S.; Assadi, Y.; Ghaemmagami, J.; Pourmogaddam, M. Effect of vitamin E and selenium supplementation on oxidative stress status in pulmonary tuberculosis patients. Respirology 2008, 13, 294–298. [Google Scholar] [CrossRef]
- Fritsche, G.; Nairz, M.; Theurl, I.; Mair, S.; Bellmann-Weiler, R.; Barton, H.C.; Weiss, G. Modulation of macrophage iron transport by Nramp1 (Slc11a1). Immunobiology 2007, 212, 751–757. [Google Scholar] [CrossRef]
- Cunrath, O.; Bumann, D. Host resistance factor SLC11A1 restricts Salmonella growth through magnesium deprivation. Science 2019, 366, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Hackam, D.J.; Rotstein, O.D.; Zhang, W.; Gruenheid, S.; Gros, P.; Grinstein, S. Host resistance to intracellular infection: Mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification. J. Exp. Med. 1998, 188, 351–364. [Google Scholar] [CrossRef]
- Jabado, N.; Jankowski, A.; Dougaparsad, S.; Picard, V.; Grinstein, S.; Gros, P. Natural resistance to intracellular infections: Natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J. Exp. Med. 2000, 192, 1237–1248. [Google Scholar] [CrossRef] [PubMed]
- Monack, D.M.; Bouley, D.M.; Falkow, S. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. J. Exp. Med. 2004, 199, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.E.; Libby, S.J.; Moreland, S.M.; McCoy, M.W.; Brabb, T.; Stepanek, A.; Fang, F.C.; Detweiler, C.S. Salmonella enterica causes more severe inflammatory disease in C57/BL6 Nramp1G169 mice than Sv129S6 mice. Vet. Pathol. 2013, 50, 867–876. [Google Scholar] [CrossRef]
- Fritsche, G.; Nairz, M.; Libby, S.J.; Fang, F.C.; Weiss, G. Slc11a1 (Nramp1) impairs growth of Salmonella enterica serovar typhimurium in macrophages via stimulation of lipocalin-2 expression. J. Leukoc. Biol. 2012, 92, 353–359. [Google Scholar] [CrossRef]
- Barton, C.H.; Whitehead, S.H.; Blackwell, J.M. Nramp transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: Influence on oxidative burst and nitric oxide pathways. Mol. Med. 1995, 1, 267–279. [Google Scholar] [CrossRef]
- Mulero, V.; Searle, S.; Blackwell, J.M.; Brock, J.H. Solute carrier 11a1 (Slc11a1; formerly Nramp1) regulates metabolism and release of iron acquired by phagocytic, but not transferrin-receptor-mediated, iron uptake. Biochem. J. 2002, 363, 89–94. [Google Scholar] [CrossRef]
- Shahzad, F.; Bashir, N.; Ali, A.; Nadeem, A.; Ammar, A.; Kashif, M.; Javaid, K.; Jahan, S.; Tahir, R.; Rizwan, M.; et al. SLC11A1 genetic variation and low expression may cause immune response impairment in TB patients. Genes Immun. 2022, 23, 85–92. [Google Scholar] [CrossRef]
- Sharbati, J.; Lewin, A.; Kutz-Lohroff, B.; Kamal, E.; Einspanier, R.; Sharbati, S. Integrated microRNA-mRNA-analysis of human monocyte derived macrophages upon Mycobacterium avium subsp. hominissuis infection. PLoS ONE 2011, 6, e20258. [Google Scholar] [CrossRef]
- Aghaee-Bakhtiari, S.H.; Arefian, E.; Naderi, M.; Noorbakhsh, F.; Nodouzi, V.; Asgari, M.; Fard-Esfahani, P.; Mahdian, R.; Soleimani, M. MAPK and JAK/STAT pathways targeted by miR-23a and miR-23b in prostate cancer: Computational and in vitro approaches. Tumor Biol. 2015, 36, 4203–4212. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Yi, Z.; Wu, X.; Li, J.; Xu, F. Circulating microRNAs in patients with active pulmonary tuberculosis. J. Clin. Microbiol. 2011, 49, 4246–4251. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Fu, Y.; Ji, R.; Li, R.; Guan, Z. Altered microRNA signatures in sputum of patients with active pulmonary tuberculosis. PLoS ONE 2012, 7, e43184. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Cui, L.; Ge, Y.; Shi, Z.; Zhao, K.; Guo, X.; Yang, D.; Yu, H.; Cui, L.; Shan, Y.; et al. Altered serum microRNAs as biomarkers for the early diagnosis of pulmonary tuberculosis infection. BMC Infect. Dis. 2012, 12, 384. [Google Scholar] [CrossRef]
Characteristics | Total, n(%) | Healthy Controls, n(%) | LTBI Patients, n(%) | |
---|---|---|---|---|
Age, mean ± SD, years Age Range | HC: 34 LTBI: 16 | 32.00 ± 5.20 26–39 | 30.25 ± 8.33 24–48 | |
Sex | <0.01 | |||
Male | 6(12%) | 2(5.88%) | 4(25%) | |
Female | 44(88%) | 32(94.12%) | 12(75%) | |
Smoking | ||||
Yes | 5(10%) | 1(2.94%) | 4(25%) | |
No | 45(90%) | 33(97.06%) | 12(75%) | |
Drinking | ||||
Yes | 10(20%) | 8(23.53%) | 2(12.5%) | |
No | 40(80%) | 26(76.47%) | 14(87.5%) | |
Education Level | ||||
Junior school or lower | 0(0%) | 0(0%) | 0(0%) | |
Senior high school and higher | 50(100%) | 34(100%) | 16(100%) | |
Marital Status | ||||
Married | 15(30%) | 9(26.47%) | 6(37.5%) | |
Unmarried/divorced/widowed | 35(70%) | 25(73.53%) | 10(62.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Meng, H.; Li, M.; Chen, X.; Yuan, D.; Wu, C. Exosomal Small RNA Sequencing Profiles in Plasma from Subjects with Latent Mycobacterium tuberculosis Infection. Microorganisms 2024, 12, 1417. https://doi.org/10.3390/microorganisms12071417
Cui X, Meng H, Li M, Chen X, Yuan D, Wu C. Exosomal Small RNA Sequencing Profiles in Plasma from Subjects with Latent Mycobacterium tuberculosis Infection. Microorganisms. 2024; 12(7):1417. https://doi.org/10.3390/microorganisms12071417
Chicago/Turabian StyleCui, Xiaogang, Hangting Meng, Miao Li, Xia Chen, Dan Yuan, and Changxin Wu. 2024. "Exosomal Small RNA Sequencing Profiles in Plasma from Subjects with Latent Mycobacterium tuberculosis Infection" Microorganisms 12, no. 7: 1417. https://doi.org/10.3390/microorganisms12071417
APA StyleCui, X., Meng, H., Li, M., Chen, X., Yuan, D., & Wu, C. (2024). Exosomal Small RNA Sequencing Profiles in Plasma from Subjects with Latent Mycobacterium tuberculosis Infection. Microorganisms, 12(7), 1417. https://doi.org/10.3390/microorganisms12071417