Use of Phosphorus-Solubilizing Microorganisms as a Biotechnological Alternative: A Review
Abstract
:1. Introduction
2. Review Execution
2.1. Information Collection
2.2. Definition of the Research Questions
2.3. Methodology and Selection of Primary Studies
2.4. Execution of the Search
3. Results and Analysis of Results
3.1. Execution of the Bibliometric Analysis
3.1.1. Domain Overview
3.1.2. Annual Scientific Production
3.1.3. Relevant Sources in the Domain
Metrics of the Leading Journals in the Domain
3.1.4. Relevant Universities in the Domain
3.1.5. Scientific Production of the Countries in the Domain
Collaborations in the Domain Segmented by Country
Cross-Country Collaboration in the Domain
3.1.6. Domain Funding Sources
3.1.7. Conceptual Structure of the Domain
Clustering According to the Thematic Association of the Domain
Thematic Evolution of the Domain
3.2. Execution of the Literature Review
3.2.1. What Is the Importance of Phosphorus in Plant Physiology or Nutrition?
3.2.2. What Are the Sources of Phosphorus Available in the World?
Phosphate Rock
Phosphorus Availability in Plants
3.2.3. How Is Phosphorus Availability Improved Using Phosphorus-Solubilizing Microorganisms?
3.2.4. What Enzymes or Mechanisms Do Phosphorus-Solubilizing Microorganisms Produce So That the Plant Can Absorb Them?
Organic Phosphate Mineralization
Genetic Mechanisms of Phosphorus Solubilization
Organic Phosphorus Solubilization by Phosphatases
3.2.5. What Are the Colonization Processes in Rhizosphere Phosphorus-Solubilizing Microorganisms?
Rhizosphere Colonization
Endophytic Colonization
3.2.6. What Are the Prospects for Phosphorus-Solubilizing Microorganisms as a Biotechnological Solution?
4. Threats to Validity
- Selection bias
- Language bias
- Temporal validity
- Researcher expectations
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paz-Ares, J.; Puga, M.I.; Rojas-Triana, M.; Martinez-Hevia, I.; Diaz, S.; Poza-Carrión, C.; Miñambres, M.; Leyva, A. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications. Mol. Plant 2022, 15, 104–124. [Google Scholar] [CrossRef] [PubMed]
- Quispel, A. A search for signals in endophytic microorganisms. In Molecular Signals in Plant-Microbe Communications; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Albino, U.; Saridakis, D.P.; Ferreira, M.C.; Hungria, M.; Vinuesa, P.; Andrade, G. High diversity of diazotrophic bacteria associated with the carnivorous plant Drosera villosa var. villosa growing in oligotrophic habitats in Brazil. Plant Soil 2006, 287, 199–207. [Google Scholar] [CrossRef]
- Rengel, Z.; Marschner, P. Nutrient availability and management in the rhizosphere: Exploiting genotypic differences. New Phytol. 2005, 168, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Muindi, E.D.M. Understanding Soil Phosphorus. Int. J. Plant Soil Sci. 2019, 31, 1–18. [Google Scholar] [CrossRef]
- Barrow, N.J. The effects of pH on phosphate uptake from the soil. Plant Soil 2017, 410, 401–410. [Google Scholar] [CrossRef]
- Al-Juthery, H.W.A.; Lahmod, N.R.; Al-Taee, R.A.H.G. Intelligent, Nano-fertilizers: A New Technology for Improvement Nutrient Use Efficiency (Article Review). IOP Conf. Ser. Earth Environ. Sci. 2021, 735, 012086. [Google Scholar] [CrossRef]
- Syed, S.; Wang, X.; Prasad, T.N.; Lian, B. Bio-Organic Mineral Fertilizer for Sustainable Agriculture: Current Trends and Future Perspectives. Minerals 2021, 11, 1336. [Google Scholar] [CrossRef]
- Yousaf, M.; Li, J.; Lu, J.; Ren, T.; Cong, R.; Fahad, S.; Li, X. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Sci. Rep. 2017, 7, 1270. [Google Scholar] [CrossRef]
- Magnone, D.; Niasar, V.J.; Bouwman, A.F.; Beusen, A.H.; van der Zee, S.E.; Sattari, S.Z. The impact of phosphorus on projected Sub-Saharan Africa food security futures. Nat. Commun. 2022, 13, 6471. [Google Scholar] [CrossRef] [PubMed]
- Sajjad Mirza, M.; Ahmad, W.; Latif, F.; Haurat, J.; Bally, R.; Normand, P.; Malik, K.A. Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil 2001, 237, 47–54. [Google Scholar] [CrossRef]
- Chowdhury, S.P.; Schmid, M.; Hartmann, A.; Tripathi, A.K. Identification of Diazotrophs in the Culturable Bacterial Community Associated with Roots of Lasiurus sindicus, a Perennial Grass of Thar Desert, India. Microb. Ecol. 2007, 54, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Muthukumrasamy, R. Diazotrophic associations in Sugarcane. Trop. Agric. 1999, 76, 171–178. [Google Scholar]
- Green, B.W. Fertilizers in aquaculture. In Feed and Feeding Practices in Aquaculture; Elsevier: Amsterdam, The Netherlands, 2015; pp. 27–52. ISBN 978-0-08-100506-4. [Google Scholar]
- Deaker, R.; Kennedy, I.R. Improved Potential for Nitrogen Fixation in Azospirillum brasilense Sp7-S Associated with Wheat nifH Expression as a Function of Oxygen Pressure. Acta Biotechnol. 2001, 21, 3–17. [Google Scholar] [CrossRef]
- Kour, D.; Rana, K.L.; Kaur, T.; Yadav, N.; Yadav, A.N.; Kumar, M.; Kumar, V.; Dhaliwal, H.S.; Saxena, A.K. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and-mobilizing microbes: A review. Pedosphere 2021, 31, 43–75. [Google Scholar] [CrossRef]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef]
- Sattar, A.; Naveed, M.; Ali, M.; Zahir, Z.A.; Nadeem, S.M.; Yaseen, M.; Meena, V.S.; Farooq, M.; Singh, R.; Rahman, M.; et al. Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Appl. Soil Ecol. 2019, 133, 146–159. [Google Scholar] [CrossRef]
