Oral Microbiome Dysbiosis as a Risk Factor for Stroke: A Comprehensive Review
Abstract
:1. Introduction
2. Oral Diseases and Stroke
Stroke or Associate Condition | Oral Disease | Year | Population | Brief Results | Reference |
---|---|---|---|---|---|
Stroke | Severe periodontitis and moderate periodontitis | 2023 | 6460 Americans aged 30 years and older | Stroke was associated with the severity of periodontitis. The risk of stroke in participants with severe and moderate periodontitis was 2.55 and 1.71 times higher, respectively, than in participants without periodontitis. | Zheng et al. [46] |
Ischemic, cardioembolic stroke, large artery atherosclerosis | Chronic periodontitis and aggressive periodontitis | 2023 | U.K. Biobank datasets (950 cases and 455,398 controls), European ancestry (851 cases and 6836 controls), European MEGASTROKE consortium (34,217 cases and 406,111 controls) | A correlation has been demonstrated between chronic periodontitis and cardioembolic stroke. However, no association was identified between periodontitis and ischemic stroke or large artery atherosclerosis. | Ma et al. [47] |
Atrial fibrillation, stroke | Periodontitis | 2021 | 5958 participants from Atherosclerosis Risk in Communities Study | Severe PD was associated with AF. Mediation analysis suggested that AF mediated the association between PD and stroke. Regular dental care was associated with a lower risk of developing AF. | Sen et al. [64] |
Ischemic stroke | Periodontitis Administration Saliva samples from periodontitis patients | 2022 | C57BL/6 mice | Mice that were gavaged with periodontitis salivary microbiota exhibited significantly worse stroke outcomes and more severe neuroinflammation. Additionally, there was an accumulation of Th17 cells and IL-17 + γδ T cells in the ileum. | Chen et al. [49] |
Stroke, myocardial Infarction | Periodontitis | 2021 | 298,128 participants from the Korean National Health Insurance Screening Group | A significant association was observed between periodontitis and an increased risk of myocardial infarction (11%) and stroke (3.5%). | Cho et al. [65] |
Stroke, coronary heart disease | Periodontitis | 2021 | 1850 participants aged 47–73 years from the EGAT study | A significant association was found between severe periodontitis and the incidence of coronary artery disease compared with the group without periodontitis or the mild periodontitis group. However, there was no significant association when considering overall cardiovascular disease events and stroke outcomes. | Tiensripojamarn et al. [50] |
Stroke, ischemic heart disease, mortality | Periodontitis | 2021 | 1402 individuals over the age of 60 in the Swedish population | A correlation has been identified between periodontitis and the incidence and mortality of coronary heart disease; however, no similar correlation has been observed between periodontitis and stroke. | Bengtsson et al. [44] |
Stroke | Periodontitis | 2024 | 26,901 participants across 32 countries | A correlation has been demonstrated between tooth loss and stroke. However, the presence of painful teeth did not contribute to this association. The combination of all three symptoms, including tooth loss, painful teeth, and painful gums, strengthened the association with stroke compared to tooth loss alone. | Murphy et al. [66] |
Stroke | Periodontitis | 2019 | C57BL/6 mice | The presence of periodontitis was associated with elevated levels of chronic inflammation and an augmented concentration of TNF-α. Nevertheless, no significant differences were observed in infarct volume or blood–brain barrier destruction. | O’Boyle et al. [67] |
Ischemic stroke, hemorrhagic stroke, myocardial infarction | Periodontitis | 2023 | 46,737 older adults from the Korea National Health Insurance Service—Senior Cohort Database | In the individual outcome analysis, ischemic stroke and myocardial infarction were associated with chronic periodontitis severity, but hemorrhagic stroke was not. | Jang et al. [68] |
Minor ischemic stroke, transient ischemic attack | Periodontitis | 2022 | The study included 792,426 young adults with periodontitis and an equivalent number of controls | The risk of developing TIA and minor ischemic stroke was significantly elevated in participants with periodontitis (HR, 1.24; 95% CI, 1.15–1.32; p < 0.001) compared to the control group. The hazard ratio was marginally elevated among younger individuals (20–40 years). | Lee et al. [69] |
Cryptogenic stroke | Periodontitis | 2024 | 146 case–control pairs of young adults (cryptogenic ischemic stroke/control) | Cryptogenic ischemic stroke was found to be associated with high-grade periodontal inflammation with an OR of 10.48 (3.18–34.5) and severe periodontitis with an OR of 7.48 (1.24–44.9). The occurrence of invasive dental procedures within a three-month period prior to the onset of CIS was associated with an odds ratio of 2.54 (95% CI: 1.01–6.39). | Leskelä et al. [48] |
Stroke | Dental caries, poor oral hygiene | 2021 | 206,602 participants from the Korean National Health Insurance Screening Group | Frequent tooth brushing (≥3 times per day) was negatively associated with the risk of stroke. The number of teeth affected by dental caries (≥4) was found to be positively associated with the incidence of stroke. | Chang et al. [54] |
Stroke | Dental caries | 2023 | 6351 participants from Atherosclerosis Risk in Communities | The presence of ≥1 dental caries was associated with an elevated risk of stroke. An increase in the number of destroyed, missing, and filled surfaces was significantly associated with both stroke and death (from any cause) but not with coronary heart disease. | Sen et al. [53] |
Stroke | Dental caries | 2023 | The study included 23,662 individuals from the Taiwan National Health Insurance Database | A stratified analysis revealed a positive association between advanced/severe dental caries and the risk of ischemic stroke in patients aged ≥40 years and hemorrhagic stroke in patients aged <40 years. | Ono et al. [70] |
Stroke | Dental caries | 2020 | 1742 stroke patients and 1193 healthy individuals | Stroke patients were found to have poorer oral health, with more dental caries, higher plaque index, and higher gingival index. | Zeng et al. [71] |
Stroke | Tooth loss | 2020 | 418 patients with ischemic stroke or transient ischemic attack | Atherosclerotic burden ≥50% and mRS scores were independently associated with severe tooth loss (>23 missing teeth). | Leao et al. [56] |
Stroke, myocardial infarction, heart failure | Tooth loss | 2019 | 4,440,970 participants included in the KNHI study | Tooth loss was an independent risk factor for cardiovascular events. Each missing tooth was associated with approximately a 1% increase in myocardial infarction, a 1.5% increase in heart failure and stroke, and a 2% increase in mortality. Having ≥5 missing teeth significantly increased the risk of cardiovascular outcomes. | Lee et al. [72] |
Cerebral infarction | Tooth loss | 2019 | 12,764 older men in the Norwegian population | The loss of more than 10 teeth was an independent predictor of the risk of a cerebral infarction. | Håheim et al. [57] |
3. Oral Bacteria and Stroke
4. Link between Oral Microbiome and Stroke Risk Factors
4.1. Chronic Inflammation
4.2. Hypertension
4.3. Endothelial Dysfunction
4.4. Atherosclerosis
4.5. Metabolic Syndrome, Obesity, and Metabolic Disorders
5. Oral–Brain and Oral–Gut–Brain Axis
6. Current Limitations and Future Direction
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajati, F.; Rajati, M.; Rasulehvandi, R.; Kazeminia, M. Prevalence of Stroke in the Elderly: A Systematic Review and Meta-Analysis. Interdiscip. Neurosurg. 2023, 32, 101746. [Google Scholar] [CrossRef]
- Johnson, W.; Onuma, O.; Owolabi, M.; Sachdev, S. Stroke: A Global Response Is Needed. Bull. World Health Organ. 2016, 94, 634–634A. [Google Scholar] [CrossRef] [PubMed]
- Salvadori, E.; Papi, G.; Insalata, G.; Rinnoci, V.; Donnini, I.; Martini, M.; Falsini, C.; Hakiki, B.; Romoli, A.; Barbato, C.; et al. Comparison between Ischemic and Hemorrhagic Strokes in Functional Outcome at Discharge from an Intensive Rehabilitation Hospital. Diagnostics 2020, 11, 38. [Google Scholar] [CrossRef]
- Peng, J.; Ghosh, D.; Zhang, F.; Yang, L.; Wu, J.; Pang, J.; Zhang, L.; Yin, S.; Jiang, Y. Advancement of Epigenetics in Stroke. Front. Neurosci. 2022, 16, 981726. [Google Scholar] [CrossRef]
- Fan, J.; Li, X.; Yu, X.; Liu, Z.; Jiang, Y.; Fang, Y.; Zong, M.; Suo, C.; Man, Q.; Xiong, L. Global Burden, Risk Factor Analysis, and Prediction Study of Ischemic Stroke, 1990–2030. Neurology 2023, 101, e137–e150. [Google Scholar] [CrossRef]
- Boehme, A.K.; Esenwa, C.; Elkind, M.S.V. Stroke Risk Factors, Genetics, and Prevention. Circ. Res. 2017, 120, 472–495. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Rossi, R.; Jabrah, D.; Doyle, K. Detection, Diagnosis and Treatment of Acute Ischemic Stroke: Current and Future Perspectives. Front. Med. Technol. 2022, 4, 748949. [Google Scholar] [CrossRef]
- Reynoso-García, J.; Miranda-Santiago, A.E.; Meléndez-Vázquez, N.M.; Acosta-Pagán, K.; Sánchez-Rosado, M.; Díaz-Rivera, J.; Rosado-Quiñones, A.M.; Acevedo-Márquez, L.; Cruz-Roldán, L.; Tosado-Rodríguez, E.L.; et al. A Complete Guide to Human Microbiomes: Body Niches, Transmission, Development, Dysbiosis, and Restoration. Front. Syst. Biol. 2022, 2, 951403. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Ma, J.; Kim, W.; Kim, J.; Belenky, P.; Lee, I. Genome-Resolved Metagenomics: A Game Changer for Microbiome Medicine. Exp. Mol. Med. 2024, 56, 1501–1512. [Google Scholar] [CrossRef]
- Sharma, V.; Sharma, V.; Shahjouei, S.; Li, J.; Chaudhary, D.; Khan, A.; Wolk, D.M.; Zand, R.; Abedi, V. At the Intersection of Gut Microbiome and Stroke: A Systematic Review of the Literature. Front. Neurol. 2021, 12, 729399. [Google Scholar] [CrossRef]
- Park, M.J.; Pilla, R.; Panta, A.; Pandey, S.; Sarawichitr, B.; Suchodolski, J.; Sohrabji, F. Reproductive Senescence and Ischemic Stroke Remodel the Gut Microbiome and Modulate the Effects of Estrogen Treatment in Female Rats. Transl. Stroke Res. 2020, 11, 812–830. [Google Scholar] [CrossRef] [PubMed]
- Yamashiro, K.; Kurita, N.; Urabe, T.; Hattori, N. Role of the Gut Microbiota in Stroke Pathogenesis and Potential Therapeutic Implications. Ann. Nutr. Metab. 2021, 77, 36–44. [Google Scholar] [CrossRef]
- Nazir, M.; Al-Ansari, A.; Al-Khalifa, K.; Alhareky, M.; Gaffar, B.; Almas, K. Global Prevalence of Periodontal Disease and Lack of Its Surveillance. Sci. World J. 2020, 2020, 2146160. [Google Scholar] [CrossRef] [PubMed]
- Santacroce, L.; Passarelli, P.C.; Azzolino, D.; Bottalico, L.; Charitos, I.A.; Cazzolla, A.P.; Colella, M.; Topi, S.; Godoy, F.G.; D’Addona, A. Oral Microbiota in Human Health and Disease: A Perspective. Exp. Biol. Med. 2023, 248, 1288–1301. [Google Scholar] [CrossRef]
- Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.R.; Yu, W.-H.; Lakshmanan, A.; Wade, W.G. The Human Oral Microbiome. J. Bacteriol. 2010, 192, 5002–5017. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Yang, X.; Li, C.; Song, Z. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front. Microbiol. 2022, 13, 895537. [Google Scholar] [CrossRef] [PubMed]
- HOMD: Human Oral Microbiome Database. Available online: https://www.homd.org/ (accessed on 17 July 2024).
