Isolation and Characterization of Plant-Growth-Promoting Bacteria Associated with Salvinia auriculata Aublet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of Salvinia auriculata Aublet
2.2. Bacterial Strains Isolation and Cultivation
2.3. Molecular Identification of Isolates
2.4. Phylogenetic Reconstruction
2.5. Atmospheric N2 Fixation
2.6. Production of Indole Compounds
2.7. Phosphate Solubilization
2.8. Plant Growth-Promotion Test
2.9. Statistical Analysis
3. Results
3.1. Bacteria Associated with Salvinia auriculata Aublet
3.2. Potential of Bacteria to Promote Plant Growth
Growth Promotion of Salvinia auriculata by Enterobacter sp.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pott, V.J.; Pott, A.; Lima, L.C.P.; Moreira, S.N.; Oliveira, A.K.M. Aquatic Macrophyte Diversity of the Pantanal Wetland and Upper Basin. Braz. J. Biol. 2011, 71, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Esteves, F.A. Fundamentos de Limnologia, 3rd ed.; Interciência: Rio de Janeiro, Brazil, 2011. [Google Scholar]
- Leal-Alvarado, D.A.; Estrella-Maldonado, H.; Sáenz-Carbonell, L.; Ramírez-Prado, J.H.; Zapata-Pérez, O.; Santamaría, J.M. Genes Coding for Transporters Showed a Rapid and Sharp Increase in Their Expression in Response to Lead, in the Aquatic Fern (Salvinia minima Baker). Ecotoxicol. Environ. Saf. 2018, 147, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Machado, S.A.; Oliveira, A.V.; Fabrin, T.M.C.; Prioli, S.M.A.P.; Prioli, A.J. Molecular Characterization of the Species Salvinia (Salviniaceae) from the Upper Paraná River Floodplain. Genet. Mol. Res. 2016, 15, gmr.15038575. [Google Scholar] [CrossRef] [PubMed]
- Mirza, M.S.; Waseem, A.; Latif, F.; Haurat, J.; Bally, R.; Normand, P.; Malik, K.A. Isolation, Partial Characterization, and the Effect of Plant Growth-Promoting Bacteria (PGPB) on Micro-Propagated Sugarcane In Vitro. Plant Soil 2001, 237, 47–54. [Google Scholar] [CrossRef]
- Bevivino, A.; Sarrocco, S.; Dalmastri, C.; Tabacchioni, S.; Cantale, C.; Chiarini, L. Characterization of a Free-Living Maize-Rhizosphere Population of Burkholderia cepacia: Effect of Seed Treatment on Disease Suppression and Growth Promotion of Maize. FEMS Microbiol. Ecol. 1998, 27, 225–237. [Google Scholar] [CrossRef]
- Verma, S.C.; Ladha, J.K.; Tripathi, A.K. Evaluation of Plant Growth Promoting and Colonization Ability of Endophytic Diazotrophs from Deep Water Rice. J. Biotechnol. 2001, 91, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef] [PubMed]
- Johnston-Monje, D.; Raizada, M.N. Conservation and Diversity of Seed Associated Endophytes in Zea across Boundaries of Evolution, Ethnography and Ecology. PLoS ONE 2011, 6, e20396. [Google Scholar] [CrossRef]
- Gilbert, S.; Xu, J.; Acosta, K.; Poulev, A.; Lebeis, S.; Lam, E. Bacterial Production of Indole Related Compounds Reveals Their Role in Association between Duckweeds and Endophytes. Front. Chem. 2018, 6, 265. [Google Scholar] [CrossRef]
- Jones, K.M.; Kobayashi, H.; Davies, B.W.; Taga, M.E.; Walker, G.C. How Rhizobial Symbionts Invade Plants: The Sinorhizobium–Medicago Model. Nat. Rev. Microbiol. 2007, 5, 619–633. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.A.; Bardgett, R.D.; Van Straalen, N.M. The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef]