- Pino, A.F.S.; Ruiz, P.H.; Agredo-Delgado, V.; Mon, A.; Collazos, C.A. Bibliometric Analysis of the Research Landscape in Human-Computer Interaction in Ibero-America. TecnoLógicas 2024, 27, e2907. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Y.; Wu, Z.; Lv, T. A Bibliometric Analysis on Land Degradation: Current Status, Development, and Future Directions. Land 2020, 9, 28. [Google Scholar] [CrossRef]
- Kiruba N, J.M.; Saeid, A. An Insight into Microbial Inoculants for Bioconversion of Waste Biomass into Sustainable “Bio-Organic” Fertilizers: A Bibliometric Analysis and Systematic Literature Review. Int. J. Mol. Sci. 2022, 23, 13049. [Google Scholar] [CrossRef]
- Petersen, K.; Vakkalanka, S.; Kuzniarz, L. Guidelines for conducting systematic mapping studies in software engineering: An update. Inf. Softw. Technol. 2015, 64, 1–18. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Shah, S.H.H.; Lei, S.; Ali, M.; Doronin, D.; Hussain, S.T. Prosumption: Bibliometric analysis using HistCite and VOSviewer. Kybernetes 2019, 49, 1020–1045. [Google Scholar] [CrossRef]
- Solis, A.; Hurtado, J. Reutilización de software en la robótica industrial: Un mapeo sistemático. Rev. Iberoam. Automática Informática Ind. 2020, 17, 354–367. [Google Scholar] [CrossRef]
- Gusenbauer, M. Search where you will find most: Comparing the disciplinary coverage of 56 bibliographic databases. Scientometrics 2022, 127, 2683–2745. [Google Scholar] [CrossRef] [PubMed]
- Pang, F.; Li, Q.; Solanki, M.K.; Wang, Z.; Xing, Y.-X.; Dong, D.-F. Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms. Front. Microbiol. 2024, 15, 1383813. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D. The greening of the green revolution. Nature 1998, 396, 211–212. [Google Scholar] [CrossRef]
- Wendimu, A.; Yoseph, T.; Ayalew, T. Ditching Phosphatic Fertilizers for Phosphate-Solubilizing Biofertilizers: A Step towards Sustainable Agriculture and Environmental Health. Sustainability 2023, 15, 1713. [Google Scholar] [CrossRef]
- Mumtaz, M.Z.; Ahmad, M.; Etesami, H.; Mustafa, A. Editorial: Mineral solubilizing microorganisms (MSM) and their applications in nutrient availability, weathering and bioremediation. Front. Microbiol. 2023, 14, 1101426. [Google Scholar] [CrossRef]
- Emami-Karvani, Z.; Chitsaz-Esfahani, Z. Phosphorus Solubilization: Mechanisms, Recent Advancement and Future Challenge. In Soil Microbiomes for Sustainable Agriculture; Yadav, A.N., Ed.; Sustainable Development and Biodiversity; Springer International Publishing: Cham, Switzerland, 2021; Volume 27, pp. 85–131. ISBN 978-3-030-73506-7. [Google Scholar]
- Fatima, F.; Ahmad, M.M.; Verma, S.R.; Pathak, N. Relevance of phosphate solubilizing microbes in sustainable crop production: A review. Int. J. Environ. Sci. Technol. 2022, 19, 9283–9296. [Google Scholar] [CrossRef]
- Alonso, S.; Cabrerizo, F.J.; Herrera-Viedma, E.; Herrera, F. h-Index: A review focused in its variants, computation and standardization for different scientific fields. J. Informetr. 2009, 3, 273–289. [Google Scholar] [CrossRef]
- Roldan-Valadez, E.; Salazar-Ruiz, S.Y.; Ibarra-Contreras, R.; Rios, C. Current concepts on bibliometrics: A brief review about impact factor, Eigenfactor score, CiteScore, SCImago Journal Rank, Source-Normalised Impact per Paper, H-index, and alternative metrics. Ir. J. Med. Sci. 2019, 188, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ma, L.; Strokal, M.; Chu, Y.; Kroeze, C. Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China. Agric. Syst. 2018, 163, 58–72. [Google Scholar] [CrossRef]
- Fabre, R.; Egret, D.; Schöpfel, J.; Azeroual, O. Evaluating the scientific impact of research infrastructures: The role of current research information systems. Quant. Sci. Stud. 2021, 2, 42–64. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Liu, L.; Li, S.; Xie, J.; Xue, X.; Jiang, Y. Screening of phosphate-solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion. BMC Microbiol. 2022, 22, 296. [Google Scholar] [CrossRef] [PubMed]
- Upadhayay, V.K.; Singh, A.V.; Khan, A. Cross Talk Between Zinc-Solubilizing Bacteria and Plants: A Short Tale of Bacterial-Assisted Zinc Biofortification. Front. Soil Sci. 2022, 1, 788170. [Google Scholar] [CrossRef]
- McGorry, P.D.; Australian Early Psychosis Research Network Writing Group. Australian Early Psychosis Research Network: National collaboration, international competitive advantage. Med. J. Aust. 2015, 202, 170–171. [Google Scholar] [CrossRef] [PubMed]
- Dusdal, J.; Powell, J.J.W. Benefits, Motivations, and Challenges of International Collaborative Research: A Sociology of Science Case Study. Sci. Public Policy 2021, 48, 235–245. [Google Scholar] [CrossRef]
- Ahmad Abuarqoub, I. Language barriers to effective communication. Utopía Prax. Latinoam. 2019, 24, 64–77. [Google Scholar]
- Chang, Y.-C.; Khan, M.I. China–Pakistan economic corridor and maritime security collaboration. Marit. Bus. Rev. 2019, 4, 217–235. [Google Scholar] [CrossRef]
- Ibrar, M.; Mi, J.; Rafiq, M. China Pakistan economic corridor: Socio-cultural cooperation and its impact on Pakistan. In Proceedings of the 5th EEM International Conference on Education Science and Social Science (EEM-ESSS 2016), Sydney, Australia, 24–25 December 2016; pp. 179–183. [Google Scholar]
- Germany, Brazil Plan High-Level Meetings as Ties Strengthen—Bloomberg 2023. Available online: https://www.bloomberg.com/news/articles/2023-03-13/germany-brazil-plan-high-level-meetings-as-ties-strengthen (accessed on 10 July 2023).
