Fertilization Type Differentially Affects Barley Grain Yield and Nutrient Content, Soil and Microbial Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Description
2.2. Experimental Design and Soil Amendments
2.3. Soil and Plant Analyses
2.3.1. Soil Analyses
2.3.2. Plant Tissue Analyses
2.4. Soil Microbial Analyses
2.4.1. Basal and Induced Soil Respiration
2.4.2. Soil Enzyme Activities
2.5. Community-Level Physiological Profiling with BiologTM Ecoplates
2.6. Statistical Analysis
3. Results
3.1. Soil Properties
3.2. Barley Yield and Accumulation of Nutrients
3.3. Soil and Microbial Properties
3.4. Carbon Sources Utilization Capacity of Soil Microbial Communities
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beckmann, M.; Gerstner, K.; Akin-Fajiye, M.; Ceaușu, S.; Kambach, S.; Kinlock, N.L.; Phillips, H.R.P.; Verhagen, W.; Gurevitch, J.; Klotz, S.; et al. Conventional land-use intensification reduces species richness and increases production: A global meta-analysis. Glob. Chang. Biol. 2019, 25, 1941–1956. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Delgado-Baquerizo, M.; Anderson, I.C.; Singh, B.K. Response of soil properties and microbial communities to agriculture: Implications for primary productivity and soil health indicators. Front. Plant Sci. 2016, 7, 990. [Google Scholar] [CrossRef] [PubMed]
- Schröder, P.; Beckers, B.; Daniels, S.; Gnädinger, F.; Maestri, E.; Marmiroli, N.; Mench, M.; Millán, R.; Obermeier, M.M.; Oustriere, N.; et al. Intensify production, transform biomass to energy and novel goods and protect soils in Europe—A vision how to mobilize marginal lands. Sci. Total Environ. 2018, 616–617, 1101–1123. [Google Scholar] [CrossRef] [PubMed]
- van der Heijden, M.A.G.; Dombrobski, N.; Schlaeppi, K. Continuum of root-fungal symbioses for plant nutrition. Proc. Natl. Acad. Sci. USA 2017, 114, 11574–11576. [Google Scholar] [CrossRef] [PubMed]
- Zuo, W.; Xu, L.; Qiu, M.; Yi, S.; Wang, Y.; Shen, C.; Zhao, Y.; Li, Y.; Gu, C.; Shan, Y.; et al. Effects of Different Exogenous Organic Materials on Improving Soil Fertility in Coastal Saline-Alkali Soil. Agronomy 2023, 13, 61. [Google Scholar] [CrossRef]
- Guo, X.X.; Liu, H.T.; Wu, S.B. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total Environ. 2019, 662, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Oyege, I.; Balaji Bhaskar, M.S. Effects of Vermicompost on Soil and Plant Health and Promoting Sustainable Agriculture. Soil Syst. 2023, 7, 101. [Google Scholar] [CrossRef]
- Lazcano, C.; Domínguez, J. The use of vermicompost in sustainable agriculture: Impact on plant growth and soil fertility. Soil Nutr. 2011, 10, 187. [Google Scholar]
- Tejada, M.; González, J.L. Application of two vermicomposts on a rice crop: Effects on soil biological properties and rice quality and yield. Agron. J. 2009, 101, 336–344. [Google Scholar] [CrossRef]
- Shen, Z.; Yu, Z.; Xu, L.; Zhao, Y.; Yi, S.; Shen, C.; Wang, Y.; Li, Y.; Zuo, W.; Gu, C.; et al. Effects of Vermicompost Application on Growth and Heavy Metal Uptake of Barley Grown in Mudflat Salt-Affected Soils. Agronomy 2022, 12, 1007. [Google Scholar] [CrossRef]
- Nasiri, S.; Andalibi, B.; Tavakoli, A.; Delavar, M.A.; El-Keblawy, A.; Zwieten, L.V.; Mastinu, A. The mineral biochar alters the biochemical and microbial properties of the soil and the grain yield of Hordeum vulgare L. under drought stress. Land 2023, 12, 559. [Google Scholar] [CrossRef]