- Chen, Y.P.; Rekha, P.D.; Arun, A.B.; Shen, F.T.; Lai, W.A.; Young, C.C. Phosphate Solubilizing Bacteria from Subtropical Soil and Their Tricalcium Phosphate Solubilizing Abilities. Appl. Soil Ecol. 2006, 34, 33–41. [Google Scholar] [CrossRef]
- Vazquez, P.; Holguin, G.; Puente, M.E.; Lopez-Cortes, A.; Bashan, Y. Phosphate-Solubilizing Microorganisms Associated with the Rhizosphere of Mangroves in a Semiarid Coastal Lagoon. Biol. Fertil. Soils 2000, 30, 460–468. [Google Scholar] [CrossRef]
- Rodríguez, H.; Fraga, R. Phosphate Solubilizing Bacteria and Their Role in Plant Growth Promotion. Biotechnol. Adv. 1999, 17, 319–339. [Google Scholar] [CrossRef]
- Ishizawa, H.; Kuroda, M.; Morikawa, M.; Ike, M. Evaluation of Environmental Bacterial Communities as a Factor Affecting the Growth of Duckweed Lemna Minor. Biotechnol. Biofuels 2017, 10, 62. [Google Scholar] [CrossRef]
- Saha, C.; Mukherjee, G.; Agarwal-Banka, P.; Seal, A. A Consortium of Non-Rhizobial Endophytic Microbes from Typha Angustifolia Functions as Probiotic in Rice and Improves Nitrogen Metabolism. Plant Biol. 2016, 18, 938–946. [Google Scholar] [CrossRef]
- Ortega-Acosta, O.; Rodriguez-Tovar, A.V.; López-López, E.; Rodríguez-Dorantes, A. Characterization of Indole Acetic Acid Endophyte Producers in Authoctonus Lemna gibba Plants from Xochimilco Lake. Afr. J. Biotechnol. 2015, 14, 604–611. [Google Scholar] [CrossRef]
- Sun, P.; Huang, Y.; Yang, X.; Liao, A.; Wu, J. The Role of Indole Derivative in the Growth of Plants: A Review. Front. Plant Sci. 2023, 13, 1120613. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 1–32. [Google Scholar]
- Rodrigues Neto, J.; Malavolta, V.A., Jr.; Victor, O. Meio Simples Para o Isolamento e Cultivo de Xanthomonas campestris Pv. Citri Tipo B. Summa Phytopathol. 1986, 12, 32. [Google Scholar]
- Perin, L. Estudo Da Comunidade de Bactérias Diazotróficas Do Gênero Burkholderia Em Associação Com Cana-de-Açúcar e Descrição de Burkholderia Silvatlantica; Universidade Federal Rural do Rio de Janeiro: Rio de Janeiro, Brazil, 2007. [Google Scholar]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S Ribosomal DNA Amplification for Phylogenetic Study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef]
- Hall, T.; Biosciences, I.; Carlsbad, C. BioEdit: An Important Software for Molecular Biology. GERF Bull. Biosci. 2011, 2, 60–61. [Google Scholar]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT Online Service: Multiple Sequence Alignment, Interactive Sequence Choice and Visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Nakamura, T.; Yamada, K.D.; Tomii, K.; Katoh, K. Parallelization of MAFFT for Large-Scale Multiple Sequence Alignments. Bioinformatics 2018, 34, 2490–2492. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Döbereiner, J.; de Andrade, V.O.; Baldani, V.L.D. Protocolos Para Preparo de Meios de Cultura Da Embrapa Agrobiologia; Embrapa Agrobiologia-Documentos (INFOTECA-E); Embrapa Agrobiologia: Seropédica, Brazil, 1999; pp. 250–258. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAB-2010/27335/1/doc110.pdf (accessed on 17 June 2024).