- Gnanguênon, A. Mapping African Regional Cooperation: How to Navigate Africa’s Institutional Landscape. Available online: https://ecfr.eu/publication/mapping-african-regional-cooperation-how-to-navigate-africas-institutional-landscape/ (accessed on 10 July 2023).
- Jaakkola, E. Designing conceptual articles: Four approaches. AMS Rev. 2020, 10, 18–26. [Google Scholar] [CrossRef]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; El Enshasy, H. Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Merediz-Solà, I.; Bariviera, A.F. A bibliometric analysis of bitcoin scientific production. Res. Int. Bus. Financ. 2019, 50, 294–305. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Abdollahi, A.; Treiblmaier, H. The big picture on Instagram research: Insights from a bibliometric analysis. Telemat. Inform. 2022, 73, 101876. [Google Scholar] [CrossRef]
- Xu, Y.; Ge, X.; Zhou, B.; Lei, L.; Xiao, W. Variations in rhizosphere soil total phosphorus and bioavailable phosphorus with respect to the stand age in Pinus massoniana Lamb. Front. Plant Sci. 2022, 13, 939683. [Google Scholar] [CrossRef]
- Parmar, N.; Singh, A. Geobiotechnology. In Geomicrobiology and Biogeochemistry; Parmar, N., Singh, A., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2014; Volume 39, pp. 1–15. ISBN 978-3-642-41836-5. [Google Scholar]
- Natividad-Marin, L.; Burns, M.W.; Schneider, P. A comparison of struvite precipitation thermodynamics and kinetics modelling techniques. Water Sci. Technol. 2023, 87, 1393–1422. [Google Scholar] [CrossRef]
- Siciliano, A.; Limonti, C.; Curcio, G.M.; Molinari, R. Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery from Aqueous Waste and Wastewater. Sustainability 2020, 12, 7538. [Google Scholar] [CrossRef]
- Lorick, D.; Macura, B.; Ahlström, M.; Grimvall, A.; Harder, R. Effectiveness of struvite precipitation and ammonia stripping for recovery of phosphorus and nitrogen from anaerobic digestate: A systematic review. Environ. Evid. 2020, 9, 27. [Google Scholar] [CrossRef]
- Ryu, H.-D.; Lim, D.Y.; Kim, S.-J.; Baek, U.-I.; Chung, E.G.; Kim, K.; Lee, J.K. Struvite Precipitation for Sustainable Recovery of Nitrogen and Phosphorus from Anaerobic Digestion Effluents of Swine Manure. Sustainability 2020, 12, 8574. [Google Scholar] [CrossRef]
- Bennett, E.M.; Carpenter, S.R.; Caraco, N.F. Human Impact on Erodable Phosphorus and Eutrophication: A Global Perspective. BioScience 2001, 51, 227–234. [Google Scholar] [CrossRef]
- Payen, S.; Cosme, N.; Elliott, A.H. Freshwater eutrophication: Spatially explicit fate factors for nitrogen and phosphorus emissions at the global scale. Int. J. Life Cycle Assess. 2021, 26, 388–401. [Google Scholar] [CrossRef]
- Riaz, U.; Murtaza, G.; Anum, W.; Samreen, T.; Sarfraz, M.; Nazir, M.Z. Plant Growth-Promoting Rhizobacteria (PGPR) as Biofertilizers and Biopesticides. In Microbiota and Biofertilizers; Hakeem, K.R., Dar, G.H., Mehmood, M.A., Bhat, R.A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 181–196. ISBN 978-3-030-48770-6. [Google Scholar]
- Chen, X.; Lun, Y.; Yan, J.; Hao, T.; Weng, H. Discovering thematic change and evolution of utilizing social media for healthcare research. BMC Med. Inform. Decis. Mak. 2019, 19, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Alkhammash, R. Bibliometric, network, and thematic mapping analyses of metaphor and discourse in COVID-19 publications from 2020 to 2022. Front. Psychol. 2023, 13, 1062943. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.H.; Prochnow, L.I.; Tu, S.; Snyder, C.S. Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: An update review. Nutr. Cycl. Agroecosystems 2011, 89, 229–255. [Google Scholar] [CrossRef]
- Guelfi, D.; Nunes, A.P.P.; Sarkis, L.F.; Oliveira, D.P. Innovative Phosphate Fertilizer Technologies to Improve Phosphorus Use Efficiency in Agriculture. Sustainability 2022, 14, 14266. [Google Scholar] [CrossRef]
- Yu, H.; Wu, X.; Zhang, G.; Zhou, F.; Harvey, P.R.; Wang, L.; Fan, S.; Xie, X.; Li, F.; Zhou, H.; et al. Identification of the Phosphorus-Solubilizing Bacteria Strain JP233 and Its Effects on Soil Phosphorus Leaching Loss and Crop Growth. Front. Microbiol. 2022, 13, 892533. [Google Scholar] [CrossRef] [PubMed]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science mapping software tools: Review, analysis, and cooperative study among tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Khan, F.; Siddique, A.B.; Shabala, S.; Zhou, M.; Zhao, C. Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants 2023, 12, 2861. [Google Scholar] [CrossRef]
- Combes, C.; Cazalbou, S.; Rey, C. Apatite biominerals. Minerals 2016, 6, 34. [Google Scholar] [CrossRef]
- Reijnders, L. Phosphorus resources, their depletion and conservation, a review. Resour. Conserv. Recycl. 2014, 93, 32–49. [Google Scholar] [CrossRef]