- Lee, Y.-H.; Chung, S.W.; Auh, Q.-S.; Hong, S.-J.; Lee, Y.-A.; Jung, J.; Lee, G.-J.; Park, H.J.; Shin, S.-I.; Hong, J.-Y. Progress in Oral Microbiome Related to Oral and Systemic Diseases: An Update. Diagnostics 2021, 11, 1283. [Google Scholar] [CrossRef]
- Gomez, A.; Espinoza, J.L.; Harkins, D.M.; Leong, P.; Saffery, R.; Bockmann, M.; Torralba, M.; Kuelbs, C.; Kodukula, R.; Inman, J.; et al. Host Genetic Control of the Oral Microbiome in Health and Disease. Cell Host Microbe 2017, 22, 269–278.e3. [Google Scholar] [CrossRef]
- Santonocito, S.; Giudice, A.; Polizzi, A.; Troiano, G.; Merlo, E.M.; Sclafani, R.; Grosso, G.; Isola, G. A Cross-Talk between Diet and the Oral Microbiome: Balance of Nutrition on Inflammation and Immune System’s Response during Periodontitis. Nutrients 2022, 14, 2426. [Google Scholar] [CrossRef]
- Maki, K.A.; Ganesan, S.M.; Meeks, B.; Farmer, N.; Kazmi, N.; Barb, J.J.; Joseph, P.V.; Wallen, G.R. The Role of the Oral Microbiome in Smoking-Related Cardiovascular Risk: A Review of the Literature Exploring Mechanisms and Pathways. J. Transl. Med. 2022, 20, 584. [Google Scholar] [CrossRef]
- Barb, J.; Maki, K.; Kazmi, N.; Meeks, B.; Krumlauf, M.; Tuason, R.; Brooks, A.; Ames, N.; Goldman, D.; Wallen, G. The Oral Microbiome in Alcohol Use Disorder: A Longitudinal Analysis during Inpatient Treatment. J. Oral Microbiol. 2021, 14, 2004790. [Google Scholar] [CrossRef] [PubMed]
- Renson, A.; Jones, H.E.; Beghini, F.; Segata, N.; Zolnik, C.P.; Usyk, M.; Moody, T.U.; Thorpe, L.; Burk, R.; Waldron, L.; et al. Sociodemographic Variation in the Oral Microbiome. Ann. Epidemiol. 2019, 35, 73–80.e2. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.C.; von Ohle, C.; Frese, C.; Boutin, S.; Bridson, C.; Schoilew, K.; Peikert, S.A.; Hellwig, E.; Pelz, K.; Wittmer, A.; et al. The Oral Microbiota Is a Reservoir for Antimicrobial Resistance: Resistome and Phenotypic Resistance Characteristics of Oral Biofilm in Health, Caries, and Periodontitis. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 37. [Google Scholar] [CrossRef]
- Jang, H.; Patoine, A.; Wu, T.T.; Castillo, D.A.; Xiao, J. Oral Microflora and Pregnancy: A Systematic Review and Meta-Analysis. Sci. Rep. 2021, 11, 16870. [Google Scholar] [CrossRef] [PubMed]
- Morrison, A.G.; Sarkar, S.; Umar, S.; Lee, S.T.M.; Thomas, S.M. The Contribution of the Human Oral Microbiome to Oral Disease: A Review. Microorganisms 2023, 11, 318. [Google Scholar] [CrossRef]
- Radaic, A.; Kapila, Y.L. The Oralome and Its Dysbiosis: New Insights into Oral Microbiome-Host Interactions. Comput. Struct. Biotechnol. J. 2021, 19, 1335–1360. [Google Scholar] [CrossRef]
- Sato, N.; Kakuta, M.; Uchino, E.; Hasegawa, T.; Kojima, R.; Kobayashi, W.; Sawada, K.; Tamura, Y.; Tokuda, I.; Imoto, S.; et al. The Relationship between Cigarette Smoking and the Tongue Microbiome in an East Asian Population. J. Oral Microbiol. 2020, 12, 1742527. [Google Scholar] [CrossRef]
- Huang, Q.; Wu, X.; Zhou, X.; Sun, Z.; Shen, J.; Kong, M.; Chen, N.; Qiu, J.-G.; Jiang, B.-H.; Yuan, C.; et al. Association of Cigarette Smoking with Oral Bacterial Microbiota and Cardiometabolic Health in Chinese Adults. BMC Microbiol. 2023, 23, 346. [Google Scholar] [CrossRef]
- Fan, X.; Peters, B.A.; Jacobs, E.J.; Gapstur, S.M.; Purdue, M.P.; Freedman, N.D.; Alekseyenko, A.V.; Wu, J.; Yang, L.; Pei, Z.; et al. Drinking Alcohol Is Associated with Variation in the Human Oral Microbiome in a Large Study of American Adults. Microbiome 2018, 6, 59. [Google Scholar] [CrossRef]
- Zhang, J.S.; Chu, C.-H.; Yu, O.Y. Oral Microbiome and Dental Caries Development. Dent. J. 2022, 10, 184. [Google Scholar] [CrossRef]
- La Rosa, G.R.M.; Gattuso, G.; Pedullà, E.; Rapisarda, E.; Nicolosi, D.; Salmeri, M. Association of Oral Dysbiosis with Oral Cancer Development. Oncol. Lett. 2020, 19, 3045–3058. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, M.; Polizzi, A.; Santonocito, S.; Romano, A.; Lombardi, T.; Isola, G. Impact of Oral Microbiome in Periodontal Health and Periodontitis: A Critical Review on Prevention and Treatment. Int. J. Mol. Sci. 2022, 23, 5142. [Google Scholar] [CrossRef]
- Chan, A.K.Y.; Tamrakar, M.; Jiang, C.M.; Lo, E.C.M.; Leung, K.C.M.; Chu, C.H. A Systematic Review on Caries Status of Older Adults. Int. J. Environ. Res. Public Health 2021, 18, 10662. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.; Dilthey, A.; Finzer, P. The Role of Microbiome-Host Interactions in the Development of Alzheimer’s Disease. Front. Cell. Infect. Microbiol. 2023, 13, 1151021. [Google Scholar] [CrossRef] [PubMed]
- Verhoeff, M.C.; Eikenboom, D.; Koutris, M.; de Vries, R.; Berendse, H.W.; van Dijk, K.D.; Lobbezoo, F. Parkinson’s Disease and Oral Health: A Systematic Review. Arch. Oral Biol. 2023, 151, 105712. [Google Scholar] [CrossRef]
- Boussamet, L.; Montassier, E.; Mathé, C.; Garcia, A.; Morille, J.; Shah, S.; Dugast, E.; Wiertlewski, S.; Gourdel, M.; Bang, C.; et al. Investigating the Metabolite Signature of an Altered Oral Microbiota as a Discriminant Factor for Multiple Sclerosis: A Pilot Study. Sci. Rep. 2024, 14, 7786. [Google Scholar] [CrossRef]
- Inoue, M.; Kimoto, K.; Honma, Y.; Tomita, R.; Manabe, Y. Oral Environment and Cerebral Blood Flow in Patients with Neurodegenerative Dementia: Comparison of Alzheimer Type Dementia and Dementia with Lewy Bodies. Psychogeriatr. Off. J. Jpn. Psychogeriatr. Soc. 2023, 23, 23–31. [Google Scholar] [CrossRef]
- Sankaranarayanan, A.; Ramanathan, P.; Zakrzewski, M.; Vasani, D.; Ganapathy, R.; Brakoulias, V.; Douglas, M.W. Oral Microbiome and Treatment Resistance Status in Schizophrenia: A Cross-Sectional Study. Indian J. Psychol. Med. 2024. [Google Scholar] [CrossRef]
- Pillai, R.S.; Iyer, K.; Spin-Neto, R.; Kothari, S.F.; Nielsen, J.F.; Kothari, M. Oral Health and Brain Injury: Causal or Casual Relation? Cerebrovasc. Dis. Extra 2018, 8, 1–15. [Google Scholar] [CrossRef]
- Könönen, E.; Gursoy, M.; Gursoy, U.K. Periodontitis: A Multifaceted Disease of Tooth-Supporting Tissues. J. Clin. Med. 2019, 8, 1135. [Google Scholar] [CrossRef]
- Meuric, V.; Le Gall-David, S.; Boyer, E.; Acuña-Amador, L.; Martin, B.; Fong, S.B.; Barloy-Hubler, F.; Bonnaure-Mallet, M. Signature of Microbial Dysbiosis in Periodontitis. Appl. Environ. Microbiol. 2017, 83, e00462-17. [Google Scholar] [CrossRef] [PubMed]
- Dewan, M.; Pandit, A.K.; Goyal, L. Association of Periodontitis and Gingivitis with Stroke: A Systematic Review and Meta-Analysis. Dent. Med. Probl. 2024, 61, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, V.W.; Persson, G.R.; Berglund, J.S.; Renvert, S. Periodontitis Related to Cardiovascular Events and Mortality: A Long-Time Longitudinal Study. Clin. Oral Investig. 2021, 25, 4085–4095. [Google Scholar] [CrossRef] [PubMed]
- Sfyroeras, G.S.; Roussas, N.; Saleptsis, V.G.; Argyriou, C.; Giannoukas, A.D. Association between Periodontal Disease and Stroke. J. Vasc. Surg. 2012, 55, 1178–1184. [Google Scholar] [CrossRef]
- Zheng, X.; Li, X.; Zhen, J.; Xue, D.; Hu, J.; Cao, Q.; Xu, A.; Cheung, B.M.Y.; Wu, J.; Li, C. Periodontitis Is Associated with Stroke. J. Transl. Med. 2023, 21, 697. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Wu, M.; Gao, J.; Liu, C.; Xie, Y.; Lv, Q.; Zhang, X. Periodontitis and Stroke: A Mendelian Randomization Study. Brain Behav. 2023, 13, e2888. [Google Scholar] [CrossRef]
- Leskelä, J.; Putaala, J.; Martinez-Majander, N.; Tulkki, L.; Manzoor, M.; Zaric, S.; Ylikotila, P.; Lautamäki, R.; Saraste, A.; Suihko, S.; et al. Periodontitis, Dental Procedures, and Young-Onset Cryptogenic Stroke. J. Dent. Res. 2024, 103, 494–501. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Bai, L.; Dilimulati, D.; Shao, S.; Qiu, C.; Liu, T.; Xu, S.; Bai, X.-B.; Du, L.-J.; Zhou, L.-J.; et al. Periodontitis Salivary Microbiota Aggravates Ischemic Stroke Through IL-17A. Front. Neurosci. 2022, 16, 876582. [Google Scholar] [CrossRef]
- Tiensripojamarn, N.; Lertpimonchai, A.; Tavedhikul, K.; Udomsak, A.; Vathesatogkit, P.; Sritara, P.; Charatkulangkun, O. Periodontitis Is Associated with Cardiovascular Diseases: A 13-Year Study. J. Clin. Periodontol. 2021, 48, 348–356. [Google Scholar] [CrossRef]
- Shahi, S.; Farhoudi, M.; Dizaj, S.M.; Sharifi, S.; Sadigh-Eteghad, S.; Goh, K.W.; Ming, L.C.; Dhaliwal, J.S.; Salatin, S. The Link between Stroke Risk and Orodental Status—A Comprehensive Review. J. Clin. Med. 2022, 11, 5854. [Google Scholar] [CrossRef]
- Söder, B.; Meurman, J.H.; Söder, P.-Ö. Gingival Inflammation Associates with Stroke—A Role for Oral Health Personnel in Prevention: A Database Study. PLoS ONE 2015, 10, e0137142. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Logue, L.; Logue, M.; Otersen, E.A.L.; Mason, E.; Moss, K.; Curtis, J.; Hicklin, D.; Nichols, C.; Rosamond, W.D.; et al. Dental Caries, Race and Incident Ischemic Stroke, Coronary Heart Disease, and Death. Stroke 2024, 55, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Woo, H.G.; Lee, J.S.; Song, T.-J. Better Oral Hygiene Is Associated with Lower Risk of Stroke. J. Periodontol. 2021, 92, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Woo, H.G.; Park, J.; Lee, J.S.; Song, T.-J. Improved Oral Hygiene Care Is Associated with Decreased Risk of Occurrence for Atrial Fibrillation and Heart Failure: A Nationwide Population-Based Cohort Study. Eur. J. Prev. Cardiol. 2020, 27, 1835–1845. [Google Scholar] [CrossRef]