- Sarwar, M.; Kremer, R.J. Enhanced Suppression of Plant Growth through Production of L-Tryptophan-Derived Compounds by Deleterious Rhizobacteria. Plant Soil 1995, 172, 261–269. [Google Scholar] [CrossRef]
- Intorne, A.C.; De Oliveira, M.V.V.; Lima, M.L.; Da Silva, J.F.; Olivares, F.L.; De Souza Filho, G.A. Identification and Characterization of Gluconacetobacter diazotrophicus Mutants Defective in the Solubilization of Phosphorus and Zinc. Arch. Microbiol. 2009, 191, 477–483. [Google Scholar] [CrossRef]
- Bizzo, A.L.T.; Intorne, A.C.; Gomes, P.H.; Suzuki, M.S.; dos Esteves, B.S. Short-Term. Physiological Responses to Copper Stress in Salvinia auriculata Aubl. Acta Limnol. Bras. 2014, 26, 268–277. [Google Scholar] [CrossRef]
- Forno, I.W. Native Distribution of the Salvinia Auriculata Complex and Keys to Species Identification. Aquat. Bot. 1983, 17, 71–83. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Bini, L.M.; Thomaz, S.M.; Murphy, K.J.; Camargo, A.F.M. Aquatic Macrophyte Distribution in Relation to Water and Sediment Conditions in the Itaipu Reservoir, Brazil. Hydrobiologia 1999, 415, 147–154. [Google Scholar] [CrossRef]
- Panfili, I.; Bartucca, M.L.; Ballerini, E.; Del Buono, D. Combination of Aquatic Species and Safeners Improves the Remediation of Copper Polluted Water. Sci. Total Environ. 2017, 601–602, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Palácio, S.M.; Nogueira, D.A.; Espinoza-Quiñones, F.R.; de Campos, É.A.; Veit, M.T. Silver Nanoparticles Bioaccumulation by Aquatic Macrophyte Salvinia auriculata. Water Air Soil Pollut. 2020, 231, 62. [Google Scholar] [CrossRef]
- Ishizawa, H.; Kuroda, M.; Inoue, K.; Inoue, D.; Morikawa, M.; Ike, M. Colonization and Competition Dynamics of Plant Growth-Promoting/Inhibiting Bacteria in the Phytosphere of the Duckweed Lemna Minor. Microb. Ecol. 2019, 77, 440–450. [Google Scholar] [CrossRef]
- Suzuki, W.; Sugawara, M.; Miwa, K.; Morikawa, M. Plant Growth-Promoting Bacterium Acinetobacter Calcoaceticus P23 Increases the Chlorophyll Content of the Monocot Lemna minor (Duckweed) and the Dicot Lactuca sativa (Lettuce). J. Biosci. Bioeng. 2014, 118, 41–44. [Google Scholar] [CrossRef]
- Shehzadi, M.; Fatima, K.; Imran, A.; Mirza, M.S.; Khan, Q.M.; Afzal, M. Ecology of Bacterial Endophytes Associated with Wetland Plants Growing in Textile Effluent for Pollutant-Degradation and Plant Growth-Promotion Potentials. Plant Biosyst. 2016, 150, 1261–1270. [Google Scholar] [CrossRef]
- Vimal, S.R.; Patel, V.K.; Singh, J.S. Plant Growth Promoting Curtobacterium Albidum Strain SRV4: An Agriculturally Important Microbe to Alleviate Salinity Stress in Paddy Plants. Ecol. Indic. 2019, 105, 553–562. [Google Scholar] [CrossRef]
- Gupta, R.S.; Patel, S.; Saini, N.; Chen, S. Robust Demarcation of 17 Distinct Bacillus Species Clades, Proposed as Novel Bacillaceae Genera, by Phylogenomics and Comparative Genomic Analyses: Description of Robertmurraya Kyonggiensis Sp. Nov. and Proposal for an Emended Genus Bacillus Limiting It only to the Members of the Subtilis and Cereus Clades of Species. Int. J. Syst. Evol. Microbiol. 2020, 70, 5753–5798. [Google Scholar] [CrossRef]
- Jo, H.W.; Lim, K.; Ibal, J.C.; Kim, M.C.; Kim, H.B.; Baek, C.; Heo, Y.M.; Lee, H.; Kang, S.; Lee, D.G.; et al. Growth Increase in the Herbaceous Plant Centella asiatica by the Plant Growth-Promoting Rhizobacteria Priestia megaterium HyangYak-01. Plants 2023, 12, 2398. [Google Scholar] [CrossRef]
