Association between Fecal Bile Acids and Levodopa Response in Patients with Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Features Evaluation and Levodopa Challenge Test (LCT)
2.3. Sample Collection
2.4. Fecal Bile Acids Analysis
2.5. Plasma Levodopa Concentrations and Microbiome Analysis
2.6. Statistics Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- De Lau, L.M.; Breteler, M.M. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006, 5, 525–535. [Google Scholar] [CrossRef]
- Braak, H.; Rüb, U.; Gai, W.P.; Del Tredici, K. Idiopathic Parkinson’s disease: Possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 2003, 110, 517–536. [Google Scholar] [CrossRef]
- Lima, I.S.; Pêgo, A.C.; Martins, A.C.; Prada, A.R.; Barros, J.T.; Martins, G.; Gozzelino, R. Gut Dysbiosis: A Target for Protective Interventions against Parkinson’s Disease. Microorganisms 2023, 11, 880. [Google Scholar] [CrossRef]
- Tan, A.H.; Lim, S.Y.; Lang, A.E. The microbiome-gut-brain axis in Parkinson disease—From basic research to the clinic. Nat. Rev. Neurol. 2022, 18, 476–495. [Google Scholar] [CrossRef]
- Sethi, K. Levodopa unresponsive symptoms in Parkinson disease. Mov. Disord. 2008, 23, S521–S533. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, Y.; Huang, W.; Zhou, H.; Zhang, W. Drug-microbiota interactions: An emerging priority for precision medicine. Signal Transduct. Target. Ther. 2023, 8, 386. [Google Scholar] [CrossRef] [PubMed]
- Pierantozzi, M.; Pietroiusti, A.; Brusa, L.; Galati, S.; Stefani, A.; Lunardi, G.; Fedele, E.; Sancesario, G.; Bernardi, G.; Bergamaschi, A.; et al. Helicobacter pylori eradication and l-dopa absorption in patients with PD and motor fluctuations. Neurology 2006, 66, 1824–1829. [Google Scholar] [CrossRef]
- Fasano, A.; Bove, F.; Gabrielli, M.; Petracca, M.; Zocco, M.A.; Ragazzoni, E.; Barbaro, F.; Piano, C.; Fortuna, S.; Tortora, A.; et al. The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov. Disord. 2013, 28, 1241–1249. [Google Scholar] [CrossRef]
- Zhang, Y.; He, X.; Mo, C.; Liu, X.; Li, J.; Yan, Z.; Qian, Y.; Lai, Y.; Xu, S.; Yang, X.; et al. Association Between Microbial Tyrosine Decarboxylase Gene and Levodopa Responsiveness in Patients With Parkinson Disease. Neurology 2022, 99, e2443–e2453. [Google Scholar] [CrossRef] [PubMed]
- Maini Rekdal, V.; Bess, E.N.; Bisanz, J.E.; Turnbaugh, P.J.; Balskus, E.P. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 2019, 364, eaau6323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Han, Y.; Huang, W.; Jin, M.; Gao, Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm. Sin. B 2021, 11, 1789–1812. [Google Scholar] [CrossRef]
- Kaddurah-Daouk, R.; Baillie, R.A.; Zhu, H.; Zeng, Z.B.; Wiest, M.M.; Nguyen, U.T.; Wojnoonski, K.; Watkins, S.M.; Trupp, M.; Krauss, R.M. Enteric microbiome metabolites correlate with response to simvastatin treatment. PLoS ONE 2011, 6, e25482. [Google Scholar] [CrossRef]