- Khalifa, T.H.; Mariey, S.A.; Ghareeb, Z.E.; Khatab, I.A.; Alyamani, A. Effect of organic amendments and nano-zinc foliar application on alleviation of water stress in some soil properties and water productivity of barley yield. Agronomy 2022, 12, 585. [Google Scholar] [CrossRef]
- Aechra, S.; Meena, R.H.; Meena, S.C.; Mundra, S.L.; Lakhawat, S.S.; Mordia, A.; Jat, G. Soil microbial dynamics and enzyme activities as influenced by biofertilizers and split application of vermicompost in rhizosphere of wheat (Triticum aestivum. L.). J. Environ. Biol. 2021, 42, 1370–1378. [Google Scholar] [CrossRef]
- Usmani, Z.; Kumar, V.; Gupta, P.; Gupta, G.; Rani, R.; Chandra, A. Enhanced soil fertility, plant growth promotion and microbial enzymatic activities of vermicomposted fly ash. Sci. Rep. 2019, 9, 10455. [Google Scholar] [CrossRef] [PubMed]
- Enders, A.; Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 2012, 114, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Peiris, C.; Gunatilake, S.R.; Wewalwela, J.J.; Vithanage, M. Biochar for sustainable agriculture: Nutrient dynamics, soil enzymes, and crop growth. In Biochar from Biomass and Waste; Yong, S.O., Daniel, C.W., Tsang, N., Bolan, J.M., Novak, Eds.; Elsaiver: Amsterdam, The Netherlands, 2019; pp. 211–224. [Google Scholar] [CrossRef]
- Liang, X.-Q.; Ji, Y.-J.; He, M.-M.; Su, M.-M.; Liu, C.; Tian, G.-M. A simple N balance assessment for optimizing the biochar amendment level in paddy soils. Commun. Soil Sci. Plant Anal. 2014, 45, 1247–1258. [Google Scholar] [CrossRef]
- Cayuela, M.; Van Zwieten, L.; Singh, B.; Jeffery, S.; Roig, A.; Sanchez-Monadero, M. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Yu, H.; Zou, W.; Chen, J.; Chen, H.; Yu, Z.; Huang, J.; Tang, H.; Wei, X.; Gao, B. Biochar amendment improves crop production in problem soils: A review. J. Environ. Manag. 2019, 232, 8–21. [Google Scholar] [CrossRef]
- Pandit, N.R.; Mulder, J.; Hale, S.E.; Martinsen, V.; Schmidt, H.P.; Cornelissen, G. Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil. Sci. Total Environ. 2018, 625, 1380–1389. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Iacomino, G.; Sarker, T.C.; Ippolito, F.; Bonanomi, G.; Vinale, F.; Staropoli, A.; Idbella, M. Biochar and compost application either alone or in combination affects vegetable yield in a volcanic mediterranean soil. Agronomy 2022, 12, 1996. [Google Scholar] [CrossRef]
- Foster, E.J.; Hansen, N.; Wallenstein, M.; Cotrufo, M.F. Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system. Agric. Ecosyst. Environ. 2016, 233, 404–414. [Google Scholar] [CrossRef]
- Luo, Y.; Liang, J.; Zeng, G.; Chen, M.; Mo, D.; Li, G.; Zhang, D. Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects. Waste Manag. 2018, 71, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Bai, Y.C.; Chang, Y.Y.; Hussain, M.; Lu, B.; Zhang, J.P.; Song, X.B.; Lei, X.S.; Pei, D. Soil chemical and microbiological properties are changed by long-term chemical fertilizers thatlimit ecosystem functioning. Microorganisms 2020, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Hou, R.; Li, J.; Lyu, Y.; Hang, S.; Gong, H.; Ouyang, Z. Effects of different fertilizerson rhizosphere bacterial communities of winter wheat in the North China Plain. Agronomy 2020, 10, 93. [Google Scholar] [CrossRef]
- Caldwell, B.A. Enzyme activities as a component of soil biodiversity: A review. Pedobiologia 2005, 49, 637e644. [Google Scholar] [CrossRef]