- Leao, T.S.; Tomasi, G.; Ibrahim, M.S.; Conzatti, L.; Marrone, L.P.; Reynolds, M.A.; Gomes, M.S. Tooth Loss Is Associated with Atherosclerosis and a Poorer Functional Outcome among Stroke Patients. Clin. Oral Investig. 2020, 24, 4541–4548. [Google Scholar] [CrossRef]
- Håheim, L.L.; Nafstad, P.; Schwarze, P.E.; Olsen, I.; Rønningen, K.S.; Thelle, D.S. Oral Health and Cardiovascular Disease Risk Factors and Mortality of Cerebral Haemorrhage, Cerebral Infarction and Unspecified Stroke in Elderly Men: A Prospective Cohort Study. Scand. J. Public Health 2020, 48, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Hassan, N.; Khatoon, K.; Mirza, M.A.; Naseef, P.P.; Kuruniyan, M.S.; Iqbal, Z. Periodontitis and Systemic Disorder—An Overview of Relation and Novel Treatment Modalities. Pharmaceutics 2021, 13, 1175. [Google Scholar] [CrossRef]
- Yamamoto, T.; Eguchi, T. Heat Shock Proteins and Periodontitis—Cross-Reaction Between Bacterial and Human HSP in Periodontal Infection Linking with Cardiovascular Diseases. In Heat Shock Proteins in Inflammatory Diseases; Asea, A.A.A., Kaur, P., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 19–32. ISBN 978-3-030-85168-2. [Google Scholar]
- Isola, G.; Santonocito, S.; Lupi, S.M.; Polizzi, A.; Sclafani, R.; Patini, R.; Marchetti, E. Periodontal Health and Disease in the Context of Systemic Diseases. Mediat. Inflamm. 2023, 2023, 9720947. [Google Scholar] [CrossRef]
- Shojaee, M.; Fereydooni Golpasha, M.; Maliji, G.; Bijani, A.; Aghajanpour Mir, S.M.; Mousavi Kani, S.N. C—Reactive Protein Levels in Patients with Periodontal Disease and Normal Subjects. Int. J. Mol. Cell. Med. 2013, 2, 151–155. [Google Scholar]
- Gusev, E.; Sarapultsev, A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int. J. Mol. Sci. 2023, 24, 7910. [Google Scholar] [CrossRef]
- Oh, S.E.; Parikh, N.S. Recent Advances in the Impact of Infection and Inflammation on Stroke Risk and Outcomes. Curr. Neurol. Neurosci. Rep. 2022, 22, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Redd, K.; Trivedi, T.; Moss, K.; Alonso, A.; Soliman, E.Z.; Magnani, J.W.; Chen, L.Y.; Gottesman, R.F.; Rosamond, W.; et al. Periodontal Disease, Atrial Fibrillation and Stroke. Am. Heart J. 2021, 235, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Severe Periodontal Disease Increases Acute Myocardial Infarction and Stroke: A 10-Year Retrospective Follow-Up Study—H.J. Cho, M.S. Shin, Y. Song, S.K. Park, S.M. Park, H.D. Kim. 2021. Available online: https://journals.sagepub.com/doi/10.1177/0022034520986097?icid=int.sj-full-text.similar-articles.2 (accessed on 17 July 2024).
- Murphy, R.P.; Hankey, G.J.; Judge, C.; Reddin, C.; Langhorne, P.; López–Jaramillo, P.; Mondo, C.; Xavier, D.; Wang, X.; Yusuf, S.; et al. Markers of Periodontal Disease and Risk of Stroke: INTERSTROKE Case-Control Study. J. Stroke Cerebrovasc. Dis. 2024, 33, 107803. [Google Scholar] [CrossRef]
- O’Boyle, C.; Haley, M.J.; Lemarchand, E.; Smith, C.J.; Allan, S.M.; Konkel, J.E.; Lawrence, C.B. Ligature-Induced Periodontitis Induces Systemic Inflammation but Does Not Alter Acute Outcome after Stroke in Mice. Int. J. Stroke Off. J. Int. Stroke Soc. 2020, 15, 175–187. [Google Scholar] [CrossRef]
- Jang, K.-A.; Kim, Y.-R.; Joo, K.; Son, M. Chronic Periodontitis and Risk of Cerebro-Cardiovascular Diseases among Older Koreans. Gerodontology 2023, 1–9. [Google Scholar] [CrossRef]
- Lee, Y.-T.; Tsai, C.-F.; Yen, Y.-C.; Huang, L.-K.; Chao, S.-P.; Hu, L.-Y.; Shen, C.-C.; Lee, H.-C. Periodontitis Is a Potential Risk Factor for Transient Ischemic Attack and Minor Ischemic Stroke in Young Adults: A Nationwide Population-Based Cohort Study. J. Periodontol. 2022, 93, 1848–1856. [Google Scholar] [CrossRef]
- Ono, Y.; Chou, Y.-C.; Chien, W.-C.; Sun, C.-A. Association between Severity of Dental Caries and the Risk of Stroke. Oral Dis. 2024, 30, 3413–3421. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.-N.; Rao, W.-W.; Luo, S.-H.; Zhang, Q.-E.; Hall, B.J.; Ungvari, G.S.; Chen, L.-G.; Xiang, Y.-T. Oral Health in Patients with Stroke: A Meta-Analysis of Comparative Studies. Top. Stroke Rehabil. 2020, 27, 75–80. [Google Scholar] [CrossRef]
- Lee, H.J.; Choi, E.K.; Park, J.B.; Han, K.D.; Oh, S. Tooth Loss Predicts Myocardial Infarction, Heart Failure, Stroke, and Death. J. Dent. Res. 2019, 98, 164–170. [Google Scholar] [CrossRef]
- Pisano, M.; Giordano, F.; Sangiovanni, G.; Capuano, N.; Acerra, A.; D’Ambrosio, F. The Interaction between the Oral Microbiome and Systemic Diseases: A Narrative Review. Microbiol. Res. 2023, 14, 1862–1878. [Google Scholar] [CrossRef]
- Sun, W.; Huang, S.; Yang, X.; Luo, Y.; Liu, L.; Wu, D. The Oral Microbiome of Patients with Ischemic Stroke Predicts Their Severity and Prognosis. Front. Immunol. 2023, 14, 1171898. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, Y.; Cai, Q.; Gao, Y.; Cai, H.; Wu, J.; Zheng, W.; Long, J.; Shu, X.-O. Oral Microbiome and Ischemic Stroke Risk among Elderly Chinese Women. J. Oral Microbiol. 2023, 15, 2266655. [Google Scholar] [CrossRef]
- Moldvai, J.; Orsós, M.; Herczeg, E.; Uhrin, E.; Kivovics, M.; Németh, O. Oral Health Status and Its Associated Factors among Post-Stroke Inpatients: A Cross-Sectional Study in Hungary. BMC Oral Health 2022, 22, 234. [Google Scholar] [CrossRef] [PubMed]
- Boaden, E.; Lyons, M.; Singhrao, S.K.; Dickinson, H.; Leathley, M.; Lightbody, C.E.; McLoughlin, A.; Khan, Z.; Crean, S.; Smith, C.; et al. Oral Flora in Acute Stroke Patients: A Prospective Exploratory Observational Study. Gerodontology 2017, 34, 343–356. [Google Scholar] [CrossRef]
- Perry, S.E.; Huckabee, M.-L.; Tompkins, G.; Milne, T. The Association between Oral Bacteria, the Cough Reflex and Pneumonia in Patients with Acute Stroke and Suspected Dysphagia. J. Oral Rehabil. 2020, 47, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, M.; Leskelä, J.; Pietiäinen, M.; Martinez-Majander, N.; Ylikotila, P.; Könönen, E.; Niiranen, T.; Lahti, L.; Sinisalo, J.; Putaala, J.; et al. Multikingdom Oral Microbiome Interactions in Early-Onset Cryptogenic Ischemic Stroke. ISME Commun. 2024, 4, ycae088. [Google Scholar] [CrossRef]
- Merglova, V.; Koberova-Ivancakova, R.; Broukal, Z.; Dort, J. The Presence of Cariogenic and Periodontal Pathogens in the Oral Cavity of One-Year-Old Infants Delivered Pre-Term with Very Low Birthweights: A Case Control Study. BMC Oral Health 2014, 14, 109. [Google Scholar] [CrossRef]
- Zhou, S.; He, T.-C.; Zhang, Y.; Zhang, H. Comparison of the Main Pathogenic Microorganisms of Various Common Oral Diseases in Children and Adults. Pediatr. Discov. 2023, 1, e35. [Google Scholar] [CrossRef]
- Lemos, J.; Palmer, S.; Zeng, L.; Wen, Z.; Kajfasz, J.; Freires, I.; Abranches, J.; Brady, L. The Biology of Streptococcus Mutans. Microbiol. Spectr. 2019, 7, 1. [Google Scholar] [CrossRef]
- Hosoki, S.; Saito, S.; Tonomura, S.; Ishiyama, H.; Yoshimoto, T.; Ikeda, S.; Ikenouchi, H.; Yamamoto, Y.; Hattori, Y.; Miwa, K.; et al. Oral Carriage of Streptococcus Mutans Harboring the Cnm Gene Relates to an Increased Incidence of Cerebral Microbleeds. Stroke 2020, 51, 3632–3639. [Google Scholar] [CrossRef]
- Patrakka, O.; Pienimäki, J.; Tuomisto, S.; Ollikainen, J.; Lehtimäki, T.; Karhunen, P.J.; Martiskainen, M. Oral Bacterial Signatures in Cerebral Thrombi of Patients with Acute Ischemic Stroke Treated with Thrombectomy. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2019, 8, e012330. [Google Scholar] [CrossRef]
- Patrakka, O.; Mehtonen, H.; Tuomisto, S.; Pienimäki, J.-P.; Ollikainen, J.; Huhtala, H.; Pessi, T.; Oksala, N.; Lehtimäki, T.; Järnstedt, J.; et al. Association between Oral Pathology, Carotid Stenosis, and Oral Bacterial DNA in Cerebral Thrombi of Patients with Stroke. Stroke Res. Treat. 2021, 2021, 5402764. [Google Scholar] [CrossRef] [PubMed]
- Patrakka, O.; Tuomisto, S.; Pienimäki, J.; Ollikainen, J.; Oksala, N.; Lampinen, V.; Ojanen, M.J.T.; Huhtala, H.; Hytönen, V.P.; Lehtimäki, T.; et al. Thrombus Aspirates From Patients with Acute Ischemic Stroke Are Infiltrated by Viridans Streptococci. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2023, 12, e030639. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Liang, J.; Li, X.; Deng, Y.; Cheng, S.; Wu, Q.; Song, W.; He, Y.; Zhu, J.; Zhang, X.; et al. Association between Oral Microbial Dysbiosis and Poor Functional Outcomes in Stroke-Associated Pneumonia Patients. BMC Microbiol. 2023, 23, 305. [Google Scholar] [CrossRef] [PubMed]
- Basic, A.; Dahlén, G. Microbial Metabolites in the Pathogenesis of Periodontal Diseases: A Narrative Review. Front. Oral Health 2023, 4, 1210200. [Google Scholar] [CrossRef]
- Fragkioudakis, I.; Riggio, M.P.; Apatzidou, D.A. Understanding the Microbial Components of Periodontal Diseases and Periodontal Treatment-Induced Microbiological Shifts. J. Med. Microbiol. 2021, 70, 001247. [Google Scholar] [CrossRef]
- Senini, V.; Amara, U.; Paul, M.; Kim, H. Porphyromonas gingivalis Lipopolysaccharide Activates Platelet Cdc42 and Promotes Platelet Spreading and Thrombosis. J. Periodontol. 2019, 90, 1336–1345. [Google Scholar] [CrossRef]
