Tracing Acinetobacter baumannii’s Journey from Hospitals to Aquatic Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Sampling Campaign
2.2. Strain Isolation, Quantification, Identification, and Antimicrobial Susceptibility Profiles
2.3. Characterization of Genotypic Resistance Profiles
2.4. Whole Genome Sequencing (WGS) and Bioinformatic Analyses of Clinical and Aquatic A. baumannii Isolates
2.5. Collection of Fish Samples
2.6. Metagenomic Analysis of Surface Water Samples and Fish Microbiota to Highlight the Connection between the Environment and Fish Microbiota
3. Results
3.1. Phenotypic and Genotypic AR Profiles of A. baumannii Isolates
3.1.1. Isolation and Quantification of A. baumannii from Romanian Wastewater and Surface Water Samples
- ESBL phenotype: EF Glina, Bucharest > IN Glina, Bucharest > IN Târgoviște >AS Glina, Bucharest > EF Târgoviște.
- CARBA phenotype: EF Glina, Bucharest > IN Glina, Bucharest > IN Târgoviște >AS Glina, Bucharest > EF Târgoviște.
- total Acinetobacter phenotype: IN Glina, Bucharest > IN Târgoviște > AS Glina, Bucharest > EF Glina, Bucharest > EF Târgoviște (Figure 2 and Supplementary Table S4).
3.1.2. Antimicrobial Susceptibilities Profiles of A. baumannii Isolates from Different Isolation Sources and by Geographical Location
3.1.3. Genotypic Characterization of β-Lactam Resistance in Clinical, Wastewater, and Surface Water A. baumannii Isolates
3.1.4. WGS Analysis in Clinical, Wastewater, and Surface Water A. baumannii Isolates
3.2. Metagenomic Analysis of Surface Water Samples and Fish Microbiota to Highlight the Connection between the Environment and Fish Microbiota
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Drane, K.; Sheehan, M.; Whelan, A.; Ariel, E.; Kinobe, R. The Role of Wastewater Treatment Plants in Dissemination of Antibiotic Resistance: Source, Measurement, Removal and Risk Assessment. Antibiotics 2024, 13, 668. [Google Scholar] [CrossRef] [PubMed]
- Calistri, P.; Iannetti, S.L.; Danzetta, M.; Narcisi, V.; Cito, F.; Di Sabatino, D.; Bruno, R.; Sauro, F.; Atzeni, M.; Carvelli, A.; et al. The Components of “One World—One Health” Approach. Transbound. Emerg. Dis. 2013; 60, 4–13. [Google Scholar] [CrossRef]
- Amos, G.C.A.; Ploumakis, S.; Zhang, L.; Hawkey, P.M.; Gaze, W.H.; Wellington, E.M.H. The Widespread Dissemination of Integrons throughout Bacterial Communities in a Riverine System. ISME J. 2018, 12, 681–691. [Google Scholar] [CrossRef]
- Pérez-Valera, E.; de Melo Rangel, W.; Elhottová, D. Cattle Manure Application Triggers Short-Term Dominance of Acinetobacter in Soil Microbial Communities. Appl. Soil Ecol. 2022, 176, 104466. [Google Scholar] [CrossRef]
- Barbu, I.C.; Gheorghe-Barbu, I.; Grigore, G.A.; Vrancianu, C.O.; Chifiriuc, M.C. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int. J. Mol. Sci. 2023, 24, 7892. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg Goldstein, R.E.; Micallef, S.A.; Gibbs, S.G.; George, A.; Claye, E.; Sapkota, A.; Joseph, S.W.; Sapkota, A.R. Detection of Vancomycin-Resistant Enterococci (VRE) at Four U.S. Wastewater Treatment Plants That Provide Effluent for Reuse. Sci. Total Environ. 2014, 466–467, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Naas, T.; Nordmann, P. Diversity, Epidemiology, and Genetics of Class D β-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Blanco, N.; Harris, A.D.; Rock, C.; Johnson, J.K.; Pineles, L.; Bonomo, R.A.; Srinivasan, A.; Pettigrew, M.M.; Thom, K.A. Risk Factors and Outcomes Associated with Multidrug-Resistant Acinetobacter Baumannii upon Intensive Care Unit Admission. Antimicrob. Agents Chemother. 2018, 62, e01631-17. [Google Scholar] [CrossRef]
- Available online: https://atlas.ecdc.europa.eu/public/index.aspx (accessed on 15 July 2024).