- Goldford, J.E.; Lu, N.; Bajić, D.; Estrela, S.; Tikhonov, M.; Sanchez-Gorostiaga, A.; Segrè, D.; Mehta, P.; Sanchez, A. Emergent simplicity in microbial community assembly. Science 2018, 361, 469–474. Available online: https://www.science.org/doi/10.1126/science.aat1168 (accessed on 15 May 2024). [CrossRef] [PubMed]
- Zhang, Z.Y.; Liang, S.W.; Wang, J.K.; Zhang, X.K.; Mahamood, M.; Yu, J.; Zhang, X.; Liang, A.; Liang, W. Tillage and crop succession effects on soil microbial metabolic activity and carbon utilization in a clay loam soil. Eur. J. Soil Biol. 2018, 88, 97–104. [Google Scholar] [CrossRef]
- Neykova, I.; Shilev, S. Compost and Beneficial Pseudomonas Populations Promote Enzyme Activity, Amino Acids, and Polymers Utilization Patterns in Heavy Metal Contaminated Soils. Acta Microbiol. Bulg. 2024, 40, 84–96. [Google Scholar] [CrossRef]
- Abou Jaoude, L.; Castaldi, P.; Nassif, N.; Pinna, M.V.; Garau, G. Biochar and compost as gentle remediation options for the recovery of trace elements-contaminated soils. Sci. Total Environ. 2020, 711, 134511. [Google Scholar] [CrossRef]
- Jurys, A.; Feizienė, D. The effect of specific soil microorganisms on soil quality parameters and organic matter content for cereal production. Plants 2021, 10, 2000. [Google Scholar] [CrossRef]
- Popova, V.; Petkova, M.; Shilev, S. Metagenomic approach unravelling bacterial diversity in combined composting and vermicomposting technology of agricultural wastes. Ecologia balkanika 2023, 15, 135–150. [Google Scholar]
- Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M.A.; Sonoki, T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 2014, 11, 6613–6621. [Google Scholar] [CrossRef]
- Thomas, G.W. Soil pH and soil acidity. In Methods of Soil Analysis; Sparks, D.L., Ed.; Part 3. SSSA Book Ser. 5; SSSA: Madison, WI, USA, 1996; pp. 475–490. [Google Scholar]
- Rhoades, J.D. Salinity, electrical conductivity, and total dissolved solids. In Methods of Soil Analysis; Sparks, D.L., Ed.; Part 3. SSSA Book Ser. 5; SSSA: Madison, WI, USA, 1996; pp. 417–435. [Google Scholar]
- Keeny, D.R.; Nelson, D.W. Nitrogen-inorganic forms. In Methods of Soil Analysis; Part 2, Chemical and Microbiological Methods; Page, A.L., Miller, D.R., Keeny, D.R., Eds.; SSSA: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Foster, J.C. Soil sampling and storage. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: Cambridge, MA, USA, 1995; pp. 49–121. [Google Scholar]
- Egnér, H.; Riehm, H.; Domingo, W. Untersuchungen über die chemische bodenanalyse als grundlage für die beurteiling des nährstoffzustandes der böden: II. Chemische extraktionsmethoden zur phosphor und kaliumbestimmung. Kungliga Lantbrukshögskol. Annal. 1960, 26, 199–215. [Google Scholar]
- Van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed.; Technical Paper 9; ISRIC: Wageningen, The Netherlands; FAO of the United Nations: Rome, Italy, 2002. [Google Scholar]
- Yoshida, S.; Forno, D.A.; Cock, J.H.; Gomez, K.A. Laboratory Manual for Physiological Studies of Rice; International Rice Research Institute (IRRI): Manila, Philippines, 1976; pp. 27–34. Available online: https://pdf.usaid.gov/pdf_docs/PNAAE519.pdf (accessed on 15 May 2024).
- FAO. Food Energy–Methods of Analysis and Conversion Factors; Report of a Technical Workshop Rome, 3–6 December 2002, 2003; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003; ISSN 0254-4725. [Google Scholar]
- Alef, K. Soil respiration. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: Cambridge, MA, USA, 1995; pp. 214–219. [Google Scholar]
- Anderson, J.P.E.; Domsch, K.H. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol. Biochem. 1989, 21, 471–479. [Google Scholar] [CrossRef]