- Han, B.; Lv, X.; Liu, G.; Li, S.; Fan, J.; Chen, L.; Huang, Z.; Lin, G.; Xu, X.; Huang, Z.; et al. Gut microbiota-related bile acid metabolism-FXR/TGR5 axis impacts the response to anti-α4β7-integrin therapy in humanized mice with colitis. Gut Microbes 2023, 15, 2232143. [Google Scholar] [CrossRef]
- Enright, E.F.; Griffin, B.T.; Gahan, C.; Joyce, S.A. Microbiome-mediated bile acid modification: Role in intestinal drug absorption and metabolism. Pharmacol. Res. 2018, 133, 170–186. [Google Scholar] [CrossRef]
- Wang, S.; Xu, C.; Liu, H.; Wei, W.; Zhou, X.; Qian, H.; Zhou, L.; Zhang, H.; Wu, L.; Zhu, C.; et al. Connecting the Gut Microbiota and Neurodegenerative Diseases: The Role of Bile Acids. Mol. Neurobiol. 2023, 60, 4618–4640. [Google Scholar] [CrossRef]
- Payne, T.; Appleby, M.; Buckley, E.; van Gelder, L.; Mullish, B.H.; Sassani, M.; Dunning, M.J.; Hernandez, D.; Scholz, S.W.; McNeill, A.; et al. A Double-Blind, Randomized, Placebo-Controlled Trial of Ursodeoxycholic Acid (UDCA) in Parkinson’s Disease. Mov. Disord. 2023, 38, 1493–1502. [Google Scholar] [CrossRef]
- Daniel, S.E.; Lees, A.J. Parkinson’s Disease Society Brain Bank, London: Overview and research. J. Neural Transm. Suppl. 1993, 39, 165–172. [Google Scholar]
- Stebbins, G.T.; Goetz, C.G.; Burn, D.J.; Jankovic, J.; Khoo, T.K.; Tilley, B.C. How to identify tremor dominant and postural instability/gait difficulty groups with the movement disorder society unified Parkinson’s disease rating scale: Comparison with the unified Parkinson’s disease rating scale. Mov. Disord. 2013, 28, 668–670. [Google Scholar] [CrossRef]
- Tomlinson, C.L.; Stowe, R.; Patel, S.; Rick, C.; Gray, R.; Clarke, C.E. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 2010, 25, 2649–2653. [Google Scholar] [CrossRef] [PubMed]
- Saranza, G.; Lang, A.E. Levodopa challenge test: Indications, protocol, and guide. J. Neurol. 2021, 268, 3135–3143. [Google Scholar] [CrossRef] [PubMed]
- Beckers, M.; Bloem, B.R.; Verbeek, M.M. Mechanisms of peripheral levodopa resistance in Parkinson’s disease. NPJ Park. Dis. 2022, 8, 56. [Google Scholar] [CrossRef]
- Bashyal, S.; Seo, J.E.; Choi, Y.W.; Lee, S. Bile acid transporter-mediated oral absorption of insulin via hydrophobic ion-pairing approach. J. Control Release 2021, 338, 644–661. [Google Scholar] [CrossRef]
- Pavlović, N.; Goločorbin-Kon, S.; Ðanić, M.; Stanimirov, B.; Al-Salami, H.; Stankov, K.; Mikov, M. Bile Acids and Their Derivatives as Potential Modifiers of Drug Release and Pharmacokinetic Profiles. Front. Pharmacol. 2018, 9, 1283. [Google Scholar] [CrossRef]
- Chen, J.; Farrell, G.C. Bile acids produce a generalized reduction of the catalytic activity of cytochromes P450 and other hepatic microsomal enzymes in vitro: Relevance to drug metabolism in experimental cholestasis. J. Gastroenterol. Hepatol. 1996, 11, 870–877. [Google Scholar] [CrossRef]
- Lopalco, A.; Cutrignelli, A.; Denora, N.; Lopedota, A.; Franco, M.; Laquintana, V. Transferrin Functionalized Liposomes Loading Dopamine HCl: Development and Permeability Studies across an In Vitro Model of Human Blood-Brain Barrier. Nanomaterials 2018, 8, 178. [Google Scholar] [CrossRef]