- Freiherr Von Seckendorff, A.; Nomenjanahary, M.S.; Labreuche, J.; Ollivier, V.; Di Meglio, L.; Dupont, S.; Hamdani, M.; Brikci-Nigassa, N.; Brun, A.; Boursin, P.; et al. Periodontitis in Ischemic Stroke: Impact of Porphyromonas gingivalis on Thrombus Composition and Ischemic Stroke Outcomes. Res. Pract. Thromb. Haemost. 2024, 8, 102313. [Google Scholar] [CrossRef]
- Nishi, H.; Hosomi, N.; Ohta, K.; Aoki, S.; Nakamori, M.; Nezu, T.; Shigeishi, H.; Shintani, T.; Obayashi, T.; Ishikawa, K.; et al. Serum Immunoglobulin G Antibody Titer to Fusobacterium Nucleatum Is Associated with Unfavorable Outcome after Stroke. Clin. Exp. Immunol. 2020, 200, 302–309. [Google Scholar] [CrossRef]
- Shiga, Y.; Hosomi, N.; Nezu, T.; Nishi, H.; Aoki, S.; Nakamori, M.; Ishikawa, K.; Kinoshita, N.; Imamura, E.; Ueno, H.; et al. Association between Periodontal Disease Due to Campylobacter Rectus and Cerebral Microbleeds in Acute Stroke Patients. PLoS ONE 2020, 15, e0239773. [Google Scholar] [CrossRef]
- Rao, A.; D’Souza, C.; Subramanyam, K.; Rai, P.; Thomas, B.; Gopalakrishnan, M.; Karunasagar, I.; Kumar, B.K. Molecular Analysis Shows the Presence of Periodontal Bacterial DNA in Atherosclerotic Plaques from Patients with Coronary Artery Disease. Indian Heart J. 2021, 73, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Mahendra, J.; Mahendra, L.; Felix, J.; Romanos, G. Prevelance of Periodontopathogenic Bacteria in Subgingival Biofilm and Atherosclerotic Plaques of Patients Undergoing Coronary Revascularization Surgery. J. Indian Soc. Periodontol. 2013, 17, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.T.; Shahin, B.; Chen, Z.; Adami, G.R. Unexpected Lower Level of Oral Periodontal Pathogens in Patients with High Numbers of Systemic Diseases. PeerJ 2023, 11, e15502. [Google Scholar] [CrossRef]
- Ghizoni, J.S.; Taveira, L.A.d.A.; Garlet, G.P.; Ghizoni, M.F.; Pereira, J.R.; Dionísio, T.J.; Brozoski, D.T.; Santos, C.F.; Sant’Ana, A.C.P. Increased Levels of Porphyromonas gingivalis Are Associated with Ischemic and Hemorrhagic Cerebrovascular Disease in Humans: An in Vivo Study. J. Appl. Oral Sci. 2012, 20, 104–112. [Google Scholar] [CrossRef]
- Murakami, M.; Suzuki, J.; Yamazaki, S.; Ikezoe, M.; Matsushima, R.; Ashigaki, N.; Aoyama, N.; Kobayashi, N.; Wakayama, K.; Akazawa, H.; et al. High Incidence of Aggregatibacter actinomycetemcomitans Infection in Patients with Cerebral Infarction and Diabetic Renal Failure: A Cross-Sectional Study. BMC Infect. Dis. 2013, 13, 557. [Google Scholar] [CrossRef]
- Wang, X.; Gao, J.; Chen, Y.; Zhang, X.; Dai, Z.; Dai, Q.; Peng, M.; Xiao, L.; Jia, X.; Cai, H.; et al. Detecting Prokaryote-Specific Gene and Other Bacterial Signatures in Thrombi from Patients with Acute Ischemic Stroke. Thromb. J. 2024, 22, 14. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Zhi, A.; Lai, P.F.H.; Wang, G.; Xia, Y.; Xiong, Z.; Zhang, H.; Che, N.; Ai, L. The Oral Microbiota—A Mechanistic Role for Systemic Diseases. Br. Dent. J. 2018, 224, 447–455. [Google Scholar] [CrossRef]
- Kilian, M.; Chapple, I.L.C.; Hannig, M.; Marsh, P.D.; Meuric, V.; Pedersen, A.M.L.; Tonetti, M.S.; Wade, W.G.; Zaura, E. The Oral Microbiome—An Update for Oral Healthcare Professionals. Br. Dent. J. 2016, 221, 657–666. [Google Scholar] [CrossRef]
- Suárez, L.J.; Garzón, H.; Arboleda, S.; Rodríguez, A. Oral Dysbiosis and Autoimmunity: From Local Periodontal Responses to an Imbalanced Systemic Immunity. A Review. Front. Immunol. 2020, 11, 591255. [Google Scholar] [CrossRef]
- Figueredo, C.M.; Lira-Junior, R.; Love, R.M. T and B Cells in Periodontal Disease: New Functions in A Complex Scenario. Int. J. Mol. Sci. 2019, 20, 3949. [Google Scholar] [CrossRef]
- Gupta, M.; Chaturvedi, R.; Jain, A. Role of Monocyte Chemoattractant Protein-1 (MCP-1) as an Immune-Diagnostic Biomarker in the Pathogenesis of Chronic Periodontal Disease. Cytokine 2013, 61, 892–897. [Google Scholar] [CrossRef]
- Kavrikova, D.; Borilova Linhartova, P.; Lucanova, S.; Poskerova, H.; Fassmann, A.; Izakovicova Holla, L. Chemokine Receptor 2 (CXCR2) Gene Variants and Their Association with Periodontal Bacteria in Patients with Chronic Periodontitis. Mediat. Inflamm. 2019, 2019, 2061868. [Google Scholar] [CrossRef] [PubMed]
- Galler, K.M.; Weber, M.; Korkmaz, Y.; Widbiller, M.; Feuerer, M. Inflammatory Response Mechanisms of the Dentine–Pulp Complex and the Periapical Tissues. Int. J. Mol. Sci. 2021, 22, 1480. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Q.; Lv, C.; Chen, Y.; Zhao, W.; Li, W.; Chen, H.; Wang, H.; Sun, W.; Yuan, H. NLRP3 Regulates Alveolar Bone Loss in Ligature-induced Periodontitis by Promoting Osteoclastic Differentiation. Cell Prolif. 2020, 54, e12973. [Google Scholar] [CrossRef] [PubMed]
- Kleinstein, S.E.; Nelson, K.E.; Freire, M. Inflammatory Networks Linking Oral Microbiome with Systemic Health and Disease. J. Dent. Res. 2020, 99, 1131–1139. [Google Scholar] [CrossRef]
- Roth, C.E.; Craveiro, R.B.; Niederau, C.; Malyaran, H.; Neuss, S.; Jankowski, J.; Wolf, M. Mechanical Compression by Simulating Orthodontic Tooth Movement in an In Vitro Model Modulates Phosphorylation of AKT and MAPKs via TLR4 in Human Periodontal Ligament Cells. Int. J. Mol. Sci. 2022, 23, 8062. [Google Scholar] [CrossRef] [PubMed]
- Schön, C.M.; Craveiro, R.B.; Niederau, C.; Conrads, G.; Jahr, H.; Pufe, T.; Wolf, M. High Concentrations of Porphyromonas gingivalis-LPS Downregulate Tlr4 and Modulate Phosphorylation of ERK and AKT in Murine Cementoblasts. Ann. Anat. Anat. Anz. 2023, 246, 152023. [Google Scholar] [CrossRef]
- Nativel, B.; Couret, D.; Giraud, P.; Meilhac, O.; d’Hellencourt, C.L.; Viranaïcken, W.; Da Silva, C.R. Porphyromonas gingivalis Lipopolysaccharides Act Exclusively through TLR4 with a Resilience between Mouse and Human. Sci. Rep. 2017, 7, 15789. [Google Scholar] [CrossRef]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in Biology and Targeted Therapy: New Insights and Translational Implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef]
- Sohail, M.U.; Hedin, L.; Al-Asmakh, M. Dysbiosis of the Salivary Microbiome Is Associated with Hypertension and Correlated with Metabolic Syndrome Biomarkers. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 4641–4653. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Lin, W.-Z.; Li, Y.-L.; Bi, C.; Du, L.-J.; Liu, Y.; Zhou, L.-J.; Liu, T.; Xu, S.; Shi, C.-J.; et al. Roles of Oral Microbiota and Oral-Gut Microbial Transmission in Hypertension. J. Adv. Res. 2022, 43, 147–161. [Google Scholar] [CrossRef]
- LaMonte, M.J.; Gordon, J.H.; Diaz-Moreno, P.; Andrews, C.A.; Shimbo, D.; Hovey, K.M.; Buck, M.J.; Wactawski-Wende, J. Oral Microbiome Is Associated with Incident Hypertension Among Postmenopausal Women. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2022, 11, e021930. [Google Scholar] [CrossRef]
- Bryan, N.S.; Tribble, G.; Angelov, N. Oral Microbiome and Nitric Oxide: The Missing Link in the Management of Blood Pressure. Curr. Hypertens. Rep. 2017, 19, 33. [Google Scholar] [CrossRef]
- Houston, M.; Hays, L. Acute Effects of an Oral Nitric Oxide Supplement on Blood Pressure, Endothelial Function, and Vascular Compliance in Hypertensive Patients. J. Clin. Hypertens. 2014, 16, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Nappi, F.; Fiore, A.; Masiglat, J.; Cavuoti, T.; Romandini, M.; Nappi, P.; Avtaar Singh, S.S.; Couetil, J.-P. Endothelium-Derived Relaxing Factors and Endothelial Function: A Systematic Review. Biomedicines 2022, 10, 2884. [Google Scholar] [CrossRef]
- Goh, C.E.; Trinh, P.; Colombo, P.C.; Genkinger, J.M.; Mathema, B.; Uhlemann, A.; LeDuc, C.; Leibel, R.; Rosenbaum, M.; Paster, B.J.; et al. Association Between Nitrate-Reducing Oral Bacteria and Cardiometabolic Outcomes: Results From ORIGINS. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2019, 8, e013324. [Google Scholar] [CrossRef] [PubMed]
- Hyde, E.R.; Andrade, F.; Vaksman, Z.; Parthasarathy, K.; Jiang, H.; Parthasarathy, D.K.; Torregrossa, A.C.; Tribble, G.; Kaplan, H.B.; Petrosino, J.F.; et al. Metagenomic Analysis of Nitrate-Reducing Bacteria in the Oral Cavity: Implications for Nitric Oxide Homeostasis. PLoS ONE 2014, 9, e88645. [Google Scholar] [CrossRef]
- Barbadoro, P.; Ponzio, E.; Coccia, E.; Prospero, E.; Santarelli, A.; Rappelli, G.G.L.; D’Errico, M.M. Association between Hypertension, Oral Microbiome and Salivary Nitric Oxide: A Case-Control Study. Nitric Oxide 2021, 106, 66–71. [Google Scholar] [CrossRef]
- Ren, Y.; Liang, J.; Hu, W.; Xie, J.; Zheng, Y.; Song, W.; Zhu, J.; Zhou, H.; Wu, Q.; He, Y.; et al. Association between Oral Microbial Nitrate Metabolism and Poor Prognosis in Acute Ischemic Stroke Patients with a History of Hypertension. J. Oral Microbiol. 2024, 16, 2382620. [Google Scholar] [CrossRef] [PubMed]
- Medina-Leyte, D.J.; Zepeda-García, O.; Domínguez-Pérez, M.; González-Garrido, A.; Villarreal-Molina, T.; Jacobo-Albavera, L. Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches. Int. J. Mol. Sci. 2021, 22, 3850. [Google Scholar] [CrossRef]
- Li, Q.; Ouyang, X.; Lin, J. The Impact of Periodontitis on Vascular Endothelial Dysfunction. Front. Cell. Infect. Microbiol. 2022, 12, 998313. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, P.B.; Brennan, M.T.; Sasser, H.C.; Fox, P.C.; Paster, B.J.; Bahrani-Mougeot, F.K. Bacteremia Associated with Toothbrushing and Dental Extraction. Circulation 2008, 117, 3118–3125. [Google Scholar] [CrossRef]