- Thalmann, A. Zur metodik der bestimmung der dehydrogenaseactivitat im boden mittels thriphenyltetrazolium chloride (TTC). Landwirtsch forsch 1968, 21, 249–258. [Google Scholar]
- Alef, K. Dehydrogenase activity. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: Cambridge, MA, USA, 1995; pp. 228–231. [Google Scholar]
- Eivazi, F.; Tabatabai, M.A. Phosphatases in soils. Soil Biol. Biochem. 1977, 9, 167–172. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Soil, E.; Page, A.L.; Miller, R.H.; Keeney, D.R. (Eds.) Methods of Soil Analysis; Part 2, Agronomical Monograph No. 9; American Society of Agronomy and Soil Science of America: Madison, WI, USA, 1982; pp. 501–538. [Google Scholar]
- Alef, K.; Nannipieri, P. β-glucosidase activity. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: Cambridge, MA, USA, 1995; pp. 350–352. [Google Scholar]
- Garland, J.L.; Mills, A.L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level-sole-carbon-sourceutilization. Appl. Environ. Microb. 1991, 57, 2351–2359. [Google Scholar] [CrossRef]
- Insam, H.; Goberna, M. Use of Biolog for the community level physiological profiling (CLPP) of environmental samples. Mol. Microb. Ecol. Manag. 2008, 452, 853–860. [Google Scholar]
- Rekaby, S.A.; Awad, M.Y.M.; Hegab, S.A.; Eissa, M.A. Effect of some organic amendments on barley plants under saline condition. J. Plant Nutr. 2020, 43, 1840–1851. [Google Scholar] [CrossRef]
- Angelova, V.R.; Akova, V.I.; Artinova, N.S.; Ivanov, K.I. The effect of organic amendments on soil chemical characteristics. Bulg. J. Agricult. Sci. 2013, 19, 958–971. [Google Scholar]
- Benkova, M.; Nenova, L.; Simeonova, T.; Harizanova, M.; Atanassova, I. Effect of organic amendments on soil characteristics and maize biomass in a greenhouse experiment. Bulg. J. Agricult. Sci. 2023, 29, 55–61. [Google Scholar]
- Zhang, S.; Zhu, Q.; de Vries, W.; Ros, G.H.; Chen, X.; Atif Muneer, M.; Zhang, F.; Wu, L. Effects of soil amendments on soil acidity and crop yields in acidic soils: A world-wide meta-analysis. J. Environ. Manag. 2023, 345, 118531. [Google Scholar] [CrossRef] [PubMed]
- Leogrande, R.; Vitti, C.; Castellini, M.; Garofalo, P.; Samarelli, I.; Lacolla, G.; Montesano, F.F.; Spagnuolo, M.; Mastrangelo, M.; Stellacci, A.M. Residual effect of compost and biochar amendment on soil chemical, biological, and physical properties and durum wheat response. Agronomy 2024, 14, 749. [Google Scholar] [CrossRef]
- Shilev, S.; Naydenov, M.; Gachev, V.; Rangova, I.; Babrikov, T. Compost incorporation in contaminated soil affects heavy metal mobility and accumulation in spinach. In Industrial, Medical and Environmental Applications of Microorganisms: Current Status and Trends, Proceedings of the V International Conference of Environmental, Industrial and Applied Microbiology, Madrid, Spain, 2–4 October 2013; Wageningen Academic Publishers: Wageningen, The Netherlands, 2014; pp. 76–82. [Google Scholar]
- Hoque, T.S.; Hasan, A.K.; Hasan, M.A.; Nahar, N.; Dey, D.K.; Mia, S.; Solaiman, Z.M.; Kader, M.A. Nutrient Release from vermicompost under anaerobic conditions in two contrasting soils of Bangladesh and its effect on wetland rice crop. Agriculture 2022, 12, 376. [Google Scholar] [CrossRef]
- Hrebecková, T.; Wiesnerová, L.; Hanc, A. Changes of enzymatic activity during a large-scale vermicomposting process with continuous feeding. J. Clean. Prod. 2019, 239, 118127. [Google Scholar] [CrossRef]