- Gheorghe-Barbu, I.; Surleac, M.; Barbu, I.C.; Paraschiv, S.; Bănică, L.M.; Rotaru, L.I.; Vrâncianu, C.O.; Niță Lazăr, M.; Oțelea, D.; Chifiriuc, M.C. Decoding the Resistome, Virulome and Mobilome of Clinical versus Aquatics Acinetobacter baumannii in Southern Romania. Heliyon 2024, 10, e33372. [Google Scholar] [CrossRef]
- Gheorghe-Barbu, I.; Corbu, V.M.; Vrancianu, C.O.; Marinas, I.C.; Popa, M.; Dumbravă, A.S.; Niță-Lazăr, M.; Pecete, I.; Muntean, A.A.; Popa, M.I.; et al. Phenotypic and Genotypic Characterization of Recently Isolated Multidrug-Resistant Acinetobacter baumannii Clinical and Aquatic Strains and Demonstration of Silver Nanoparticle Potency. Microorganisms 2023, 11, 2439. [Google Scholar] [CrossRef]
- Gheorghe, I.; Cristea, V.C.; Marutescu, L.; Popa, M.; Murariu, C.; Trusca, B.S.; Borcan, E.; Ghita, C.; Lazar, V.; Chifiriuc, M.C. Resistance and Virulence Features in Carbapenem-Resistant Acinetobacter baumannii Community Acquired and Nosocomial Isolates in Romania. Rev. Chim. 2019, 70, 3502–3507. [Google Scholar] [CrossRef]
- Vrâncianu, C.O.; Gheorghe-Barbu, I.; Czobor Barbu, I.; Mãruþescu, L.; Popa, M.; Niþã-Lazãr, M.; Muntean, A.-A.; Dragomirescu, C.; Sãndulescu, O.; Talapan, D.; et al. Antibiotic resistantance profiles in Acinetobacter baumannii strains isolates from wastewater in sourthen Romania. Rom. Arch. Microbiol. Immunol. 2023, 81, 257–263. [Google Scholar] [CrossRef]
- Ma, C.; McClean, S. Mapping Global Prevalence of Acinetobacter baumannii and Recent Vaccine Development to Tackle It. Vaccines 2021, 9, 570. [Google Scholar] [CrossRef] [PubMed]
- Dekić, S.; Klobučar, G.; Ivanković, T.; Zanella, D.; Vucić, M.; Bourdineaud, J.-P.; Hrenović, J. Emerging Human Pathogen Acinetobacter baumannii in the Natural Aquatic Environment: A Public Health Risk? Int. J. Environ. Health Res. 2018, 28, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.aqualia.com/en/web/aqualia-global/-/aqualia-and-fccco-complete-the-expansion-of-glina-wwtp-bucharest-romania- (accessed on 1 August 2024).
- Available online: https://www.hillintl.com/project/bucharest-glina-wastewater-treatment-plant-phase-ii/ (accessed on 1 August 2024).
- Available online: https://www.aquastrategy.com/article/romanian-wastewater-treatment-contract-award (accessed on 1 August 2024).
- Available online: https://www.erbasu.ro/en/proiect/wastewater-treatment-plants-targoviste/ (accessed on 1 August 2024).
- Available online: https://www.parcis.eu/portfolio/targoviste-wwtp-dambovita-county-romania/ (accessed on 1 August 2024).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI Supplement M100; Clinical Laboratory Standard Institute: Malvern, PA, USA, 2022. [Google Scholar]
- Available online: https://github.com/tseemann/shovill (accessed on 2 July 2024).
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://github.com/tseemann/abricate (accessed on 2 July 2024).
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and Refined Dataset for Big Data Analysis—10 Years On. Nucleic Acids Res. 2016, 44, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Mlst; v2.19.0; Github: San Francisco, CA, USA, 2024; Available online: https://github.com/tseemann/mlst (accessed on 1 July 2024).
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid Large-Scale Prokaryote Pan Genome Analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef]
- Hadfield, J.; Croucher, N.J.; Goater, R.J.; Abudahab, K.; Aanensen, D.M.; Harris, S.R. Phandango: An Interactive Viewer for Bacterial Population Genomics. Bioinformatics 2018, 34, 292–293. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://github.com/kwongj/roary2fripan (accessed on 12 July 2024).
- Available online: https://drpowell.github.io/FriPan/ (accessed on 12 July 2024).
- Available online: https://github.com/SethCommichaux/Heap_Law_for_Roary (accessed on 12 July 2024).