- Reyes, L.; Getachew, H.; Dunn, W.A.; Progulske-Fox, A. Porphyromonas gingivalis W83 Traffics via ICAM1 in Microvascular Endothelial Cells and Alters Capillary Organization in Vivo. J. Oral Microbiol. 2020, 12, 1742528. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Dong, Q.; Luo, Y.; Liu, Y.; Gao, L.; Pan, Y.; Zhang, D. Porphyromonas gingivalis Infection Promotes Mitochondrial Dysfunction through Drp1-Dependent Mitochondrial Fission in Endothelial Cells. Int. J. Oral Sci. 2021, 13, 28. [Google Scholar] [CrossRef]
- Viafara-García, S.M.; Morantes, S.J.; Chacon-Quintero, Y.; Castillo, D.M.; Lafaurie, G.I.; Buitrago, D.M. Repeated Porphyromonas gingivalis W83 Exposure Leads to Release Pro-Inflammatory Cytokynes and Angiotensin II in Coronary Artery Endothelial Cells. Sci. Rep. 2019, 9, 19379. [Google Scholar] [CrossRef]
- Gualtero, D.F.; Viafara-Garcia, S.M.; Morantes, S.J.; Buitrago, D.M.; Gonzalez, O.A.; Lafaurie, G.I. Rosuvastatin Inhibits Interleukin (IL)-8 and IL-6 Production in Human Coronary Artery Endothelial Cells Stimulated with Aggregatibacter actinomycetemcomitans Serotype b. J. Periodontol. 2017, 88, 225–235. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S.-Y.; Kim, K.; Choi, B.-K. Identification of Immunoreactive Epitopes of the Porphyromonas gingivalis Heat Shock Protein in Periodontitis and Atherosclerosis. J. Periodontal Res. 2011, 46, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-S.; Huang, C.-Y.; Tsai, Y.-T.; Shih, C.-M.; Lai, Z.-H.; Liu, C.-W.; Lin, Y.-W.; Lin, F.-Y. Porphyromonas gingivalis GroEL Exacerbates Orthotopic Allograft Transplantation Vasculopathy via Impairment of Endothelial Cell Function. Mol. Oral Microbiol. 2024, 1–18. [Google Scholar] [CrossRef]
- Ana, P.; Draginja, K.; Dimitrije, M.; Ivan, M.; Mariola, S. The Markers of Systemic Inflammation in Patients with Chronic Periodontitis: Leukocytes, C-Reactive Protein and Fibrinogen. World J. Prev. Med. 2013, 1, 43–49. [Google Scholar] [CrossRef]
- Surma, S.; Banach, M. Fibrinogen and Atherosclerotic Cardiovascular Diseases—Review of the Literature and Clinical Studies. Int. J. Mol. Sci. 2021, 23, 193. [Google Scholar] [CrossRef]
- Luyendyk, J.P.; Schoenecker, J.G.; Flick, M.J. The Multifaceted Role of Fibrinogen in Tissue Injury and Inflammation. Blood 2019, 133, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Cao, Y.; Jiang, W.; Yan, Z.; Cai, G.; Ye, J.; Wang, H.; Liu, L. Porphyromonas gingivalis OMVs Promoting Endothelial Dysfunction via the STING Pathway in Periodontitis. Oral Dis. 2024, 1–14. [Google Scholar] [CrossRef]
- Dong, Q.; Luo, Y.; Yin, Y.; Ma, Y.; Yu, Y.; Wang, L.; Yang, H.; Pan, Y.; Zhang, D. RhoA/ROCK1 Regulates the Mitochondrial Dysfunction through Drp1 Induced by Porphyromonas gingivalis in Endothelial Cells. J. Cell. Mol. Med. 2023, 27, 2123–2135. [Google Scholar] [CrossRef]
- Pablo-Moreno, J.A.D.; Serrano, L.J.; Revuelta, L.; Sánchez, M.J.; Liras, A. The Vascular Endothelium and Coagulation: Homeostasis, Disease, and Treatment, with a Focus on the Von Willebrand Factor and Factors VIII and V. Int. J. Mol. Sci. 2022, 23, 8283. [Google Scholar] [CrossRef]
- Song, L.-T.; Tada, H.; Nishioka, T.; Nemoto, E.; Imamura, T.; Potempa, J.; Li, C.-Y.; Matsushita, K.; Sugawara, S. Porphyromonas gingivalis Gingipains-Mediated Degradation of Plasminogen Activator Inhibitor-1 Leads to Delayed Wound Healing Responses in Human Endothelial Cells. J. Innate Immun. 2021, 14, 306–319. [Google Scholar] [CrossRef]
- D’Aiuto, F.; Orlandi, M.; Gunsolley, J.C. Evidence That Periodontal Treatment Improves Biomarkers and CVD Outcomes. J. Periodontol. 2013, 84, S85–S105. [Google Scholar] [CrossRef]
- Schenkein, H.A.; Loos, B.G. Inflammatory Mechanisms Linking Periodontal Diseases to Cardiovascular Diseases. J. Clin. Periodontol. 2013, 40, S51–S69. [Google Scholar] [CrossRef]
- Fernandes, D.; Khambata, R.S.; Massimo, G.; Ruivo, E.; Gee, L.C.; Foster, J.; Goddard, A.; Curtis, M.; Barnes, M.R.; Wade, W.G.; et al. Local Delivery of Nitric Oxide Prevents Endothelial Dysfunction in Periodontitis. Pharmacol. Res. 2023, 188, 106616. [Google Scholar] [CrossRef] [PubMed]
- Malekmohammad, K.; Bezsonov, E.E.; Rafieian-Kopaei, M. Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Front. Cardiovasc. Med. 2021, 8, 707529. [Google Scholar] [CrossRef]
- Sanz, M.; Marco del Castillo, A.; Jepsen, S.; Gonzalez-Juanatey, J.R.; D’Aiuto, F.; Bouchard, P.; Chapple, I.; Dietrich, T.; Gotsman, I.; Graziani, F.; et al. Periodontitis and Cardiovascular Diseases: Consensus Report. J. Clin. Periodontol. 2020, 47, 268–288. [Google Scholar] [CrossRef]
- Iwasaki, M.; Kimura, Y.; Yamaga, T.; Yamamoto, N.; Ishikawa, M.; Wada, T.; Sakamoto, R.; Ishimoto, Y.; Fujisawa, M.; Okumiya, K.; et al. A Population-Based Cross-Sectional Study of the Association between Periodontitis and Arterial Stiffness among the Older Japanese Population. J. Periodontal Res. 2021, 56, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.; Cui, Z.-Y.; Huang, X.-F.; Zhang, D.-D.; Guo, R.-J.; Han, M. Inflammation and Atherosclerosis: Signaling Pathways and Therapeutic Intervention. Signal Transduct. Target. Ther. 2022, 7, 131. [Google Scholar] [CrossRef]
- Vieceli Dalla Sega, F.; Fortini, F.; Aquila, G.; Campo, G.; Vaccarezza, M.; Rizzo, P. Notch Signaling Regulates Immune Responses in Atherosclerosis. Front. Immunol. 2019, 10, 1130. [Google Scholar] [CrossRef]
- Du, J.; Li, J. The Role of Wnt Signaling Pathway in Atherosclerosis and Its Relationship with Angiogenesis. Exp. Ther. Med. 2018, 16, 1975–1981. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, R.M.; Cipollone, A.; D’Ardes, D.; Di Giacomo, D.; Pignatelli, P.; Cipollone, F.; Curia, M.C.; Magni, P.; Bucci, M. Risk Factors and Immunoinflammatory Mechanisms Leading to Atherosclerosis: Focus on the Role of Oral Microbiota Dysbiosis. Microorganisms 2023, 11, 1479. [Google Scholar] [CrossRef] [PubMed]
- Aleksijević, L.H.; Aleksijević, M.; Škrlec, I.; Šram, M.; Šram, M.; Talapko, J. Porphyromonas gingivalis Virulence Factors and Clinical Significance in Periodontal Disease and Coronary Artery Diseases. Pathogens 2022, 11, 1173. [Google Scholar] [CrossRef]
- Xie, M.; Tang, Q.; Nie, J.; Zhang, C.; Zhou, X.; Yu, S.; Sun, J.; Cheng, X.; Dong, N.; Hu, Y.; et al. BMAL1-Downregulation Aggravates Porphyromonas gingivalis-Induced Atherosclerosis by Encouraging Oxidative Stress. Circ. Res. 2020, 126, e15–e29. [Google Scholar] [CrossRef]
- Sampath, C.; Okoro, E.U.; Gipson, M.J.; Chukkapalli, S.S.; Farmer-Dixon, C.M.; Gangula, P.R. Porphyromonas gingivalis Infection Alters Nrf2-Phase II Enzymes and Nitric Oxide in Primary Human Aortic Endothelial Cells. J. Periodontol. 2021, 92, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Xie, M.; Lu, X.; Mei, F.; Song, W.; Liu, Y.; Chen, L. The Roles of Periodontal Bacteria in Atherosclerosis. Int. J. Mol. Sci. 2023, 24, 12861. [Google Scholar] [CrossRef]
- Lönn, J.; Ljunggren, S.; Klarström-Engström, K.; Demirel, I.; Bengtsson, T.; Karlsson, H. Lipoprotein Modifications by Gingipains of Porphyromonas gingivalis. J. Periodontal Res. 2018, 53, 403–413. [Google Scholar] [CrossRef]
- Sun, X.; Gao, J.; Meng, X.; Lu, X.; Zhang, L.; Chen, R. Polarized Macrophages in Periodontitis: Characteristics, Function, and Molecular Signaling. Front. Immunol. 2021, 12, 763334. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, M.M.; Ribeiro, I.W.J.; Kampits, C.; Saffi, M.A.L.; Furtado, M.V.; Polanczyk, C.A.; Haas, A.N.; Rösing, C.K. Randomized Controlled Trial of the Effect of Periodontal Treatment on Cardiovascular Risk Biomarkers in Patients with Stable Coronary Artery Disease: Preliminary Findings of 3 Months. J. Clin. Periodontol. 2019, 46, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Velioğlu, E.M.; Aydındoğan, S.; Hakkı, S.S. Metabolic Syndrome and Periodontal Disease. Curr. Oral Health Rep. 2023, 10, 43–51. [Google Scholar] [CrossRef]
- Jepsen, S.; Suvan, J.; Deschner, J. The Association of Periodontal Diseases with Metabolic Syndrome and Obesity. Periodontol. 2000 2020, 83, 125–153. [Google Scholar] [CrossRef] [PubMed]
- Daudt, L.D.; Musskopf, M.L.; Mendez, M.; Remonti, L.L.R.; Leitão, C.B.; Gross, J.L.; Weidlich, P.; Oppermann, R.V. Association between Metabolic Syndrome and Periodontitis: A Systematic Review and Meta-Analysis. Braz. Oral Res. 2018, 32, e35. [Google Scholar] [CrossRef] [PubMed]
- Pirih, F.Q.; Monajemzadeh, S.; Singh, N.; Sinacola, R.S.; Shin, J.M.; Chen, T.; Fenno, J.C.; Kamarajan, P.; Rickard, A.H.; Travan, S.; et al. Association between Metabolic Syndrome and Periodontitis: The Role of Lipids, Inflammatory Cytokines, Altered Host Response, and the Microbiome. Periodontol. 2000 2021, 87, 50–75. [Google Scholar] [CrossRef]
- Si, J.; Lee, C.; Ko, G. Oral Microbiota: Microbial Biomarkers of Metabolic Syndrome Independent of Host Genetic Factors. Front. Cell. Infect. Microbiol. 2017, 7, 516. [Google Scholar] [CrossRef]
- Nesbitt, M.J.; Reynolds, M.A.; Shiau, H.; Choe, K.; Simonsick, E.M.; Ferrucci, L. Association of Periodontitis and Metabolic Syndrome in the Baltimore Longitudinal Study of Aging. Aging Clin. Exp. Res. 2010, 22, 238–242. [Google Scholar] [CrossRef]