- Mahmoud, E.K.; Ibrahim, M.M. Effect of vermicompost and its mixtures with water treatment residuals on soil chemical properties and barley growth. J. Soil Sci. Plant Nutr. 2012, 12, 431–440. [Google Scholar] [CrossRef]
- Valdez-Pérez, M.A.; Fernández-Luqueño, F.; Franco-Hernandez, O.; Cotera, L.B.F.; Dendooven, L. Cultivation of beans (Phaseolus vulgaris L.) in limed or unlimed wastewater sludge, vermicompost or inorganic amended soil. Sci. Hortic. 2011, 128, 380–387. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Y.; Rong, X.; Zhou, X.; Fei, J.; Peng, J.; Luo, G. Biochar and organic fertilizer applications enhance soil functional microbial abundance and agroecosystem multifunctionality. Biochar 2024, 6, 3. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, D.; Wang, P.; Liu, X.; Cheng, K.; Li, L.; Zheng, J.; Zhang, X.; Zheng, J.; Crowley, D.; et al. Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A metaanalysis. Agric. Ecosyst. Environ. 2017, 239, 80–89. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, G.; Wu, G.; Kibue, G.W.; Li, L.; Zhang, X.; Zheng, J.; Zheng, J.; Cheng, K.; Stephen, J.; et al. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere 2016, 142, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.-h.; Hong, J.-p.; Zhang, Q.; Jin, D.-s.; Gao, C.-h. Contrast in soil microbial metabolic functional diversity to fertilization and crop rotation under rhizosphere and non-rhizosphere in the coal gangue landfill reclamation area of Loess Hills. PLoS ONE 2020, 15, e0229341. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Hu, X.M.; Deng, W.; Li, Y.; Xiong, C.; Ye, C.H.; Han, G.M.; Li, X. Changes in soil microbial community structure and functional diversity in the rhizosphere surrounding mulberry subjected to long-term fertilization. Appl. Soil Ecol. 2015, 86, 30–40. [Google Scholar] [CrossRef]
- Qian, L.; Chen, L.; Joseph, S.; Pan, G.; Li, L.; Zheng, J.; Zhang, X.; Zheng, J.; Wang, J.; Yu, X.; et al. Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China. Carbon Manag. 2014, 5, 145–154. [Google Scholar] [CrossRef]
- Najafi-Ghiri, M.; Razeghizadeh, T.; Taghizadeh, M.S.; Boostani, H.R. Effect of Sheep Manure and Its Produced Vermicompost and Biochar on the Properties of a Calcareous Soil after Barley Harvest. Communic. Soil Sci. Plant Anal. 2019, 50, 2610–2625. [Google Scholar] [CrossRef]
- Tang, C.; Yang, J.; Xie, W.; Yao, R.; Wang, X. Effect of Biochar Application on Soil Fertility, Nitrogen Use Efficiency and Balance in Coastal Salt-Affected Soil under Barley–Maize Rotation. Sustainability 2023, 15, 2893. [Google Scholar] [CrossRef]
- Jabborova, D.; Annapurna, K.; Al-Sadi, A.M.; Alharbi, S.A.; Datta, R.; Zuan, A.T.K. Biochar and Arbuscular mycorrhizal fungi mediated enhanced drought tolerance in Okra (Abelmoschus esculentus) plant growth, root morphological traits and physiological properties. Saudi J. Biol. Sci. 2021, 28, 5490–5499. [Google Scholar] [CrossRef]
- Qin, M.S.; Zhang, Q.; Pan, J.B.; Jiang, S.J.; Liu, Y.J.; Bahadur, A.; Peng, Z.L.; Yang, Y.; Feng, H.Y. Effect of arbuscular mycorrhizal fungi on soil enzyme activity is coupled with increased plant biomass. Eur. J. Soil Sci. 2020, 71, 84–92. [Google Scholar] [CrossRef]
Unit | Vermicompost | Biochar | |
---|---|---|---|
TOC | (%) | 18.09 ± 1.5 | 65.00 |
pH | 7.8 ± 0.01 | - | |
EC | (µS cm−1) | 1690 ± 10.1 | - |
Total N | (%) | 1.27 ± 0.18 | 1.31 |
P | (%) | 1.09 ± 0.09 | 0.64 |
K | (%) | 1.63 ± 0.21 | 7.95 |
Ca | (%) | 3.12 ± 0.37 | 4.28 |