- Jovcic, B.; Novovic, K.; Dekic, S.; Hrenovic, J. Colistin Resistance in Environmental Isolates of Acinetobacter baumannii. Microb. Drug Resist. 2021, 27, 328–336. [Google Scholar] [CrossRef]
- Shelenkov, A.; Akimkin, V.; Mikhaylova, Y. International Clones of High Risk of Acinetobacter baumannii—Definitions, History, Properties and Perspectives. Microorganisms 2023, 11, 2115. [Google Scholar] [CrossRef]
- Available online: http://www.mgc.ac.cn/cgi-bin/VFs/genus.cgi?Genus=Acinetobacter (accessed on 1 July 2024).
- Zaharia, L.; Ioana-Toroimac, G.; Cocoş, O.; Ghiţă, F.A.; Mailat, E. Urbanization Effects on the River Systems in the Bucharest City Region (Romania). Ecosyst. Health Sustain. 2016, 2, e01247. [Google Scholar] [CrossRef]
- Manoiu, V.-M. Water Quality Changes in Ialomiţa River under the Influence of Human Settlements Activities. Aerul Apa Compon. Mediu. 2017, 2017, 317–324. [Google Scholar] [CrossRef]
- Novović, K.; Jovčić, B. Colistin Resistance in Acinetobacter baumannii: Molecular Mechanisms and Epidemiology. Antibiotics 2023, 12, 516. [Google Scholar] [CrossRef]
- Ušjak, D.; Novović, K.; Filipić, B.; Kojić, M.; Filipović, N.; Stevanović, M.M.; Milenković, M.T. In Vitro Colistin Susceptibility of Pandrug-resistant Acinetobacter baumannii Is Restored in the Presence of Selenium Nanoparticles. J. Appl. Microbiol. 2022, 133, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Cafiso, V.; Stracquadanio, S.; Lo Verde, F.; Gabriele, G.; Mezzatesta, M.L.; Caio, C.; Pigola, G.; Ferro, A.; Stefani, S. Colistin Resistant Acinetobacter baumannii: Genomic and Transcriptomic Traits Acquired Under Colistin Therapy. Front. Microbiol. 2019, 9, 3195. [Google Scholar] [CrossRef]
- Kabic, J.; Novovic, K.; Kekic, D.; Trudic, A.; Opavski, N.; Dimkic, I.; Jovcic, B.; Gajic, I. Comparative Genomics and Molecular Epidemiology of Colistin-Resistant Acinetobacter baumannii. Comput. Struct. Biotechnol. J. 2023, 21, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, M.M.; Li, B.; Pacey, M.P.; Mettus, R.T.; McElheny, C.L.; Marshall, C.W.; Ernst, R.K.; Cooper, V.S.; Doi, Y. Phylogenomics of Colistin-Susceptible and Resistant XDR Acinetobacter baumannii. J. Antimicrob. Chemother. 2018, 73, 2952–2959. [Google Scholar] [CrossRef]
- Trebosc, V.; Gartenmann, S.; Tötzl, M.; Lucchini, V.; Schellhorn, B.; Pieren, M.; Lociuro, S.; Gitzinger, M.; Tigges, M.; Bumann, D.; et al. Dissecting Colistin Resistance Mechanisms in Extensively Drug-Resistant Acinetobacter baumannii Clinical Isolates. mBio 2019, 10, e01083-19. [Google Scholar] [CrossRef] [PubMed]
- Fam, N.S.; Gamal, D.; Mohamed, S.H.; Wasfy, R.M.; Soliman, M.S.; El-Kholy, A.A.; Higgins, P.G. Molecular Characterization of Carbapenem/Colistin-Resistant Acinetobacter baumannii Clinical Isolates from Egypt by Whole-Genome Sequencing. Infect. Drug Resist. 2020, 13, 4487–4493. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, M.; D’Andrea, M.M.; Pelegrin, A.C.; Perrot, N.; Mirande, C.; Blanc, B.; Legakis, N.; Goossens, H.; Rossolini, G.M.; van Belkum, A. Abundance of Colistin-Resistant, OXA-23- and ArmA-Producing Acinetobacter baumannii Belonging to International Clone 2 in Greece. Front. Microbiol. 2020, 11, 668. [Google Scholar] [CrossRef]
- Thadtapong, N.; Chaturongakul, S.; Soodvilai, S.; Dubbs, P. Colistin and Carbapenem-Resistant Acinetobacter baumannii Aci46 in Thailand: Genome Analysis and Antibiotic Resistance Profiling. Antibiotics 2021, 10, 1054. [Google Scholar] [CrossRef] [PubMed]