- Chinnaswamy, A.; Coba de la Peña, T.; Stoll, A.; de la Peña Rojo, D.; Bravo, J.; Rincón, A.; Lucas, M.M.; Pueyo, J.J. A Nodule Endophytic Bacillus Megaterium Strain Isolated from Medicago Polymorpha Enhances Growth, Promotes Nodulation by Ensifer Medicae and Alleviates Salt Stress in Alfalfa Plants. Ann. Appl. Biol. 2018, 172, 295–308. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, Y.; Lai, X.H.; Shan, C.; Deng, Z.; Ji, Y. Screening and Characterization of Endophytic Bacillus and Paenibacillus Strains from Medicinal Plant Lonicera japonica for Use as Potential Plant Growth Promoters. Braz. J. Microbiol. 2015, 46, 977–989. [Google Scholar] [CrossRef]
- Lopes, R.; Cerdeira, L.; Tavares, G.S.; Ruiz, J.C.; Blom, J.; Horácio, E.C.A.; Mantovani, H.C.; de Queiroz, M.V. Genome Analysis Reveals Insights of the Endophytic Bacillus Toyonensis BAC3151 as a Potentially Novel Agent for Biocontrol of Plant Pathogens. World J. Microbiol. Biotechnol. 2017, 33, 185. [Google Scholar] [CrossRef]
- Young, J.M.; Kuykendall, L.D.; Martínez-Romero, E.; Kerr, A.; Sawada, H. A Revision of Rhizobium Frank 1889, with an Emended Description of the Genus, and the Inclusion of All Species of Agrobacterium Conn 1942 and Allorhizobium Undicola de Lajudie et al. 1998 as New Combinations: Rhizobium Radiobacter, R. Rhizogenes, R. Rubi. Int. J. Syst. Evol. Microbiol. 2001, 51, 89–103. [Google Scholar] [CrossRef]
- Banach, A.; Kuźniar, A.; Mencfel, R.; Wolińska, A. The Study on the Cultivable Microbiome of the Aquatic Fern Azolla filiculoides L. as New Source of Beneficial Microorganisms. Appl. Sci. 2019, 9, 2143. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, Y.G.; Baek, K.H.; Cho, M.H.; Lee, J. The Multifaceted Roles of the Interspecies Signalling Molecule Indole in Agrobacterium Tumefaciens. Environ. Microbiol. 2015, 17, 1234–1244. [Google Scholar] [CrossRef]
- Rojas-Solís, D.; Zetter-Salmón, E.; Contreras-Pérez, M.; del Rocha-Granados, M.C.; Macías-Rodríguez, L.; Santoyo, G. Pseudomonas Stutzeri E25 and Stenotrophomonas Maltophilia CR71 Endophytes Produce Antifungal Volatile Organic Compounds and Exhibit Additive Plant Growth-Promoting Effects. Biocatal. Agric. Biotechnol. 2018, 13, 46–52. [Google Scholar] [CrossRef]
- Naz, I.; Bano, A. Assessment of Phytohormones Producing Capacity of Stenotrophomonas Maltophilia SSA and Its Interaction with Zea mays L. Pak. J. Bot. 2012, 44, 465–469. [Google Scholar]
- Jackson, E.E.; Masood, N.; Ibrahim, K.; Urvoy, N.; Hariri, S.; Forsythe, S.J. Description of Siccibacter colletis Sp. Nov., a Novel Species Isolated from Plant Material, and Emended Description of Siccibacter turicensis. Int. J. Syst. Evol. Microbiol. 2015, 65, 1335–1341. [Google Scholar] [CrossRef]
- Zhao, F.; Li, P.; Guo, C.; Shi, R.J.; Zhang, Y. Bioaugmentation of Oil Reservoir Indigenous Pseudomonas aeruginosa to Enhance Oil Recovery through In-Situ Biosurfactant Production without Air Injection. Bioresour. Technol. 2018, 251, 295–302. [Google Scholar] [CrossRef]
- Ndeddy Aka, R.J.; Babalola, O.O. Effect of Bacterial Inoculation of Strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on Germination, Growth and Heavy Metal (Cd, Cr, and Ni) Uptake of Brassica Juncea. Int. J. Phytoremediat. 2016, 18, 200–209. [Google Scholar] [CrossRef]