- Wei, Z.; Zuo, H.; Li, J.; Ding, G.; Zhan, Y.; Zhang, L.; Wu, W.; Su, L.; Wei, Y. Insight into the mechanisms of insoluble phosphate transformation driven by the interactions of compound microbes during composting. Environ. Sci. Pollut. Res. 2021, 28, 32844–32855. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Anand, G.; Gaur, R.; Yadav, D. Plant–microbiome interactions for sustainable agriculture: A review. Physiol. Mol. Biol. Plants 2021, 27, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Marschner, P.; Zhang, F. Phosphorus pools and other soil properties in the rhizosphere of wheat and legumes growing in three soils in monoculture or as a mixture of wheat and legume. Plant Soil 2012, 354, 283–298. [Google Scholar] [CrossRef]
- Schachtman, D.P.; Reid, R.J.; Ayling, S.M. Phosphorus Uptake by Plants: From Soil to Cell. Plant Physiol. 1998, 116, 447–453. [Google Scholar] [CrossRef]
- Sanclemente, O.; Yacumal, V.; Patiño, C. Solubilización de fosfatos por bacterias nativas aisladas en tres agroecosistemas del Valle del Cauca (Colombia). Temas Agrar. 2017, 22, 61–69. [Google Scholar] [CrossRef]
- Estrada-Bonilla, G.A.; Durrer, A.; Cardoso, E.J.B.N. Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community. Appl. Soil Ecol. 2021, 157, 103760. [Google Scholar] [CrossRef]
- Dixon, R.; Kahn, D. Genetic regulation of biological nitrogen fixation. Nat. Rev. Microbiol. 2004, 2, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Rathinasabapathi, B.; Liu, X.; Cao, Y.; Ma, L.Q. Phosphate-Solubilizing Pseudomonads for Improving Crop Plant Nutrition and Agricultural Productivity. In Crop Improvement through Microbial Biotechnology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 363–372. ISBN 978-0-444-63987-5. [Google Scholar]
- Kleinman, P.J.A.; Sharpley, A.N.; Withers, P.J.A.; Bergström, L.; Johnson, L.T.; Doody, D.G. Implementing agricultural phosphorus science and management to combat eutrophication. AMBIO 2015, 44, 297–310. [Google Scholar] [CrossRef]
- Khan, M.S.; Ahmad, E.; Zaidi, A.; Oves, M. Functional Aspect of Phosphate-Solubilizing Bacteria: Importance in Crop Production. In Bacteria in Agrobiology: Crop Productivity; Maheshwari, D.K., Saraf, M., Aeron, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 237–263. ISBN 978-3-642-37240-7. [Google Scholar]
- Triana, Y.P. Proceso para la producción de concentrados de roca fosfórica acidulados con mezclas de ácidos para obtener materia prima para fertilizantes. In Investigación Formativa en Ingeniería; Biblioteca Virtual Miguel de Cervantes: Alicante, Spain, 2020; p. 600. [Google Scholar]
- Hellal, F.; El-Sayed, S.; Zewainy, R.; Amer, A. Importance of phosphate pock application for sustaining agricultural production in Egypt. Bull. Natl. Res. Cent. 2019, 43, 11. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, P.; Jin, Z.; DePaoli, D.W. Rare Earth and Phosphorus Leaching from a Flotation Tailings of Florida Phosphate Rock. Minerals 2018, 8, 416. [Google Scholar] [CrossRef]
- Collavino, M.M.; Sansberro, P.A.; Mroginski, L.A.; Aguilar, O.M. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol. Fertil. Soils 2010, 46, 727–738. [Google Scholar] [CrossRef]
- Maharjan, M.; Maranguit, D.; Kuzyakov, Y. Phosphorus fractions in subtropical soils depending on land use. Eur. J. Soil Biol. 2018, 87, 17–24. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, N.; Chen, Y.; Qin, Z.; Jin, Y.; Zhu, P.; Peng, C.; Colinet, G.; Zhang, S.; Liu, J. The Phosphorus Availability in Mollisol Is Determined by Inorganic Phosphorus Fraction under Long-Term Different Phosphorus Fertilization Regimes. Agronomy 2022, 12, 2364. [Google Scholar] [CrossRef]
- Bernabeu, P.R.; Pistorio, M.; Torres-Tejerizo, G.; Estrada-De Los Santos, P.; Galar, M.L.; Boiardi, J.L.; Luna, M.F. Colonization and plant growth-promotion of tomato by Burkholderia tropica. Sci. Hortic. 2015, 191, 113–120. [Google Scholar] [CrossRef]
- Roy, E.D.; Richards, P.D.; Martinelli, L.A.; Coletta, L.D.; Lins, S.R.M.; Vazquez, F.F.; Willig, E.; Spera, S.A.; VanWey, L.K.; Porder, S. The phosphorus cost of agricultural intensification in the tropics. Nat. Plants 2016, 2, 16043. [Google Scholar] [CrossRef] [PubMed]
- Mogollón, J.M.; Beusen, A.H.W.; Van Grinsven, H.J.M.; Westhoek, H.; Bouwman, A.F. Future agricultural phosphorus demand according to the shared socioeconomic pathways. Glob. Environ. Chang. 2018, 50, 149–163. [Google Scholar] [CrossRef]
- López-Bucio, J.; De La Vega, O.M.; Guevara-García, A.; Herrera-Estrella, L. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat. Biotechnol. 2000, 18, 450–453. [Google Scholar] [CrossRef] [PubMed]
- El-Ghany, M.F.A.; El-Kherbawy, M.I.; Abdel-Aal, Y.A.; El-Dek, S.I.; Abd El-Baky, T. Comparative Study between Traditional and Nano Calcium Phosphate Fertilizers on Growth and Production of Snap Bean (Phaseolus vulgaris L.) Plants. Nanomaterials 2021, 11, 2913. [Google Scholar] [CrossRef]
- Williamson, J.; Matthews, A.C.; Raymond, B. Competition and co-association, but not phosphorous availability, shape the benefits of phosphate solubilising root bacteria for maize (Zea mays). Access Microbiol. 2022, 5, 000543-v3. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, R.S.; Lade, H.; Paul, D. Methylotrophic bacteria in sustainable agriculture. World J. Microbiol. Biotechnol. 2016, 32, 120. [Google Scholar] [CrossRef]
