Usefulness of a TDM-Guided Approach for Optimizing Teicoplanin Exposure in the Treatment of Secondary Bloodstream Infections Caused by Glycopeptide-Susceptible Enterococcus faecium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Teicoplanin Dosing Regimen, Sampling Procedure, and TDM-Guided ECPA Program for Optimizing Teicoplanin Exposure
2.4. Outcome Definition
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arias, C.A.; Murray, B.E. The Rise of the Enterococcus: Beyond Vancomycin Resistance. Nat. Rev. Microbiol. 2012, 10, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Echeverria-Esnal, D.; Sorli, L.; Navarrete-Rouco, M.E.; Prim, N.; Barcelo-Vidal, J.; Conde-Estévez, D.; Montero, M.M.; Martin-Ontiyuelo, C.; Horcajada, J.P.; Grau, S. Ampicillin-Resistant and Vancomycin-Susceptible Enterococcus faecium Bacteremia: A Clinical Narrative Review. Expert Rev. Anti-Infect. Ther. 2023, 21, 759–775. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Howden, B.P.; Stinear, T.P. Evolution of Virulence in Enterococcus faecium, a Hospital-Adapted Opportunistic Pathogen. Curr. Opin. Microbiol. 2018, 41, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Willems, R.J.L.; Friedrich, A.W.; Rossen, J.W.A.; Bathoorn, E. Enterococcus faecium: From Microbiological Insights to Practical Recommendations for Infection Control and Diagnostics. Antimicrob. Resist. Infect. Control 2020, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Nagao, M. A Multicentre Analysis of Epidemiology of the Nosocomial Bloodstream Infections in Japanese University Hospitals. Clin. Microbiol. Infect. 2013, 19, 852–858. [Google Scholar] [CrossRef] [PubMed]
- Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial Bloodstream Infections in US Hospitals: Analysis of 24,179 Cases from a Prospective Nationwide Surveillance Study. Clin. Infect. Dis. 2004, 39, 309–317. [Google Scholar] [CrossRef]
- De Kraker, M.E.A.; Jarlier, V.; Monen, J.C.M.; Heuer, O.E.; Van De Sande, N.; Grundmann, H. The Changing Epidemiology of Bacteraemias in Europe: Trends from the European Antimicrobial Resistance Surveillance System. Clin. Microbiol. Infect. 2013, 19, 860–868. [Google Scholar] [CrossRef]
- Rosselli Del Turco, E.; Bartoletti, M.; Dahl, A.; Cervera, C.; Pericàs, J.M. How Do I Manage a Patient with Enterococcal Bacteraemia? Clin. Microbiol. Infect. 2021, 27, 364–371. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, M.; Chang, Y.; Chen, L.; Zhang, Q. Incidence, Clinical Characteristics, and Outcomes of Nosocomial Enterococcus Spp. Bloodstream Infections in a Tertiary-Care Hospital in Beijing, China: A Four-Year Retrospective Study. Antimicrob. Resist. Infect. Control 2017, 6, 73. [Google Scholar] [CrossRef]
- Berenger, B.M.; Doucette, K.; Smith, S.W. Epidemiology and Risk Factors for Nosocomial Bloodstream Infections in Solid Organ Transplants over a 10-year Period. Transpl. Infect. Dis. 2016, 18, 183–190. [Google Scholar] [CrossRef]
- Noskin, G.A.; Peterson, L.R.; Warren, J.R. Enterococcus faecium and Enterococcus faecalis Bacteremia: Acquisition and Outcome. Clin. Infect. Dis. 1995, 20, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Peel, T.; Cheng, A.C.; Spelman, T.; Huysmans, M.; Spelman, D. Differing Risk Factors for Vancomycin-Resistant and Vancomycin-Sensitive Enterococcal Bacteraemia. Clin. Microbiol. Infect. 2012, 18, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Tavadze, M.; Rybicki, L.; Mossad, S.; Avery, R.; Yurch, M.; Pohlman, B.; Duong, H.; Dean, R.; Hill, B.; Andresen, S.; et al. Risk Factors for Vancomycin-Resistant Enterococcus Bacteremia and Its Influence on Survival after Allogeneic Hematopoietic Cell Transplantation. Bone Marrow Transpl. 2014, 49, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Billington, E.O.; Phang, S.H.; Gregson, D.B.; Pitout, J.D.D.; Ross, T.; Church, D.L.; Laupland, K.B.; Parkins, M.D. Incidence, Risk Factors, and Outcomes for Enterococcus Spp. Blood Stream Infections: A Population-Based Study. Int. J. Infect. Dis. 2014, 26, 76–82. [Google Scholar] [CrossRef]
- McBride, S.J.; Upton, A.; Roberts, S.A. Clinical Characteristics and Outcomes of Patients with Vancomycin-Susceptible Enterococcus faecalis and Enterococcus faecium Bacteraemia—A Five-Year Retrospective Review. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 107–114. [Google Scholar] [CrossRef]
- Cheah, A.A.Y.; Spelman, T.; Liew, D.; Peel, T.; Howden, B.P.; Spelman, D.; Grayson, M.L.; Nation, R.L.; Kong, D.D.M. Enterococcal Bacteraemia: Factors Influencing Mortality, Length of Stay and Costs of Hospitalization. Clin. Microbiol. Infect. 2013, 19, E181–E189. [Google Scholar] [CrossRef]