- Chopra, A.; Franco-Duarte, R.; Rajagopal, A.; Choowong, P.; Soares, P.; Rito, T.; Eberhard, J.; Jayasinghe, T.N. Exploring the Presence of Oral Bacteria in Non-Oral Sites of Patients with Cardiovascular Diseases Using Whole Metagenomic Data. Sci. Rep. 2024, 14, 1476. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, Q.; Zheng, W.; Steinwandel, M.; Blot, W.J.; Shu, X.-O.; Long, J. Oral Microbiome and Obesity in a Large Study of Low-Income and African-American Populations. J. Oral Microbiol. 2019, 11, 1650597. [Google Scholar] [CrossRef]
- Schamarek, I.; Anders, L.; Chakaroun, R.M.; Kovacs, P.; Rohde-Zimmermann, K. The Role of the Oral Microbiome in Obesity and Metabolic Disease: Potential Systemic Implications and Effects on Taste Perception. Nutr. J. 2023, 22, 28. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.; Ríos-Carrasco, B.; Monteiro, L.; López-Jarana, P.; Carneiro, F.; Relvas, M. Association between Type 1 Diabetes Mellitus and Periodontal Diseases. J. Clin. Med. 2023, 12, 1147. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, S.; Valentini, G.; Dolci, M. Exploring Interleukin Levels in Type 1 Diabetes and Periodontitis: A Review with a Focus on Childhood. Children 2024, 11, 238. [Google Scholar] [CrossRef]
- Tam, J.; Hoffmann, T.; Fischer, S.; Bornstein, S.; Gräßler, J.; Noack, B. Obesity Alters Composition and Diversity of the Oral Microbiota in Patients with Type 2 Diabetes Mellitus Independently of Glycemic Control. PLoS ONE 2018, 13, e0204724. [Google Scholar] [CrossRef]
- Araujo, D.S.; Klein, M.I.; Scudine, K.G.d.O.; de Sales Leite, L.; Parisotto, T.M.; Ferreira, C.M.; Fonseca, F.L.A.; Perez, M.M.; Castelo, P.M. Salivary Microbiological and Gingival Health Status Evaluation of Adolescents with Overweight and Obesity: A Cluster Analysis. Front. Pediatr. 2020, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Akherati, M.; Shafaei, E.; Salehiniya, H.; Abbaszadeh, H. Comparison of the Frequency of Periodontal Pathogenic Species of Diabetics and Non-Diabetics and Its Relation to Periodontitis Severity, Glycemic Control and Body Mass Index. Clin. Exp. Dent. Res. 2021, 7, 1080–1088. [Google Scholar] [CrossRef]
- Hatasa, M.; Ohsugi, Y.; Katagiri, S.; Yoshida, S.; Niimi, H.; Morita, K.; Tsuchiya, Y.; Shimohira, T.; Sasaki, N.; Maekawa, S.; et al. Endotoxemia by Porphyromonas gingivalis Alters Endocrine Functions in Brown Adipose Tissue. Front. Cell. Infect. Microbiol. 2020, 10, 580577. [Google Scholar] [CrossRef] [PubMed]
- Kandaswamy, E.; Lee, C.-T.; Gururaj, S.B.; Shivanaikar, S.; Joshi, V.M. Association of Adipokine Levels with Obesity in Periodontal Health and Disease: A Systematic Review with Meta-Analysis and Meta-Regression. J. Periodontal Res. 2024, 59, 623–635. [Google Scholar] [CrossRef]
- Fentoğlu, Ö.; Köroğlu, B.K.; Hiçyılmaz, H.; Sert, T.; Özdem, M.; Sütçü, R.; Tamer, M.N.; Orhan, H.; Ay, Z.Y.; Öztürk Tonguç, M.; et al. Pro-Inflammatory Cytokine Levels in Association between Periodontal Disease and Hyperlipidaemia. J. Clin. Periodontol. 2011, 38, 8–16. [Google Scholar] [CrossRef]
- Yamazaki, K.; Kato, T.; Tsuboi, Y.; Miyauchi, E.; Suda, W.; Sato, K.; Nakajima, M.; Yokoji-Takeuchi, M.; Yamada-Hara, M.; Tsuzuno, T.; et al. Oral Pathobiont-Induced Changes in Gut Microbiota Aggravate the Pathology of Nonalcoholic Fatty Liver Disease in Mice. Front. Immunol. 2021, 12, 766170. [Google Scholar] [CrossRef]
- Corredor, Z.; Suarez-Molina, A.; Fong, C.; Cifuentes-C, L.; Guauque-Olarte, S. Presence of Periodontal Pathogenic Bacteria in Blood of Patients with Coronary Artery Disease. Sci. Rep. 2022, 12, 1241. [Google Scholar] [CrossRef]
- Guo, W.; Wang, P.; Liu, Z.-H.; Ye, P. Analysis of Differential Expression of Tight Junction Proteins in Cultured Oral Epithelial Cells Altered by Porphyromonas gingivalis, Porphyromonas gingivalis Lipopolysaccharide, and Extracellular Adenosine Triphosphate. Int. J. Oral Sci. 2018, 10, e8. [Google Scholar] [CrossRef]
- Ishida, N.; Ishihara, Y.; Ishida, K.; Tada, H.; Funaki-Kato, Y.; Hagiwara, M.; Ferdous, T.; Abdullah, M.; Mitani, A.; Michikawa, M.; et al. Periodontitis Induced by Bacterial Infection Exacerbates Features of Alzheimer’s Disease in Transgenic Mice. NPJ Aging Mech. Dis. 2017, 3, 15. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Lan, Y.; Mao, J.; Shen, J.; Kang, T.; Xie, Z. The Interaction between the Nervous System and the Stomatognathic System: From Development to Diseases. Int. J. Oral Sci. 2023, 15, 34. [Google Scholar] [CrossRef]
- Said-Sadier, N.; Sayegh, B.; Farah, R.; Abbas, L.A.; Dweik, R.; Tang, N.; Ojcius, D.M. Association between Periodontal Disease and Cognitive Impairment in Adults. Int. J. Environ. Res. Public Health 2023, 20, 4707. [Google Scholar] [CrossRef] [PubMed]
- Villar, A.; Paladini, S.; Cossatis, J. Periodontal Disease and Alzheimer’s: Insights from a Systematic Literature Network Analysis. J. Prev. Alzheimers Dis. 2024, 11, 1148–1165. [Google Scholar] [CrossRef] [PubMed]
- Chi, L.; Cheng, X.; Lin, L.; Yang, T.; Sun, J.; Feng, Y.; Liang, F.; Pei, Z.; Teng, W. Porphyromonas gingivalis-Induced Cognitive Impairment Is Associated with Gut Dysbiosis, Neuroinflammation, and Glymphatic Dysfunction. Front. Cell. Infect. Microbiol. 2021, 11, 755925. [Google Scholar] [CrossRef] [PubMed]
- Panzarella, V.; Mauceri, R.; Baschi, R.; Maniscalco, L.; Campisi, G.; Monastero, R. Oral Health Status in Subjects with Amnestic Mild Cognitive Impairment and Alzheimer’s Disease: Data from the Zabút Aging Project. J. Alzheimers Dis. 2022, 87, 173–183. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, C.; Zhang, X.; Chen, H.; Dong, J.; Lu, W.; Song, Z.; Zhou, W. Porphyromonas gingivalis Lipopolysaccharide Induces Cognitive Dysfunction, Mediated by Neuronal Inflammation via Activation of the TLR4 Signaling Pathway in C57BL/6 Mice. J. Neuroinflammation 2018, 15, 37. [Google Scholar] [CrossRef]
- Poole, S.; Singhrao, S.K.; Chukkapalli, S.; Rivera, M.; Velsko, I.; Kesavalu, L.; Crean, S. Active Invasion of Porphyromonas gingivalis and Infection-Induced Complement Activation in ApoE-/- Mice Brains. J. Alzheimers Dis. 2015, 43, 67–80. [Google Scholar] [CrossRef]
- Dominy, S.S.; Lynch, C.; Ermini, F.; Benedyk, M.; Marczyk, A.; Konradi, A.; Nguyen, M.; Haditsch, U.; Raha, D.; Griffin, C.; et al. Porphyromonas gingivalis in Alzheimer’s Disease Brains: Evidence for Disease Causation and Treatment with Small-Molecule Inhibitors. Sci. Adv. 2019, 5, eaau3333. [Google Scholar] [CrossRef]
- Lin, J.; Pathak, J.L.; Shen, Y.; Mashrah, M.A.; Zhong, X.; Chen, J.; Li, Z.; Xia, J.; Liang, Y.; Zeng, Y. Association between Periodontitis and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. Dement. Geriatr. Cogn. Disord. 2023, 53, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Sherina, N.; de Vries, C.; Kharlamova, N.; Sippl, N.; Jiang, X.; Brynedal, B.; Kindstedt, E.; Hansson, M.; Mathsson-Alm, L.; Israelsson, L.; et al. Antibodies to a Citrullinated Porphyromonas gingivalis Epitope Are Increased in Early Rheumatoid Arthritis, and Can Be Produced by Gingival Tissue B Cells: Implications for a Bacterial Origin in RA Etiology. Front. Immunol. 2022, 13, 804822. [Google Scholar] [CrossRef]
- Deo, P.N.; Deshmukh, R. Oral Microbiome: Unveiling the Fundamentals. J. Oral Maxillofac. Pathol. JOMFP 2019, 23, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Sampaio-Maia, B.; Monteiro-Silva, F. Acquisition and Maturation of Oral Microbiome throughout Childhood: An Update. Dent. Res. J. 2014, 11, 291–301. [Google Scholar]
- Fardini, Y.; Chung, P.; Dumm, R.; Joshi, N.; Han, Y.W. Transmission of Diverse Oral Bacteria to Murine Placenta: Evidence for the Oral Microbiome as a Potential Source of Intrauterine Infection. Infect. Immun. 2010, 78, 1789–1796. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, K.; Ma, J.; Antony, K.M.; Ganu, R.; Petrosino, J.; Versalovic, J. The Placenta Harbors a Unique Microbiome. Sci. Transl. Med. 2014, 6, 237ra65. [Google Scholar] [CrossRef]
- Monteiro, M.F.; Altabtbaei, K.; Kumar, P.S.; Casati, M.Z.; Ruiz, K.G.S.; Sallum, E.A.; Nociti-Junior, F.H.; Casarin, R.C.V. Parents with Periodontitis Impact the Subgingival Colonization of Their Offspring. Sci. Rep. 2021, 11, 1357. [Google Scholar] [CrossRef]
- Ishida, E.; Furusho, H.; Renn, T.-Y.; Shiba, F.; Chang, H.-M.; Oue, H.; Terayama, R.; Ago, Y.; Tsuga, K.; Miyauchi, M. Mouse Maternal Odontogenic Infection with Porphyromonas gingivalis Induces Cognitive Decline in Offspring. Front. Pediatr. 2023, 11, 1203894. [Google Scholar] [CrossRef]
- Hu, Y.; Li, H.; Zhang, J.; Zhang, X.; Xia, X.; Qiu, C.; Liao, Y.; Chen, H.; Song, Z.; Zhou, W. Periodontitis Induced by P. Gingivalis-LPS Is Associated with Neuroinflammation and Learning and Memory Impairment in Sprague-Dawley Rats. Front. Neurosci. 2020, 14, 658. [Google Scholar] [CrossRef]
- Rashidi, A.; Ebadi, M.; Weisdorf, D.J.; Costalonga, M.; Staley, C. No Evidence for Colonization of Oral Bacteria in the Distal Gut in Healthy Adults. Proc. Natl. Acad. Sci. USA 2021, 118, e2114152118. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.S.; Hayward, M.R.; Coelho, L.P.; Li, S.S.; Costea, P.I.; Voigt, A.Y.; Wirbel, J.; Maistrenko, O.M.; Alves, R.J.; Bergsten, E.; et al. Extensive Transmission of Microbes along the Gastrointestinal Tract. eLife 2019, 8, e42693. [Google Scholar] [CrossRef] [PubMed]
- Seedorf, H.; Griffin, N.W.; Ridaura, V.K.; Reyes, A.; Cheng, J.; Rey, F.E.; Smith, M.I.; Simon, G.M.; Scheffrahn, R.H.; Woebken, D.; et al. Bacteria from Diverse Habitats Colonize and Compete in the Mouse Gut. Cell 2014, 159, 253. [Google Scholar] [CrossRef]