- Pournaras, S.; Poulou, A.; Dafopoulou, K.; Chabane, Y.N.; Kristo, I.; Makris, D.; Hardouin, J.; Cosette, P.; Tsakris, A.; Dé, E. Growth Retardation, Reduced Invasiveness, and Impaired Colistin-Mediated Cell Death Associated with Colistin Resistance Development in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2014, 58, 828–832. [Google Scholar] [CrossRef] [PubMed]
- Agodi, A.; Voulgari, E.; Barchitta, M.; Quattrocchi, A.; Bellocchi, P.; Poulou, A.; Santangelo, C.; Castiglione, G.; Giaquinta, L.; Romeo, M.A.; et al. Spread of a Carbapenem- and Colistin-Resistant Acinetobacter baumannii ST2 Clonal Strain Causing Outbreaks in Two Sicilian Hospitals. J. Hosp. Infect. 2014, 86, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Lowe, M.; Singh-Moodley, A.; Ismail, H.; Thomas, T.; Chibabhai, V.; Nana, T.; Lowman, W.; Ismail, A.; Chan, W.Y.; Perovic, O. Molecular Characterisation of Acinetobacter baumannii Isolates from Bloodstream Infections in a Tertiary-Level Hospital in South Africa. Front. Microbiol. 2022, 13, 863129. [Google Scholar] [CrossRef] [PubMed]
- Nogbou, N.-D.; Ramashia, M.; Nkawane, G.M.; Allam, M.; Obi, C.L.; Musyoki, A.M. Whole-Genome Sequencing of a Colistin-Resistant Acinetobacter baumannii Strain Isolated at a Tertiary Health Facility in Pretoria, South Africa. Antibiotics 2022, 11, 594. [Google Scholar] [CrossRef]
- Blejan, I.E.; Diaconu, C.E.; Arsene, A.L.; Udeanu, D.I.; Ghica, M.; Drăgănescu, D.; Dragomiroiu, G.T.A.B.; Rădulescu, M.; Maltezou, H.C.; Tsatsakis, A.M.; et al. Antibiotic Resistance in Community-Acquired Pneumonia. A Romanian Perspective. Farmacia 2020, 68, 512–520. [Google Scholar] [CrossRef]
- Goic-Barisic, I.; Hrenovic, J.; Kovacic, A.; Musić, M.Š. Emergence of Oxacillinases in Environmental Carbapenem-Resistant Acinetobacter baumannii Associated with Clinical Isolates. Microb. Drug Resist. 2016, 22, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Pulami, D.; Kämpfer, P.; Glaeser, S.P. High Diversity of the Emerging Pathogen Acinetobacter baumannii and Other Acinetobacter spp. in Raw Manure, Biogas Plants Digestates, and Rural and Urban Wastewater Treatment Plants with System Specific Antimicrobial Resistance Profiles. Sci. Total Environ. 2023, 859, 160182. [Google Scholar] [CrossRef]
- Higgins, P.G.; Hrenovic, J.; Seifert, H.; Dekic, S. Characterization of Acinetobacter baumannii from Water and Sludge Line of Secondary Wastewater Treatment Plant. Water Res. 2018, 140, 261–267. [Google Scholar] [CrossRef]
- Jones, C.L.; Clancy, M.; Honnold, C.; Singh, S.; Snesrud, E.; Onmus-Leone, F.; McGann, P.; Ong, A.C.; Kwak, Y.; Waterman, P.; et al. Fatal Outbreak of an Emerging Clone of Extensively Drug-Resistant Acinetobacter baumannii with Enhanced Virulence. Clin. Infect. Dis. 2015, 61, 145–154. [Google Scholar] [CrossRef]
- Schultz, M.B.; Pham Thanh, D.; Tran Do Hoan, N.; Wick, R.R.; Ingle, D.J.; Hawkey, J.; Edwards, D.J.; Kenyon, J.J.; Phu Huong Lan, N.; Campbell, J.I.; et al. Repeated Local Emergence of Carbapenem-Resistant Acinetobacter baumannii in a Single Hospital Ward. Microb. Genom. 2016, 2, e000050. [Google Scholar] [CrossRef]
- Abhari, S.S.; Badmasti, F.; Modiri, L.; Aslani, M.M.; Asmar, M. Circulation of Imipenem-Resistant Acinetobacter baumannii ST10, ST2 and ST3 in a University Teaching Hospital from Tehran, Iran. J. Med. Microbiol. 2019, 68, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Meumann, E.M.; Anstey, N.M.; Currie, B.J.; Piera, K.A.; Kenyon, J.J.; Hall, R.M.; Davis, J.S.; Sarovich, D.S. Genomic Epidemiology of Severe Community-Onset Acinetobacter baumannii Infection. Microb. Genom. 2019, 5, e000258. [Google Scholar] [CrossRef] [PubMed]