Mg | (%) | 0.74 ± 0.08 | 3.06 |
Fe | (%) | 0.53 ± 0.05 | 0.13 |
Treatments | N | P | K |
---|---|---|---|
(g m−2) | |||
Control | 0 | 0 | 0 |
MF | 6.50 | 1.50 | 1.50 |
VC | 15.24 | 13.08 | 19.56 |
MF+VC | 10.87 | 7.29 | 10.53 |
BCh | 13.1 | 6.4 | 79.5 |
pH | EC (µS cm−1) | Accessible N (N-NH4+N-NO3) (mg 100 g−1) | P2O5 (mg 100 g−1) | K2O (mg 100 g−1) | TOC (%) | |
---|---|---|---|---|---|---|
Agricultural field | 8.2 ± 0.0 | 116.0 ± 1.9 | 1.49 ± 0.02 | 3.64 ± 0.30 | 9.7 ± 0.2 | 1.15 ± 0.10 |
Protein (%) | N (%) | P (%) | K (%) | |
---|---|---|---|---|
Control | 6.83 b | 1.17 b | 0.05 a | 0.70 b |
MF | 7.07 b | 1.21 b | 0.05 a | 0.86 a |
VC | 7.44 a | 1.28 a | 0.07 a | 0.86 a |
MF+VC | 6.98 b | 1.20 b | 0.06 a | 0.77 b |
BCh | 6.87 b | 1.18 b | 0.06 a | 0.74 b |
LSD | 0.3604 | 0.0618 | 0.0315 | 0.0506 |
TOC (%) | Accesible N (N-NH4+N-NO3) (mg 100 g−1) | P2O5 (mg 100 g−1) | K2O (mg 100 g−1) | |
---|---|---|---|---|
Control | 0.84 b | 1.88 b | 1.85 d | 2.93 b |
MF | 0.98 b | 2.39 a | 2.69 ab | 3.44 a |
VC | 1.43 a | 2.11 b | 2.75 a | 3.66 a |
MF+VC | 1.12 b | 2.04 b | 1.97 cd | 3.68 a |
BCh | 1.12 b | 1.89 b | 2.23 bc | 3.63 a |
LSD | 0.3106 | 0.2738 | 0.3510 | 0.4481 |
pH | EC | BR | SIR | MQ | |
---|---|---|---|---|---|
(μS cm−1) | (μg CO2-C g−1 h−1) | ||||
Control | 7.58 b | 129 c | 2.71 b | 3.52 b | 21.1 |
MF | 7.98 a | 132 b | 2.82 b | 3.55 b | 21.7 |
VC | 7.86 a | 145 a | 4.13 a | 4.65 a | 24.4 |
MF+VC | 7.88 a | 126 c | 2.92 b | 3.75 b | 21.3 |
BCh | 7.94 a | 121 d | 3.05 b | 3.73 b | 22.4 |
LSD | 0.2506 | 3.9011 | 0.6821 | 0.5044 | - |
Dehydrogenase (μg TPF g−1 h−1) | β-Glucosidase (μg pNPP g−1 h−1) | Phosphatase (μg pNPP g−1 h−1) | |
---|---|---|---|
Control | 0.310 b | 0.511 b | 0.326 c |
MF | 0.342 ab | 0.483 b | 0.568 a |
VC | 0.402 a | 0.656 a | 0.451 ab |
MF+VC | 0.342 ab | 0.532 b | 0.395 bc |
BCh | 0.284 b | 0.458 b | 0.357 bc |
LSD | 0.0542 | 0.1083 | 0.0481 |
Shannon | Pielou | Richness | |
---|---|---|---|
Control | 3.14 ± 0.06 ab | 0.956 ± 0.020 a | 27.0 ± 1.53 a |
MF | 3.25 ± 0.02 a | 0.976 ± 0.002 a | 28.0 ± 0.58 a |
VC | 3.13 ± 0.04 b | 0.970 ± 0.003 a | 25.3 ± 1.33 a |
MF+VC | 3.23 ± 0.01 ab | 0.972 ± 0.003 a | 28.0 ± 0.00 a |
BCh | 3.24 ± 0.02 a | 0.980 ± 0.004 a | 27.3 ± 0.33 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shilev, S.; Mitkov, A.; Popova, V.; Neykova, I.; Minev, N.; Szulc, W.; Yordanov, Y.; Yanev, M. Fertilization Type Differentially Affects Barley Grain Yield and Nutrient Content, Soil and Microbial Properties. Microorganisms 2024, 12, 1447. https://doi.org/10.3390/microorganisms12071447
Shilev S, Mitkov A, Popova V, Neykova I, Minev N, Szulc W, Yordanov Y, Yanev M. Fertilization Type Differentially Affects Barley Grain Yield and Nutrient Content, Soil and Microbial Properties. Microorganisms. 2024; 12(7):1447. https://doi.org/10.3390/microorganisms12071447
Chicago/Turabian StyleShilev, Stefan, Anyo Mitkov, Vanya Popova, Ivelina Neykova, Nikolay Minev, Wieslaw Szulc, Yordan Yordanov, and Mariyan Yanev. 2024. "Fertilization Type Differentially Affects Barley Grain Yield and Nutrient Content, Soil and Microbial Properties" Microorganisms 12, no. 7: 1447. https://doi.org/10.3390/microorganisms12071447
APA StyleShilev, S., Mitkov, A., Popova, V., Neykova, I., Minev, N., Szulc, W., Yordanov, Y., & Yanev, M. (2024). Fertilization Type Differentially Affects Barley Grain Yield and Nutrient Content, Soil and Microbial Properties. Microorganisms, 12(7), 1447. https://doi.org/10.3390/microorganisms12071447