- Pan, C.; Liu, C.; Jia, W.; Zhao, D.; Chen, X.; Zhu, X.; Yang, M.; Wang, L. Alcohol Drinking Alters Oral Microbiota to Modulate the Progression of Alcohol-Related Liver Disease. iScience 2023, 26, 107977. [Google Scholar] [CrossRef]
- Singh, H.; Torralba, M.G.; Moncera, K.J.; DiLello, L.; Petrini, J.; Nelson, K.E.; Pieper, R. Gastro-Intestinal and Oral Microbiome Signatures Associated with Healthy Aging. GeroScience 2019, 41, 907–921. [Google Scholar] [CrossRef]
- Leonard, M.M.; Valitutti, F.; Karathia, H.; Pujolassos, M.; Kenyon, V.; Fanelli, B.; Troisi, J.; Subramanian, P.; Camhi, S.; Colucci, A.; et al. Microbiome Signatures of Progression toward Celiac Disease Onset in At-Risk Children in a Longitudinal Prospective Cohort Study. Proc. Natl. Acad. Sci. USA 2021, 118, e2020322118. [Google Scholar] [CrossRef]
- Qin, N.; Yang, F.; Li, A.; Prifti, E.; Chen, Y.; Shao, L.; Guo, J.; Le Chatelier, E.; Yao, J.; Wu, L.; et al. Alterations of the Human Gut Microbiome in Liver Cirrhosis. Nature 2014, 513, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, K.; Shionoya, H.; Suzuki, S.; Fukai, R.; Uda, S.; Abe, C.; Takemori, H.; Nishimura, K.; Baba, H.; Katayama, K.; et al. Oral and Intestinal Bacterial Substances Associated with Disease Activities in Patients with Rheumatoid Arthritis: A Cross-Sectional Clinical Study. J. Immunol. Res. 2022, 2022, 6839356. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, A.; Suda, W.; Morita, H.; Takanashi, K.; Takagi, A.; Koga, Y.; Hattori, M. Influence of Proton-Pump Inhibitors on the Luminal Microbiota in the Gastrointestinal Tract. Clin. Transl. Gastroenterol. 2015, 6, e89. [Google Scholar] [CrossRef]
- Jackson, M.A.; Goodrich, J.K.; Maxan, M.-E.; Freedberg, D.E.; Abrams, J.A.; Poole, A.C.; Sutter, J.L.; Welter, D.; Ley, R.E.; Bell, J.T.; et al. Proton Pump Inhibitors Alter the Composition of the Gut Microbiota. Gut 2016, 65, 749–756. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Z.; Peng, X. Regulatory Effects of Oral Microbe on Intestinal Microbiota and the Illness. Front. Cell. Infect. Microbiol. 2023, 13, 1093967. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Li, L.; Zhang, Y.; Wang, M.; Chen, F.; Ge, S.; Chen, B.; Yan, F. Periodontitis May Induce Gut Microbiota Dysbiosis via Salivary Microbiota. Int. J. Oral Sci. 2022, 14, 32. [Google Scholar] [CrossRef] [PubMed]
- Leonov, G.E.; Varaeva, Y.R.; Livantsova, E.N.; Starodubova, A.V. The Complicated Relationship of Short-Chain Fatty Acids and Oral Microbiome: A Narrative Review. Biomedicines 2023, 11, 2749. [Google Scholar] [CrossRef]
- Kamer, A.R.; Pushalkar, S.; Hamidi, B.; Janal, M.N.; Tang, V.; Annam, K.R.C.; Palomo, L.; Gulivindala, D.; Glodzik, L.; Saxena, D. Periodontal Inflammation and Dysbiosis Relate to Microbial Changes in the Gut. Microorganisms 2024, 12, 1225. [Google Scholar] [CrossRef]
- Jia, L.; Jiang, Y.; Wu, L.; Fu, J.; Du, J.; Luo, Z.; Guo, L.; Xu, J.; Liu, Y. Porphyromonas gingivalis Aggravates Colitis via a Gut Microbiota-Linoleic Acid Metabolism-Th17/Treg Cell Balance Axis. Nat. Commun. 2024, 15, 1617. [Google Scholar] [CrossRef] [PubMed]
- Lourenςo, T.G.B.; Spencer, S.J.; Alm, E.J.; Colombo, A.P.V. Defining the Gut Microbiota in Individuals with Periodontal Diseases: An Exploratory Study. J. Oral Microbiol. 2018, 10, 1487741. [Google Scholar] [CrossRef]
- Gu, X.; Song, L.; Li, L.; Liu, T.; Zhang, M.; Li, Z.; Wang, P.; Li, M.; Zuo, X. Fusobacterium Nucleatum Causes Microbial Dysbiosis and Exacerbates Visceral Hypersensitivity in a Colonization-Independent Manner. Front. Microbiol. 2020, 11, 1281. [Google Scholar] [CrossRef]
- Kitamoto, S.; Nagao-Kitamoto, H.; Jiao, Y.; Gillilland, M.G.; Hayashi, A.; Imai, J.; Sugihara, K.; Miyoshi, M.; Brazil, J.C.; Kuffa, P.; et al. The Intermucosal Connection between the Mouth and Gut in Commensal Pathobiont-Driven Colitis. Cell 2020, 182, 447–462.e14. [Google Scholar] [CrossRef]
- Solemdal, K.; Sandvik, L.; Willumsen, T.; Mowe, M.; Hummel, T. The Impact of Oral Health on Taste Ability in Acutely Hospitalized Elderly. PLoS ONE 2012, 7, e36557. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Q.; Zhang, M.; Yang, X.; Zeng, T.-S.; Zhang, J.-Y.; Zheng, J.; Kong, W.; Min, J.; Tian, S.-H.; et al. Tannerella Forsythia and Coating Color on the Tongue Dorsum, and Fatty Food Liking Associate with Fat Accumulation and Insulin Resistance in Adult Catch-up Fat. Int. J. Obes. 2018, 42, 121–128. [Google Scholar] [CrossRef]
- Breit, S.; Kupferberg, A.; Rogler, G.; Hasler, G. Vagus Nerve as Modulator of the Brain–Gut Axis in Psychiatric and Inflammatory Disorders. Front. Psychiatry 2018, 9, 44. [Google Scholar] [CrossRef]
- Yan, M.; Man, S.; Sun, B.; Ma, L.; Guo, L.; Huang, L.; Gao, W. Gut Liver Brain Axis in Diseases: The Implications for Therapeutic Interventions. Signal Transduct. Target. Ther. 2023, 8, 443. [Google Scholar] [CrossRef] [PubMed]
- Sansores-España, L.D.; Melgar-Rodríguez, S.; Olivares-Sagredo, K.; Cafferata, E.A.; Martínez-Aguilar, V.M.; Vernal, R.; Paula-Lima, A.C.; Díaz-Zúñiga, J. Oral-Gut-Brain Axis in Experimental Models of Periodontitis: Associating Gut Dysbiosis with Neurodegenerative Diseases. Front. Aging 2021, 2, 781582. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.; Prinz, M. Regulation of Microglial Physiology by the Microbiota. Gut Microbes 2022, 14, 2125739. [Google Scholar] [CrossRef] [PubMed]
- Erny, D.; de Angelis, A.L.H.; Jaitin, D.; Wieghofer, P.; Staszewski, O.; David, E.; Keren-Shaul, H.; Mahlakoiv, T.; Jakobshagen, K.; Buch, T.; et al. Host Microbiota Constantly Control Maturation and Function of Microglia in the CNS. Nat. Neurosci. 2015, 18, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.-J.; Wang, K.-C.; Yuan, L.-B.; Li, H.-F.; Xu, Y.-Y.; Wei, L.-Y.; Chen, L.; Jin, K.-K.; Lin, Q.-Q. Compositional and Functional Alterations of Gut Microbiota in Patients with Stroke. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 3434–3448. [Google Scholar] [CrossRef]
- Sun, H.; Gu, M.; Li, Z.; Chen, X.; Zhou, J. Gut Microbiota Dysbiosis in Acute Ischemic Stroke Associated with 3-Month Unfavorable Outcome. Front. Neurol. 2022, 12, 799222. [Google Scholar] [CrossRef]
- Peh, A.; O’Donnell, J.A.; Broughton, B.R.S.; Marques, F.Z. Gut Microbiota and Their Metabolites in Stroke: A Double-Edged Sword. Stroke 2022, 53, 1788–1801. [Google Scholar] [CrossRef]
- Yin, J.; Liao, S.; He, Y.; Wang, S.; Xia, G.; Liu, F.; Zhu, J.; You, C.; Chen, Q.; Zhou, L.; et al. Dysbiosis of Gut Microbiota with Reduced Trimethylamine-N-Oxide Level in Patients with Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2015, 4, e002699. [Google Scholar] [CrossRef]
- Cheng, S.; Zheng, H.; Wei, Y.; Lin, X.; Gu, Y.; Guo, X.; Fan, Z.; Li, H.; Cheng, S.; Liu, S. Gut Microbiome and Stroke: A Bidirectional Mendelian Randomisation Study in East Asian and European Populations. Stroke Vasc. Neurol. 2024. [Google Scholar] [CrossRef]
- Chen, Y.-Z.; Huang, Z.-Y.; Zhou, W.-W.; Li, Z.-Y.; Li, X.-P.; Chen, S.-S.; Ma, J.-K. Uncovering the Characteristics of the Gut Microbiota in Patients with Ischemic Stroke and Hemorrhagic Stroke. Sci. Rep. 2024, 14, 11776. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Wu, Q.; Wang, H.; Gao, X.; Xu, R.; Cui, Z.; Zhu, J.; Zeng, X.; Zhou, H.; He, Y.; et al. Dysbiosis of Gut Microbiota and Short-Chain Fatty Acids in Acute Ischemic Stroke and the Subsequent Risk for Poor Functional Outcomes. JPEN J. Parenter. Enter. Nutr. 2021, 45, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Benakis, C.; Brea, D.; Caballero, S.; Faraco, G.; Moore, J.; Murphy, M.; Sita, G.; Racchumi, G.; Ling, L.; Pamer, E.G.; et al. Commensal Microbiota Affects Ischemic Stroke Outcome by Regulating Intestinal γδT Cells. Nat. Med. 2016, 22, 516–523. [Google Scholar] [CrossRef]
- Kim, H.; Caulfield, L.E.; Garcia-Larsen, V.; Steffen, L.M.; Coresh, J.; Rebholz, C.M. Plant-Based Diets Are Associated with a Lower Risk of Incident Cardiovascular Disease, Cardiovascular Disease Mortality, and All-Cause Mortality in a General Population of Middle-Aged Adults. J. Am. Heart Assoc. 2019, 8, e012865. [Google Scholar] [CrossRef] [PubMed]
- Livantsova, E.N.; Leonov, G.E.; Starodubova, A.V.; Varaeva, Y.R.; Vatlin, A.A.; Koshechkin, S.I.; Korotkova, T.N.; Nikityuk, D.B. Diet and the Gut Microbiome as Determinants Modulating Metabolic Outcomes in Young Obese Adults. Biomedicines 2024, 12, 1601. [Google Scholar] [CrossRef] [PubMed]
- Dybvik, J.S.; Svendsen, M.; Aune, D. Vegetarian and Vegan Diets and the Risk of Cardiovascular Disease, Ischemic Heart Disease and Stroke: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Eur. J. Nutr. 2023, 62, 51–69. [Google Scholar] [CrossRef]
- D’Agostino, S.; Ferrara, E.; Valentini, G.; Stoica, S.A.; Dolci, M. Exploring Oral Microbiome in Healthy Infants and Children: A Systematic Review. Int. J. Environ. Res. Public. Health 2022, 19, 11403. [Google Scholar] [CrossRef]
- Belstrøm, D.; Holmstrup, P.; Nielsen, C.H.; Kirkby, N.; Twetman, S.; Heitmann, B.L.; Klepac-Ceraj, V.; Paster, B.J.; Fiehn, N.-E. Bacterial Profiles of Saliva in Relation to Diet, Lifestyle Factors, and Socioeconomic Status. J. Oral Microbiol. 2014, 6, 23609. [Google Scholar] [CrossRef]