- Valcek, A.; Nesporova, K.; Whiteway, C.; De Pooter, T.; De Coster, W.; Strazisar, M.; Van der Henst, C. Genomic Analysis of a Strain Collection Containing Multidrug, Extensively Drug, Pandrug, and Carbapenem-Resistant Modern Clinical Isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2022, 66, e00892-22. [Google Scholar] [CrossRef]
- Savin, M.; Sib, E.; Heinemann, C.; Eichel, V.M.; Nurjadi, D.; Klose, M.; Andre Hammerl, J.; Binsker, U.; Mutters, N.T. Tracing Clinically-Relevant Antimicrobial Resistances in Acinetobacter baumannii-Calcoaceticus Complex across Diverse Environments: A Study Spanning Clinical, Livestock, and Wastewater Treatment Settings. Environ. Int. 2024, 186, 108603. [Google Scholar] [CrossRef] [PubMed]
- Park, S.C.; Lee, K.; Kim, Y.O.; Won, S.; Chun, J. Large-Scale Genomics Reveals the Genetic Characteristics of Seven Species and Importance of Phylogenetic Distance for Estimating Pan-Genome Size. Front. Microbiol. 2019, 10, 834. [Google Scholar] [CrossRef]
- Sehnal, L.; Brammer-Robbins, E.; Wormington, A.M.; Blaha, L.; Bisesi, J.; Larkin, I.; Martyniuk, C.J.; Simonin, M.; Adamovsky, O. Microbiome Composition and Function in Aquatic Vertebrates: Small Organisms Making Big Impacts on Aquatic Animal Health. Front. Microbiol. 2021, 12, 567408. [Google Scholar] [CrossRef] [PubMed]
- Shayo, G.M.; Elimbinzi, E.; Shao, G.N.; Fabian, C. Severity of Waterborne Diseases in Developing Countries and the Effectiveness of Ceramic Filters for Improving Water Quality. Bull. Natl. Res. Cent. 2023, 47, 113. [Google Scholar] [CrossRef]
- Li, X.; Zhou, L.; Yu, Y.; Li, Y.; Zhao, T.; Feng, W.; Luo, K.; Yu, Y. Composition of Gut Microbiota in the Gibel Carp (Carassius auratus gibelio) Varies with Host Development. Microb. Ecol. 2017, 74, 239–249. [Google Scholar] [CrossRef]
Antibiotic/ Isolate | 22012-CA5 | 22012-ENE6 | 22013-CA5 | 22013-ENE4 | 22014-CA2 | 22014-COLN5 | 22015-CA3 | 22015-CA4 | 22015-ENE6 | 22016-CA2 | 22016-CNE3 | 22016-CNE4 | 22017-CNE1 | 22018-CA5 | 22018-CA6 | 22019-CNE4 | 22019-CNE5 | 24-IHI | 3-IHI | 49-IHI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Colistin (µG/ML) | 0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | <0.25 | 1 | <0.25 | <0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheorghe-Barbu, I.; Dragomir, R.-I.; Gradisteanu Pircalabioru, G.; Surleac, M.; Dinu, I.A.; Gaboreanu, M.D.; Czobor Barbu, I. Tracing Acinetobacter baumannii’s Journey from Hospitals to Aquatic Ecosystems. Microorganisms 2024, 12, 1703. https://doi.org/10.3390/microorganisms12081703
Gheorghe-Barbu I, Dragomir R-I, Gradisteanu Pircalabioru G, Surleac M, Dinu IA, Gaboreanu MD, Czobor Barbu I. Tracing Acinetobacter baumannii’s Journey from Hospitals to Aquatic Ecosystems. Microorganisms. 2024; 12(8):1703. https://doi.org/10.3390/microorganisms12081703
Chicago/Turabian StyleGheorghe-Barbu, Irina, Rares-Ionut Dragomir, Gratiela Gradisteanu Pircalabioru, Marius Surleac, Iulia Adelina Dinu, Madalina Diana Gaboreanu, and Ilda Czobor Barbu. 2024. "Tracing Acinetobacter baumannii’s Journey from Hospitals to Aquatic Ecosystems" Microorganisms 12, no. 8: 1703. https://doi.org/10.3390/microorganisms12081703
APA StyleGheorghe-Barbu, I., Dragomir, R. -I., Gradisteanu Pircalabioru, G., Surleac, M., Dinu, I. A., Gaboreanu, M. D., & Czobor Barbu, I. (2024). Tracing Acinetobacter baumannii’s Journey from Hospitals to Aquatic Ecosystems. Microorganisms, 12(8), 1703. https://doi.org/10.3390/microorganisms12081703