- Sun, W.; Yu, G.; Louie, T.; Liu, T.; Zhu, C.; Xue, G.; Gao, P. From mesophilic to thermophilic digestion: The transitions of anaerobic bacterial, archaeal, and fungal community structures in sludge and manure samples. Appl. Microbiol. Biotechnol. 2015, 99, 10271–10282. [Google Scholar] [CrossRef] [PubMed]
- Matos, A.D.M.; Gomes, I.C.P.; Nietsche, S.; Xavier, A.A.; Gomes, W.S.; Dos Santos Neto, J.A.; Pereira, M.C.T. Phosphate solubilization by endophytic bacteria isolated from banana trees. An. Acad. Bras. Ciênc. 2017, 89, 2945–2954. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Montaño, F.; Alías-Villegas, C.; Bellogín, R.A.; Del Cerro, P.; Espuny, M.R.; Jiménez-Guerrero, I.; López-Baena, F.J.; Ollero, F.J.; Cubo, T. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiol. Res. 2014, 169, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Raguet, P.; Cade-Menun, B.; Mollier, A.; Abdi, D.; Ziadi, N.; Karam, A.; Morel, C. Mineralization and speciation of organic phosphorus in a sandy soil continuously cropped and phosphorus-fertilized for 28 years. Soil Biol. Biochem. 2023, 178, 108938. [Google Scholar] [CrossRef]
- Xie, J.; Xue, W.; Li, C.; Yan, Z.; Li, D.; Li, G.; Chen, X.; Chen, D. Water-soluble phosphorus contributes significantly to shaping the community structure of rhizospheric bacteria in rocky desertification areas. Sci. Rep. 2019, 9, 18408. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luo, D.; Xiong, Z.; Wang, Z.; Gao, M. Changes in rhizosphere phosphorus fractions and phosphate-mineralizing microbial populations in acid soil as influenced by organic acid exudation. Soil Tillage Res. 2023, 225, 105543. [Google Scholar] [CrossRef]
- Bal, H.B.; Nayak, L.; Das, S.; Adhya, T.K. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 2013, 366, 93–105. [Google Scholar] [CrossRef]
- Gontia-Mishra, I.; Sapre, S.; Kachare, S.; Tiwari, S. Molecular diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR from wheat (Triticum aestivum L.) rhizosphere. Plant Soil 2017, 414, 213–227. [Google Scholar] [CrossRef]
- Ramesh, A.; Sharma, S.K.; Sharma, M.P.; Yadav, N.; Joshi, O.P. Plant Growth-Promoting Traits in Enterobacter cloacae subsp. dissolvens MDSR9 Isolated from Soybean Rhizosphere and its Impact on Growth and Nutrition of Soybean and Wheat Upon Inoculation. Agric. Res. 2014, 3, 53–66. [Google Scholar] [CrossRef]
- Gupta, R.; Kumari, A.; Sharma, S.; Alzahrani, O.M.; Noureldeen, A.; Darwish, H. Identification, characterization and optimization of phosphate solubilizing rhizobacteria (PSRB) from rice rhizosphere. Saudi J. Biol. Sci. 2022, 29, 35–42. [Google Scholar] [CrossRef]
- Sarikhani, M.R.; Khoshru, B.; Greiner, R. Isolation and identification of temperature tolerant phosphate solubilizing bacteria as a potential microbial fertilizer. World J. Microbiol. Biotechnol. 2019, 35, 126. [Google Scholar] [CrossRef] [PubMed]
- Sial, N.A.; Abro, S.A.; Abbas, M.; Irfan, M.; Depar, N. Growth and yield of wheat as affected by phosphate solubilizing bacteria and phosphate fertilizer. Pak. J. Biotechnol. 2018, 15, 475–479. [Google Scholar]
- Patel, S.K.; Singh, S.; Benjamin, J.C.; Singh, V.R.; Bisht, D.; Lal, R.K. Plant growth-promoting activities of Serratia marcescens and Pseudomonas fluorescens on Capsicum annuum L. plants. Ecol. Front. 2024, 44, 654–663. [Google Scholar] [CrossRef]
- Tariq, M.; Tahreem, N.; Zafar, M.; Raza, G.; Shahid, M.; Zunair, M.; Iram, W.; Zahra, S.T. Occurrence of diverse plant growth promoting bacteria in soybean [Glycine max (L.) Merrill] root nodules and their prospective role in enhancing crop yield. Biocatal. Agric. Biotechnol. 2024, 57, 103072. [Google Scholar] [CrossRef]
- Ibrahim, E.; Ahmad, A.A.; Abdo, E.-S.; Bakr, M.A.; Khalil, M.A.; Abdallah, Y.; Ogunyemi, S.O.; Mohany, M.; Al-Rejaie, S.S.; Shou, L.; et al. Suppression of Root Rot Fungal Diseases in Common Beans (Phaseolus vulgaris L.) through the Application of Biologically Synthesized Silver Nanoparticles. Nanomaterials 2024, 14, 710. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Anjali; Arutselvan, R.; Masurkar, P.; Singh, U.B.; Tripathi, R.; Bhupenchandra, I.; Minkina, T.; Keswani, C. Bacillus subtilis-Mediated Induction of Disease Resistance and Promotion of Plant Growth of Vegetable Crops. In Applications of Bacillus and Bacillus Derived Genera in Agriculture, Biotechnology and Beyond; Mageshwaran, V., Singh, U.B., Saxena, A.K., Singh, H.B., Eds.; Springer Nature: Singapore, 2024; pp. 165–211. ISBN 978-981-9981-95-3. [Google Scholar]
- Gureev, A.P.; Kryukova, V.A.; Eremina, A.A.; Alimova, A.A.; Kirillova, M.S.; Filatova, O.A.; Moskvitina, M.I.; Kozin, S.V.; Lyasota, O.M.; Gureeva, M.V. Plant-growth promoting rhizobacteria Azospirillum partially alleviate pesticide-induced growth retardation and oxidative stress in wheat (Triticum aestivum L.). Plant Growth Regul. 2024, 1–9. [Google Scholar] [CrossRef]
- Han, L.; Zhang, H.; Bai, X.; Jiang, B. The peanut root exudate increases the transport and metabolism of nutrients and enhances the plant growth-promoting effects of burkholderia pyrrocinia strain P10. BMC Microbiol. 2023, 23, 85. [Google Scholar] [CrossRef]