- Liao, C.; Rolling, T.; Djukovic, A.; Fei, T.; Mishra, V.; Liu, H.; Lindberg, C.; Dai, L.; Zhai, B.; Peled, J.U.; et al. Oral Bacteria Relative Abundance in Faeces Increases Due to Gut Microbiota Depletion and Is Linked with Patient Outcomes. Nat. Microbiol. 2024, 9, 1555–1565. [Google Scholar] [CrossRef]
- Nicholson, J.S.; Landry, K.S. Oral Dysbiosis and Neurodegenerative Diseases: Correlations and Potential Causations. Microorganisms 2022, 10, 1326. [Google Scholar] [CrossRef]
- Bertolini, M.; Costa, R.C.; Barão, V.A.R.; Villar, C.C.; Retamal-Valdes, B.; Feres, M.; Silva Souza, J.G. Oral Microorganisms and Biofilms: New Insights to Defeat the Main Etiologic Factor of Oral Diseases. Microorganisms 2022, 10, 2413. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Li, X.; Zhao, X.; Yang, P.; Wang, X.; Chen, X.; Chen, N.; Chen, F. Standardized Studies of the Oral Microbiome: From Technology-Driven to Hypothesis-Driven. iMeta 2022, 1, e19. [Google Scholar] [CrossRef] [PubMed]
- Schminke, B.; Kauffmann, P.; Brockmeyer, P.; Miosge, N.; Lenz, C.; Schubert, A. The Proteomes of Oral Cells Change during Co-Cultivation with Aggregatibacter actinomycetemcomitans and Eikenella corrodens. Biomedicines 2023, 11, 700. [Google Scholar] [CrossRef] [PubMed]
Bacteria | Stroke or Associate Condition | Year | Population | Brief Results | Reference |
---|---|---|---|---|---|
Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans | Stroke | 2012 | 12 patients with ischemic or hemorrhagic stroke and 60 systemically healthy individuals | Participants with stroke had higher rates of pocket depth, gingival bleeding, plaque index, and number of missing teeth. In addition, the number of P. gingivalis was higher in the stroke group. | Ghizoni et al. [97] |
Porphyromonas gingivalis | Stroke | 2024 | 63 individuals with stroke included in the multicentre compoCLOT cohort study | P. gingivalis was found in 33.7% of thrombi in stroke patients. P. gingivalis was associated with lower rates of complete reperfusion, favorable stroke outcomes, and higher levels of neutrophil elastase in thrombi. | Seckendorff et al. [91] |
16 periodontal pathogens | Stroke | 2020 | 534 patients who had experienced an acute stroke | The antibody level of F. nucleatum was identified as an independent predictor of unfavorable stroke outcomes. | Nishi et al. [92] |
9 periodontal pathogens | Stroke | 2020 | 639 patients who had experienced an acute stroke | A positive titer of serum antibodies against Campylobacter rectus has been associated with the presence of cerebral microbleeds in patients with acute stroke. | Shiga et al. [93] |
A. actinomycetemcomitans, P. gingivalis, and P. intermedia | Cerebral infarction | 2013 | 8 individuals with diabetic nephropathy and 13 with non-diabetic nephropathy | A higher prevalence of A. actinomycetemcomitans was observed in patients with diabetic nephropathy compared to those with non-diabetic nephropathy. A significantly higher incidence of cerebral infarction was observed in patients with diabetic nephropathy compared to patients with non-diabetic nephropathy. | Murakami et al. [98] |
Streptococcus mutans | Cerebral microbleeds | 2020 | 111 individuals from 63 to 81 years old | CNM-expressing S. mutans was associated with a higher risk of cerebral microbleeds. | Hosoki [83] |
Metagenome | Ischemic stroke | 2024 | 81 participants who had undergone a thrombectomy procedure | The investigation revealed that the abundance of Bacillus, Parabacteroides, Prevotella, Streptococcus, Romboutsia, Corynebacterium, and Roseburia was higher in thrombus tissue than in arterial blood. Furthermore, the results indicated that alcohol consumption was associated with a higher bacterial load. | Wang et al. [99] |
Porphyromonas gingivalis | Thrombosis | 2019 | 16 systemically healthy, 8 patients with healthy periodontium, and 8 patients with periodontitis | P. gingivalis LPS-treated platelets showed significantly greater spreading and a greater number of filopodia than controls. LPS stimulation of platelets promoted Cdc42 activation. Exposure to LPS significantly reduced both the clotting time and partial thromboplastin time. | Senini et al. [90] |
Streptococcus mitis, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans | Ischemic stroke | 2019 | 75 patients with acute ischemic stroke | The relative amount of Streptococcus species DNA was 5.1 times higher in thrombi compared to blood samples. All thrombi were negative for both P. gingivalis and A. actinomycetemcomitans. | Patrakka et al. [84] |
Streptococcus sanguinis, Streptococcus mitis, and Streptococcus gordonii | Ischemic stroke | 2023 | 61 patients with ischemic stroke | 84.8% of thrombi, 80.0% of carotid endarterectomy specimens, and 31.3% of carotid artery specimens were positive for Streptococcus. Most Streptococcus were found within neutrophils, but some samples also had remnants of bacterial biofilm as well as free bacterial infiltrates. | Patrakka et al. [86] |
Streptococcus, P. gingivalis, and A. actinomycetemcomitans | Ischemic stroke | 2021 | 71 patients with acute ischemic stroke | Oral streptococcal DNA was detected in 78.9% of thrombus aspirates. Patients with the best oral health had more oral streptococcal DNA in the thrombus than those in the worst pathology group. There was a trend for ≥50% carotid artery stenosis to be associated with more severe dental pathology. | Patrakka et al. [85] |
Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli | Stroke | 2020 | 102 patients with acute stroke | An increase in the bacteria P.aeruginosa, K. pneumoniae, and E. coli was observed one month after the stroke. | Perry et al. [78] |
Oral metagenome | Stroke | 2023 | 262 patients with stroke | Lower levels of Streptococcus have been demonstrated to be associated with stroke-associated pneumonia. The enrichment of specific taxa within the phylum Actinobacteriota was identified as an independent risk factor for poor 30-day clinical outcomes. | Ren et al. [87] |
Oral metagenome | Cryptogenic ischemic stroke | 2024 | 308 individuals from young patients diagnosed with cryptogenic ischemic stroke | The predominant microbiota in saliva is largely similar between cases and controls. At the species level, the abundance of B. goodwinii, V. boronicumulans, Pseudomonas sp. AN-B15, Actinoalloteichus sp. GBA129-24, and T. arsenitoxydans were higher in the stroke group. The levels of M. alkalescens, Streptomyces sp. LBUM 1475, P. dioxanivorans, A. dokdonella, and F. frigiditurris were lower in the stroke group than in the control group. | Manzoor et al. [79] |
Oral metagenome | Ischemic stroke | 2023 | 146 subjects | The stroke and high-risk stroke groups had higher alpha diversity indices for Chao1, Shannon, Simplons, and the genera Streptococcus, Prevotella, Veillonella, Fusobacterium, and Treponema. | Sun et al. [74] |
Porphyromonas gingivalis, Tanarella forsythia, and Treponema denticola | Coronary artery disease | 2021 | 80 patients scheduled for coronary artery bypass grafting or angioplasty | In 10%, 12.5%, and 1.3% of the atherosclerotic plaque samples, P. gingivalis, T. forsythia, and T. denticola were detected. | Rao et al. [94] |
Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Porphyromonas gingivalis, and Treponema denticola | Coronary artery disease | 2013 | 51 patients with chronic periodontitis | In 0%, 31.4%, 45.1%, 39.2%, and 51% of the atherosclerotic plaque samples, A. actinomycetemcomitans, T. forsythia, P. gingivalis, and T. denticola were detected. | Mahendra et al. [95] |
Oral metagenome | Ischemic stroke | 2023 | 143 patients with ischemic stroke and 143 healthy individuals | Alpha diversity was inversely associated with the risk of ischemic stroke. Furthermore, Corynebacterium, Lautropia, and Selenomonas were associated with an increased risk of stroke. | Wang et al. [75] |
Oral metagenome | Multimorbidity including stroke | 2023 | 201 adult subjects, including 84 with severe periodontal | The oral levels of the bacteria Porphyromonas gingivalis and Tannerella forsythia were demonstrated to be reduced in participants with multimorbidity, including stroke. | Shen et al. [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonov, G.; Salikhova, D.; Starodubova, A.; Vasilyev, A.; Makhnach, O.; Fatkhudinov, T.; Goldshtein, D. Oral Microbiome Dysbiosis as a Risk Factor for Stroke: A Comprehensive Review. Microorganisms 2024, 12, 1732. https://doi.org/10.3390/microorganisms12081732
Leonov G, Salikhova D, Starodubova A, Vasilyev A, Makhnach O, Fatkhudinov T, Goldshtein D. Oral Microbiome Dysbiosis as a Risk Factor for Stroke: A Comprehensive Review. Microorganisms. 2024; 12(8):1732. https://doi.org/10.3390/microorganisms12081732
Chicago/Turabian StyleLeonov, Georgy, Diana Salikhova, Antonina Starodubova, Andrey Vasilyev, Oleg Makhnach, Timur Fatkhudinov, and Dmitry Goldshtein. 2024. "Oral Microbiome Dysbiosis as a Risk Factor for Stroke: A Comprehensive Review" Microorganisms 12, no. 8: 1732. https://doi.org/10.3390/microorganisms12081732
APA StyleLeonov, G., Salikhova, D., Starodubova, A., Vasilyev, A., Makhnach, O., Fatkhudinov, T., & Goldshtein, D. (2024). Oral Microbiome Dysbiosis as a Risk Factor for Stroke: A Comprehensive Review. Microorganisms, 12(8), 1732. https://doi.org/10.3390/microorganisms12081732