- Vinarov, Z.; Abdallah, M.; Agundez, J.; Allegaert, K.; Basit, A.W.; Braeckmans, M.; Ceulemans, J.; Corsetti, M.; Griffin, B.T.; Grimm, M.; et al. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. Eur. J. Pharm. Sci. 2021, 162, 105812. [Google Scholar] [CrossRef]
The Demographic and Clinical Characteristics | Total n = 92 | Bottom 30% LR n = 27 | Top 30% LR n = 28 | p-Value |
---|---|---|---|---|
Male (%) | 41 (44.57) | 17 (62.96) | 7 (25.00) | 0.005 |
Age (years) | 67.77 ± 6.71 | 68.59 ± 6.59 | 66.11 ± 5.93 | 0.154 |
BMI (kg/m2) | 23.67 ± 2.78 | 24.54 ± 2.66 | 22.65 ± 2.68 | 0.014 |
Age of onset (years) | 61.24 ± 7.47 | 62.07 ± 8.26 | 58.82 ± 6.66 | 0.088 |
Disease duration (years) | 6.53 ± 3.62 | 6.52 ± 3.64 | 7.29 ± 3.63 | 0.318 |
Hoehn and Yahr stage | 2.33 ± 0.59 | 2.24 ± 0.53 | 2.29 ± 0.50 | 0.801 |
LEDD (mg) | 538.91 ± 256.08 | 576.62 ± 258.86 | 526.94 ± 211.36 | 0.544 |
Clinical phenotype | ||||
PIGD (n, %) | 60 (65.22) | 18 (66.67) | 15 (53.57) | 0.322 |
Challenge dose (mg) | 263.01 ± 107.19 | 263.89 ± 108.44 | 265.42 ± 96.05 | 0.747 |
Off-state MDS-UPDRS part III | 34.55 ± 11.67 | 35.89 ± 8.30 | 32.46 ± 11.10 | 0.053 |
Best on-state MDS-UPDRS part III | 19.80 ± 7.89 | 24.33 ± 6.44 | 14.93 ± 5.62 | <0.001 |
Change value of MDS-UPDRS part III | −14.75 ± 5.69 | −11.56 ± 2.67 | −17.54 ± 6.22 | <0.001 |
LR (%) | 43.27 ± 9.49 | 32.52 ± 4.27 | 54.08 ± 6.37 | <0.001 |
Time to peak (min) | 81.52 ± 23.67 | 76.67 ± 20.94 | 81.43 ± 17.99 | 0.186 |
Off-state plasma levodopa concentration (ng/mL) | 16.69 ± 17.28 | 15.99 ± 22.48 | 14.43 ± 13.64 | 0.429 |
Best on-state plasma levodopa concentration (ng/mL) | 174.05 ± 331.81 | 81.55 ± 71.04 | 240.22 ± 452.82 | 0.092 |
Change of plasma levodopa concentration (ng/mL) | 157.36 ± 332.09 | 65.56 ± 68.48 | 225.79 ± 452.74 | 0.074 |
Change rate of plasma levodopa concentration (%) | 1971.22 ± 3728.28 | 1191.75 ± 1470.73 | 3561.56 ± 5946.1 | 0.354 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Lai, Y.; Mo, C.; Zhang, Y.; Ai, P.; Xu, S.; Qian, Y.; Xiao, Q.; Yang, X. Association between Fecal Bile Acids and Levodopa Response in Patients with Parkinson’s Disease. Microorganisms 2024, 12, 1432. https://doi.org/10.3390/microorganisms12071432
He X, Lai Y, Mo C, Zhang Y, Ai P, Xu S, Qian Y, Xiao Q, Yang X. Association between Fecal Bile Acids and Levodopa Response in Patients with Parkinson’s Disease. Microorganisms. 2024; 12(7):1432. https://doi.org/10.3390/microorganisms12071432
Chicago/Turabian StyleHe, Xiaoqin, Yiqiu Lai, Chengjun Mo, Yi Zhang, Penghui Ai, Shaoqing Xu, Yiwei Qian, Qin Xiao, and Xiaodong Yang. 2024. "Association between Fecal Bile Acids and Levodopa Response in Patients with Parkinson’s Disease" Microorganisms 12, no. 7: 1432. https://doi.org/10.3390/microorganisms12071432
APA StyleHe, X., Lai, Y., Mo, C., Zhang, Y., Ai, P., Xu, S., Qian, Y., Xiao, Q., & Yang, X. (2024). Association between Fecal Bile Acids and Levodopa Response in Patients with Parkinson’s Disease. Microorganisms, 12(7), 1432. https://doi.org/10.3390/microorganisms12071432