- Fayaz, F.; Zahedi, M. Beneficial effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) nutritional status and tolerance indices under soil salinity stress. J. Plant Nutr. 2021, 45, 185–201. [Google Scholar] [CrossRef]
- Siqueira, J.O.; Saggin-Júnior, O.J.; Flores-Aylas, W.W.; Guimarães, P.T.G. Arbuscular mycorrhizal inoculation and superphosphate application influence plant development and yield of coffee in Brazil. Mycorrhiza 1998, 7, 293–300. [Google Scholar] [CrossRef]
- Chafai, W.; Haddioui, K.; Serghini-Caid, H.; Labazi, H.; AlZain, M.N.; Noman, O.; Parvez, M.K.; Addi, M.; Khalid, A. Impact of Arbuscular mycorrhizal Fungal Strains Isolated from Soil on the Growth, Yield, and Fruit Quality of Tomato Plants under Different Fertilization Regimens. Horticulturae 2023, 9, 973. [Google Scholar] [CrossRef]
- Navarro, J.M.; Morte, A. Mycorrhizal effectiveness in Citrus macrophylla at low phosphorus fertilization. J. Plant Physiol. 2019, 232, 301–310. [Google Scholar] [CrossRef]
- Khan, A.A.; Jilani, G.; Akhtar, M.S.; Naqvi, S.M.S.; Rasheed, M. Phosphorus solubilizing bacteria: Occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 2009, 1, 48–58. [Google Scholar]
- Emami, S.; Alikhani, H.A.; Pourbabaee, A.A.; Etesami, H.; Motasharezadeh, B.; Sarmadian, F. Consortium of endophyte and rhizosphere phosphate solubilizing bacteria improves phosphorous use efficiency in wheat cultivars in phosphorus deficient soils. Rhizosphere 2020, 14, 100196. [Google Scholar] [CrossRef]
- Singh, B. Production of phytate-hydrolyzing enzymes by thermophilic moulds. Afr. J. Biotechnol. 2012, 11, 12314–12324. [Google Scholar] [CrossRef]
- Jorquera, M.A.; Hernández, M.T.; Rengel, Z.; Marschner, P.; De La Luz Mora, M. Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol. Fertil. Soils 2008, 44, 1025–1034. [Google Scholar] [CrossRef]
- Behera, B.C.; Yadav, H.; Singh, S.K.; Mishra, R.R.; Sethi, B.K.; Dutta, S.K.; Thatoi, H.N. Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. J. Genet. Eng. Biotechnol. 2017, 15, 169–178. [Google Scholar] [CrossRef]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus Dynamics: From Soil to Plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef]
- Sangwan, S.; Prasanna, R. Mycorrhizae Helper Bacteria: Unlocking Their Potential as Bioenhancers of Plant–Arbuscular Mycorrhizal Fungal Associations. Microb. Ecol. 2022, 84, 1–10. [Google Scholar] [CrossRef]
- Gadkar, V.; David-Schwartz, R.; Kunik, T.; Kapulnik, Y. Arbuscular Mycorrhizal Fungal Colonization. Factors Involved in Host Recognition. Plant Physiol. 2001, 127, 1493–1499. [Google Scholar] [CrossRef]
- Choi, J.; Summers, W.; Paszkowski, U. Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annu. Rev. Phytopathol. 2018, 56, 135–160. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef] [PubMed]
- Collavino, M.M.; Cabrera, E.V.R.; Bruno, C.; Aguilar, O.M. Effect of soil chemical fertilization on the diversity and composition of the tomato endophytic diazotrophic community at different stages of growth. Braz. J. Microbiol. 2020, 51, 1965–1975. [Google Scholar] [CrossRef] [PubMed]
- Qaswar, M.; Ahmed, W.; Huang, J.; Liu, K.; Zhang, L.; Han, T.; Du, J.; Ali, S.; Ur-Rahim, H.; Huang, Q.; et al. Interaction of soil microbial communities and phosphorus fractions under long-term fertilization in paddy soil. J. Integr. Agric. 2022, 21, 2134–2144. [Google Scholar] [CrossRef]
- Amy, C.; Avice, J.-C.; Laval, K.; Bressan, M. Are native phosphate solubilizing bacteria a relevant alternative to mineral fertilizations for crops? Part I. when rhizobacteria meet plant P requirements. Rhizosphere 2022, 21, 100476. [Google Scholar] [CrossRef]
- Wasner, D.; Prommer, J.; Zezula, D.; Mooshammer, M.; Hu, Y.; Wanek, W. Tracing 33P-labelled organic phosphorus compounds in two soils: New insights into decomposition dynamics and direct use by microbes. Front. Soil Sci. 2023, 3, 1097965. [Google Scholar] [CrossRef]
- Corbett, D.; Lynch, B.; Wall, D.P.; Tuohy, P. The response of finely textured and organic soils to lime and phosphorus application: Results from an incubation experiment. Soil Use Manag. 2023, 39, 368–384. [Google Scholar] [CrossRef]
- Quiquampoix, H.; Mousain, D. Enzymatic Hydrolysis of Organic Phosphorus; CABI Publishing: Wallingford, UK, 2005; pp. 89–112. [Google Scholar]
- Hussain, S.M.; Hanif, S.; Sharif, A.; Bashir, F.; Iqbal, H.M.N. Unrevealing the Sources and Catalytic Functions of Phytase with Multipurpose Characteristics. Catal. Lett. 2022, 152, 1358–1371. [Google Scholar] [CrossRef]
- Iniguez, A.L.; Dong, Y.; Triplett, E.W. Nitrogen Fixation in Wheat Provided by Klebsiella pneumoniae 342. Mol. Plant-Microbe Interact. 2004, 17, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Oteino, N.; Lally, R.D.; Kiwanuka, S.; Lloyd, A.; Ryan, D.; Germaine, K.J.; Dowling, D.N. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol. 2015, 6, 745. [Google Scholar] [CrossRef]
- Maheshwari, D.K.; Dheeman, S.; Agarwal, M. Phytohormone-Producing PGPR for Sustainable Agriculture. In Bacterial Metabolites in Sustainable Agroecosystem; Maheshwari, D.K., Ed.; Sustainable Development and Biodiversity; Springer International Publishing: Cham, Switzerland, 2015; Volume 12, pp. 159–182. ISBN 978-3-319-24652-9. [Google Scholar]