- Shahid, M.; Hameed, S.; Imran, A.; Ali, S.; van Elsas, J.D. Root Colonization and Growth Promotion of Sunflower (Helianthus annuus L.) by Phosphate Solubilizing Enterobacter sp. Fs-11. World J. Microbiol. Biotechnol. 2012, 28, 2749–2758. [Google Scholar] [CrossRef]
- Borham, A.; Belal, E.; Metwaly, M.; El-Gremy, S. Phosphate Solubilization by Enterobacter Cloacae and Its Impact on Growth and Yield of Wheat Plants. J. Sustain. Agric. Sci. 2017, 43, 89–103. [Google Scholar] [CrossRef]
- Ogbo, F.; Okonkwo, J. Some Characteristics of a Plant Growth Promoting Enterobacter Sp. Isolated from the Roots of Maize. Adv. Microbiol. 2012, 2, 368–374. [Google Scholar] [CrossRef]
- Lin, L.; Li, Z.; Hu, C.; Zhang, X.; Chang, S.; Yang, L.; Li, Y.; An, Q. Plant Growth-Promoting Nitrogen-Fixing Enterobacteria Are in Association with Sugarcane Plants Growing in Guangxi, China. Microbes Environ. 2012, 27, 391–398. [Google Scholar] [CrossRef]
- Biel, K.; Fomina, I. Benson-Bassham-Calvin Cycle Contribution to the Organic Life on Our Planet. Photosynthetica 2015, 53, 161–167. [Google Scholar] [CrossRef]
- Makino, A.; Nakai, R.; Yoneda, Y.; Toyama, T.; Tanaka, Y.; Meng, X.Y.; Mori, K.; Ike, M.; Morikawa, M.; Kamagata, Y.; et al. Isolation of Aquatic Plant Growth-Promoting Bacteria for the Floating Plant Duckweed (Lemna minor). Microorganisms 2022, 10, 1564. [Google Scholar] [CrossRef]
- Srivastava, J.K.; Chandra, H.; Kalra, S.J.S.; Mishra, P.; Khan, H.; Yadav, P. Plant–Microbe Interaction in Aquatic System and Their Role in the Management of Water Quality: A Review. Appl. Water Sci. 2017, 7, 1079–1090. [Google Scholar] [CrossRef]
Species | Isolate | GenBank Acc. Code | Length (nt) | Best Hit | Ident (%) | Color | Elevation | Shape | Surface | Optical Property | Gram | Form |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Priestia megaterium | 3.1.3.0.X.1 | MK558237 | 1479 | LC606532.1 | 97.92 | Beige | Present | Regular | Smooth | Bright | + | Bacilli |
Pseudomonas aeruginosa | 3.1.3.0.X.2 | MK558246 | 760 | OK217196.1 | 99.17 | Green | Absent | Uneven | Rough | Opaque | − | Bacilli |
Stenotrophomonas sp. | 3.1.3.0.X.3 | MK558253 | 818 | MH341934.1 | 97.31 | Yellow | Present | Regular | Smooth | Bright | + | Bacilli |
Stenotrophomonas maltophilia | 3.1.3.0.X.4 | MK558251 | 960 | CP049956.1 | 98.09 | Yellow | Present | Regular | Smooth | Bright | + | Bacilli |
Siccibacter colletis | 3.1.3.0.X.5 | MK558250 | 1459 | NR_134807.1 | 98.57 | White | Present | Uneven | Smooth | Translucent | + | Bacilli |
Pseudomonas aeruginosa | 3.1.3.0.X.6 | MK558247 | 1499 | OP677775.1 | 94.14 | Green | Absent | Uneven | Rough | Opaque | − | Bacilli |
Curtobacterium sp. | 3.1.3.0.X.7 | MK558240 | 1449 | ON920698.1 | 94.05 | Yellow | Present | Regular | Smooth | Bright | + | Bacilli |
Pseudomonas fulva | 3.1.3.0.X.8 | MK558248 | 1112 | KT253977.1 | 96.82 | Yellow | Present | Regular | Smooth | Bright | − | Bacilli |
Curtobacterium sp. | 3.1.3.0.X.9 | MK558241 | 691 | MN511778.1 | 99.40 | Yellow | Present | Regular | Smooth | Bright | − | Bacilli |
Curtobacterium sp. | 3.1.3.0.X.10 | MK558242 | 1453 | KJ733897.1 | 96.97 | Yellow | Present | Regular | Smooth | Bright | + | Bacilli |
Pseudomonas mosselii | 3.1.3.0.X.11 | MK558249 | 670 | KF515676.1 | 95.17 | Green | Present | Regular | Smooth | Bright | + | Bacilli |
Rhizobium radiobacter | 3.1.3.0.X.12 | MK558236 | 1410 | MH050420.1 | 97.69 | White | Present | Regular | Smooth | Translucent | − | Bacilli |