- Bécquer Granados, C.J.; Prévost, D.; Juge, C.; Gauvin, C.; Delaney, S. Efecto de la inoculación con bacterias rizosféricas en dos variedades de trigo. Fase I: Condiciones controladas. Rev. Mex. Cienc. Agríc 2012, 3, 973–984. [Google Scholar]
- Silva, L.I.; Pereira, M.C.; Carvalho, A.M.; Buttrós, V.H.; Pasqual, M.; Dória, J. Phosphorus-Solubilizing Microorganisms: A Key to Sustainable Agriculture. Agriculture 2023, 13, 462. [Google Scholar] [CrossRef]
- Kumar, V.V. Plant Growth-Promoting Microorganisms: Interaction with Plants and Soil. In Plant, Soil and Microbes; Hakeem, K.R., Akhtar, M.S., Abdullah, S.N.A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–16. ISBN 978-3-319-27453-9. [Google Scholar]
- Prashar, P.; Kapoor, N.; Sachdeva, S. Rhizosphere: Its structure, bacterial diversity and significance. Rev. Environ. Sci. Biotechnol. 2014, 13, 63–77. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Sen, C.B.; Lei, M.X.; Tong, L.X.; Fang, Z.X.; Lun, J.Y.; Min, Z.; Lin, F.Y. Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers. Span. J. Agric. Res. 2017, 14, e1106. [Google Scholar] [CrossRef]
- Huang, X.-F.; Chaparro, J.M.; Reardon, K.F.; Zhang, R.; Shen, Q.; Vivanco, J.M. Rhizosphere interactions: Root exudates, microbes, and microbial communities. Botany 2014, 92, 267–275. [Google Scholar] [CrossRef]
- Rudrappa, T.; Biedrzycki, M.L.; Bais, H.P. Causes and consequences of plant-associated biofilms: Causes and consequences of plant-associated biofilms. FEMS Microbiol. Ecol. 2008, 64, 153–166. [Google Scholar] [CrossRef]
- Bogino, P.C.; de las Mercedes Oliva, M.; Sorroche, F.G.; Giordano, W. The Role of Bacterial Biofilms and Surface Components in Plant-Bacterial Associations. Int. J. Mol. Sci. 2013, 14, 15838–15859. [Google Scholar] [CrossRef]
- Kasim, W.A.; Gaafar, R.M.; Abou-Ali, R.M.; Omar, M.N.; Hewait, H.M. Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann. Agric. Sci. 2016, 61, 217–227. [Google Scholar] [CrossRef]
- Poulin, M.B.; Kuperman, L.L. Regulation of Biofilm Exopolysaccharide Production by Cyclic Di-Guanosine Monophosphate. Front. Microbiol. 2021, 12, 730980. [Google Scholar] [CrossRef]
- Meneses, C.H.S.G.; Rouws, L.F.M.; Simões-Araújo, J.L.; Vidal, M.S.; Baldani, J.I. Exopolysaccharide Production Is Required for Biofilm Formation and Plant Colonization by the Nitrogen-Fixing Endophyte Gluconacetobacter diazotrophicus. Mol. Plant-Microbe Interact. 2011, 24, 1448–1458. [Google Scholar] [CrossRef]
- Reinhold-Hurek, B.; Hurek, T. Living inside plants: Bacterial endophytes. Curr. Opin. Plant Biol. 2011, 14, 435–443. [Google Scholar] [CrossRef]
- Hallmann, J.; Quadt-Hallmann, A.; Mahaffee, W.F.; Kloepper, J.W. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 1997, 43, 895–914. [Google Scholar] [CrossRef]
- Kaul, S.; Sharma, T.; Dhar, M.K. “Omics” Tools for Better Understanding the Plant–Endophyte Interactions. Front. Plant Sci. 2016, 7, 955. [Google Scholar] [CrossRef]
- Reinhold-Hurek, B.; Hurek, T. Life in grasses: Diazotrophic endophytes. Trends Microbiol. 1998, 6, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Steinrucken, T.V.; Bissett, A.; Powell, J.R.; Raghavendra, A.K.; Van Klinken, R.D. Endophyte community composition is associated with dieback occurrence in an invasive tree. Plant Soil 2016, 405, 311–323. [Google Scholar] [CrossRef]
- Wemheuer, F.; Wemheuer, B.; Kretzschmar, D.; Pfeiffer, B.; Herzog, S.; Daniel, R.; Vidal, S. Impact of grassland management regimes on bacterial endophyte diversity differs with grass species. Lett. Appl. Microbiol. 2016, 62, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Ramos Cabrera, E.V. Investigación de Microorganismos Promotores del Crecimiento Vegetal en Cultivos de Interés Agronómico Mediante Análisis Metagenómico y Microbiológico. Ph.D. Thesis, Universidad Nacional de La Plata, Buenos Aires, Argentina, 2018. [Google Scholar]
- Hurek, T.; Reinhold-Hurek, B.; Van Montagu, M.; Kellenberger, E. Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J. Bacteriol. 1994, 176, 1913–1923. [Google Scholar] [CrossRef]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2013, 2, 587. [Google Scholar] [CrossRef]
- Liu, S.; Moon, C.D.; Zheng, N.; Huws, S.; Zhao, S.; Wang, J. Opportunities and challenges of using metagenomic data to bring uncultured microbes into cultivation. Microbiome 2022, 10, 76. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, S. Identification and Characterization of the Phosphate-Solubilizing Bacterium Pantoea sp. S32 in Reclamation Soil in Shanxi, China. Front. Microbiol. 2019, 10, 2171. [Google Scholar] [CrossRef]
- Rawat, P.; Das, S.; Shankhdhar, D.; Shankhdhar, S.C. Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J. Soil Sci. Plant Nutr. 2021, 21, 49–68. [Google Scholar] [CrossRef]
- Gurbanov, R.; Kalkanci, B.; Karadag, H.; Samgane, G. Phosphorus Solubilizing Microorganisms. In Biofertilizers; Inamuddin, M.I.A., Boddula, R., Rezakazemi, M., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 151–182. ISBN 978-1-119-72467-4. [Google Scholar]
- Xu, Y. Envirotyping for deciphering environmental impacts on crop plants. Theor. Appl. Genet. 2016, 129, 653–673. [Google Scholar] [CrossRef] [PubMed]
- Raymond, N.S.; Gómez-Muñoz, B.; Van Der Bom, F.J.T.; Nybroe, O.; Jensen, L.S.; Müller-Stöver, D.S.; Oberson, A.; Richardson, A.E. Phosphate-solubilising microorganisms for improved crop productivity: A critical assessment. New Phytol. 2021, 229, 1268–1277. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; He, J.; Zhang, H.; Jia, X.; Hu, Y.; Ye, J.; Gu, X.; Zhang, X.; Chen, H. Phosphate solubilizing microorganisms: A sustainability strategy to improve urban ecosystems. Front. Microbiol. 2024, 14, 1320853. [Google Scholar] [CrossRef] [PubMed]
- Soumare, A.; Boubekri, K.; Lyamlouli, K.; Hafidi, M.; Ouhdouch, Y.; Kouisni, L. From Isolation of Phosphate Solubilizing Microbes to Their Formulation and Use as Biofertilizers: Status and Needs. Front. Bioeng. Biotechnol. 2020, 7, 425. [Google Scholar] [CrossRef]
Search Strategy |
---|
(Phosphorus OR phosphates OR “phosphate fertilizers”) AND (fertilizers OR “plant food” OR “Soil amendments” OR “Plant nutrients” OR “Soil conditioners” OR Compost OR biofertilizer) AND (agriculture OR farming OR cultivation OR agronomy OR horticulture OR agribusiness OR sustainable) AND (solubilization OR dissolution) |
Questions | Motivation |
---|---|
What is the importance of phosphorus in plant physiology or nutrition? | Understand how phosphorus can support the plant’s nutritional process. |
What are the sources of phosphorus available in the world? | Understand how phosphorus occurs naturally in the environment and its relationship to the plant environment. |
How is phosphorus availability improved using phosphorus-solubilizing microorganisms? | To understand the mechanisms that improve phosphorus availability and new lines of work in this area. |
What enzymes or mechanisms are produced by phosphorus-solubilizing microorganisms to enable the plant to absorb phosphorus? | To understand how phosphorus-solubilizing microorganisms improve phosphorus availability for plant uptake. |
What are the colonization processes in rhizosphere phosphorus-solubilizing microorganisms? | Understand and investigate how microorganisms in the rhizosphere (the soil region around plant roots) solubilize phosphorus. |
What are the prospects for phosphorus-solubilizing microorganisms as a biotechnological solution? | To understand what route this type of biotechnology should take according to the scientific literature. |
Phosphorus-Solubilizing Microorganisms | Crop of Agronomic Interest | Results |
---|---|---|
Pseudomonas aeruginosa [101] | Rice | Increase in plant length, roots, and dry weight by 154.7% and 237.6%. |
Pantoea agglomerans [102] | Maize | Increase in number of ears/plant and number of seeds/cob by 11.2%, 13.9%, and 11.8%. |
Paenibacillus polymyxa [103] | Wheat | Increase in plant height, spikelet/spike, and kernels/spike by 16.6%, 16.2%, and 45.6%. |
Pseudomonas sp. [104] | Chili pepper | Increase in dry weight of aerial part and roots per plant by 11.2% and 7.5%. |
Enterobacter [105] | Soya | Increase in plant and seed dry weight by 13.8% and 16.1%. |
Aspergillus niger [106] | Bean | Increase in plant and root length by 50.9% and 27.6%. |
Bacillus subtilis [107] | Vegetables | Increased available phosphorus in the soil and increased plant growth. |
Azospirillum [108] | Wheat | Improve biomass and avoid pesticide poisoning. |
Burkholderia cepacian [109] | Peanut | Increase in the length of stems and roots. |
Funneliformis mosseae and Rhizophagus intraradices [110] | Wheat | Avoid high-stress salt stress and improve leaf area, root volume, N, P, and K/Na. |
Glomus clarum, Gigaspora margarita and Glomus etunicatum [111] | Coffee | Increase in plant height, stem diameter, and yield per hectare of 250 kg. |
Funneliformis mosseae and Septoglomus constrictum [112] | Tomatoes | Increased crop yield and less chemical fertilizer application. |
Rhizophagus irregularis and Funneliformis mosseae [113] | Citrus | Increased plant growth and higher P absorption. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos Cabrera, E.V.; Delgado Espinosa, Z.Y.; Solis Pino, A.F. Use of Phosphorus-Solubilizing Microorganisms as a Biotechnological Alternative: A Review. Microorganisms 2024, 12, 1591. https://doi.org/10.3390/microorganisms12081591
Ramos Cabrera EV, Delgado Espinosa ZY, Solis Pino AF. Use of Phosphorus-Solubilizing Microorganisms as a Biotechnological Alternative: A Review. Microorganisms. 2024; 12(8):1591. https://doi.org/10.3390/microorganisms12081591
Chicago/Turabian StyleRamos Cabrera, Efrén Venancio, Zuly Yuliana Delgado Espinosa, and Andrés Felipe Solis Pino. 2024. "Use of Phosphorus-Solubilizing Microorganisms as a Biotechnological Alternative: A Review" Microorganisms 12, no. 8: 1591. https://doi.org/10.3390/microorganisms12081591
APA StyleRamos Cabrera, E. V., Delgado Espinosa, Z. Y., & Solis Pino, A. F. (2024). Use of Phosphorus-Solubilizing Microorganisms as a Biotechnological Alternative: A Review. Microorganisms, 12(8), 1591. https://doi.org/10.3390/microorganisms12081591