Enterobacter sp. | 3.1.3.0.X.13 | MK558244 | 979 | KT260465.1 | 97.32 | White | Present | Regular | Smooth | Bright | + | Cocci |
Bacillus toyonensis | 3.1.3.0.X.14 | MK558239 | 1461 | MG561363.1 | 97.96 | White | Absent | Uneven | Rough | Opaque | + | Bacilli |
Stenotrophomonas maltophilia | 3.1.3.0.X.15 | MK558252 | 797 | MN889390.1 | 96.60 | Yellow | Present | Regular | Smooth | Bright | + | Bacilli |
Bacillus sp. | 3.1.3.0.X.16 | MK558238 | 481 | MG461474.1 | 98.93 | Yellow | Present | Regular | Smooth | Bright | + | Bacilli |
Curtobacterium sp. | 3.1.3.0.X.17 | MK558243 | 517 | KX618332.1 | 97.71 | Yellow | Present | Regular | Smooth | Bright | + | Bacilli |
Enterobacter sp. | 3.1.3.0.X.18 | MK558245 | 1460 | CP118552.1 | 97.79 | White | Present | Regular | Smooth | Translucent | − | Bacilli |
Identification | NFb | JNFb | Indoles (µg·mL−1) | Solubilization |
---|---|---|---|---|
P. megaterium 3.1.3.0.X.1 | − | − | 2.89 | + |
P. aeruginosa 3.1.3.0.X.2 | − | + | 24.00 | + |
Stenotrophomonas sp. 3.1.3.0.X.3 | + | − | 4.70 | + |
S. maltophilia 3.1.3.0.X.4 | − | + | 6.97 | + |
S. colletis 3.1.3.0.X.5 | + | + | 7.90 | + |
P. aeruginosa 3.1.3.0.X.6 | − | − | 0.70 | + |
Curtobacterium sp. 3.1.3.0.X.7 | − | − | 3.62 | + |
P. fulva 3.1.3.0.X.8 | − | + | 6.01 | + |
Curtobacterium sp. 3.1.3.0.X.9 | − | − | 4.81 | + |
Curtobacterium sp. 3.1.3.0.X.10 | + | + | 1.91 | + |
P. mosselii 3.1.3.0.X.11 | + | + | 1.44 | + |
R. radiobacter 3.1.3.0.X.12 | + | − | 19.63 | + |
Enterobacter sp. 3.1.3.0.X.13 | − | − | 22.72 | + |
B. toyonensis 3.1.3.0.X.14 | − | − | 1.05 | + |
S. maltophilia 3.1.3.0.X.15 | + | + | 2.63 | − |
Bacillus sp. 3.1.3.0.X.16 | + | + | 6.45 | + |
Curtobacterium sp. 3.1.3.0.X.17 | − | + | 2.66 | − |
Enterobacter sp. 3.1.3.0.X.18 | + | + | 28.18 | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goulart, J.T.d.S.S.; Quintanilha-Peixoto, G.; Esteves, B.d.S.; de Souza, S.A.; Lopes, P.S.; da Silva, N.D.; Soares, J.R.; Barroso, L.M.; Suzuki, M.S.; Intorne, A.C. Isolation and Characterization of Plant-Growth-Promoting Bacteria Associated with Salvinia auriculata Aublet. Microorganisms 2024, 12, 1842. https://doi.org/10.3390/microorganisms12091842
Goulart JTdSS, Quintanilha-Peixoto G, Esteves BdS, de Souza SA, Lopes PS, da Silva ND, Soares JR, Barroso LM, Suzuki MS, Intorne AC. Isolation and Characterization of Plant-Growth-Promoting Bacteria Associated with Salvinia auriculata Aublet. Microorganisms. 2024; 12(9):1842. https://doi.org/10.3390/microorganisms12091842
Chicago/Turabian StyleGoulart, Jussara Tamires de Souza Silva, Gabriel Quintanilha-Peixoto, Bruno dos Santos Esteves, Suzane Ariadina de Souza, Pollyanna Santiago Lopes, Nathália Duarte da Silva, Julia Ribeiro Soares, Laura Mathias Barroso, Marina Satika Suzuki, and Aline Chaves Intorne. 2024. "Isolation and Characterization of Plant-Growth-Promoting Bacteria Associated with Salvinia auriculata Aublet" Microorganisms 12, no. 9: 1842. https://doi.org/10.3390/microorganisms12091842
APA StyleGoulart, J. T. d. S. S., Quintanilha-Peixoto, G., Esteves, B. d. S., de Souza, S. A., Lopes, P. S., da Silva, N. D., Soares, J. R., Barroso, L. M., Suzuki, M. S., & Intorne, A. C. (2024). Isolation and Characterization of Plant-Growth-Promoting Bacteria Associated with Salvinia auriculata Aublet. Microorganisms, 12(9), 1842. https://doi.org/10.3390/microorganisms12091842