- Roger, C.; Roberts, J.A.; Muller, L. Clinical Pharmacokinetics and Pharmacodynamics of Oxazolidinones. Clin. Pharmacokinet. 2018, 57, 559–575. [Google Scholar] [CrossRef]
- Namikawa, H.; Yamada, K.; Shibata, W.; Fujimoto, H.; Takizawa, E.; Niki, M.; Nakaie, K.; Nakamura, Y.; Oinuma, K.-I.; Niki, M.; et al. Clinical Characteristics and Low Susceptibility to Daptomycin in Enterococcus faecium Bacteremia. Tohoku J. Exp. Med. 2017, 243, 211–218. [Google Scholar] [CrossRef]
- Gorzynski, E.A.; Amsterdam, D.; Beam, T.R.; Rotstein, C. Comparative in Vitro Activities of Teicoplanin, Vancomycin, Oxacillin, and Other Antimicrobial Agents against Bacteremic Isolates of Gram-Positive Cocci. Antimicrob. Agents Chemother. 1989, 33, 2019–2022. [Google Scholar] [CrossRef]
- Wilson, A.P. Clinical Pharmacokinetics of Teicoplanin. Clin. Pharmacokinet. 2000, 39, 167–183. [Google Scholar] [CrossRef]
- Asumang, J.; Heard, K.L.; Troise, O.; Fahmy, S.; Mughal, N.; Moore, L.S.P.; Hughes, S. Evaluation of a Thrice Weekly Administration of Teicoplanin in the Outpatient Setting: A Retrospective Observational Multicentre Study. JAC Antimicrob. Resist. 2021, 3, dlab012. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Aziz, M.H.; Alffenaar, J.-W.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.-A.; Pea, F.; Sjovall, F.; et al. Antimicrobial Therapeutic Drug Monitoring in Critically Ill Adult Patients: A Position Paper. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef] [PubMed]
- Pea, F. Teicoplanin and Therapeutic Drug Monitoring: An Update for Optimal Use in Different Patient Populations. J. Infect. Chemother. 2020, 26, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Gauzit, R.; Kabir-Ahmadi, M.; Thompson, N.; Pea, F.; Tattevin, P. Safety of High Loading Doses of Teicoplanin: POSY-TEICO, a Prospective, Multicentre, Observational Study. Int. J. Antimicrob. Agents 2023, 62, 106940. [Google Scholar] [CrossRef] [PubMed]
- Hanai, Y.; Takahashi, Y.; Niwa, T.; Mayumi, T.; Hamada, Y.; Kimura, T.; Matsumoto, K.; Fujii, S.; Takesue, Y. Clinical Practice Guidelines for Therapeutic Drug Monitoring of Teicoplanin: A Consensus Review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. J. Antimicrob. Chemother. 2022, 77, 869–879. [Google Scholar] [CrossRef]
- Ha, S.; Huh, K.; Chung, D.R.; Ko, J.-H.; Cho, S.Y.; Huh, H.J.; Lee, N.Y.; Kang, C.-I.; Peck, K.R.; Song, J.-H.; et al. Efficacy of Teicoplanin in Bloodstream Infections Caused by Enterococcus faecium: Posthoc Analysis of a Nationwide Surveillance. Int. J. Infect. Dis. 2022, 122, 506–513. [Google Scholar] [CrossRef]
- Yamaguchi, R.; Yamamoto, T.; Okamoto, K.; Harada, S.; Echizenya, M.; Tsutsumi, T.; Takada, T. Teicoplanin and Vancomycin as Treatment for Glycopeptide-Susceptible Enterococcus faecium Bacteraemia: A Propensity Score-Adjusted Non-Inferior Comparative Study. J. Antimicrob. Chemother. 2023, 78, 1231–1240. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A New Method of Classifying Prognostic Comorbidity in Longitudinal Studies: Development and Validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C–Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Russell, L.; Pène, F.; Martin-Loeches, I. Multidrug-Resistant Bacteria in the Grey Shades of Immunosuppression. Intensive Care Med. 2023, 49, 216–218. [Google Scholar] [CrossRef]
- Cook, A.M.; Hatton-Kolpek, J. Augmented Renal Clearance. Pharmacotherapy 2019, 39, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Zusman, O.; Farbman, L.; Tredler, Z.; Daitch, V.; Lador, A.; Leibovici, L.; Paul, M. Association between Hypoalbuminemia and Mortality among Subjects Treated with Ertapenem versus Other Carbapenems: Prospective Cohort Study. Clin. Microbiol. Infect. 2015, 21, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN Surveillance Definition of Health Care-Associated Infection and Criteria for Specific Types of Infections in the Acute Care Setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef] [PubMed]
- Echeverria-Esnal, D.; Sorli, L.; Prim, N.; Conde-Estévez, D.; Mateu-De Antonio, J.; Martin-Ontiyuelo, C.; Horcajada, J.P.; Grau, S. Linezolid vs Glycopeptides in the Treatment of Glycopeptide-Susceptible Enterococcus faecium Bacteraemia: A Propensity Score Matched Comparative Study. Int. J. Antimicrob. Agents 2019, 54, 572–578. [Google Scholar] [CrossRef]
- EUCAST. EUCAST—European Committee on Antimicrobial Susceptibility Testing—Clinical Breakpoints. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 15 November 2024).
- Subramanian, B.; Claybourn, L. Teicoplanin Dosing and Monitoring Guideline. Available online: https://www.dbth.nhs.uk/wp-content/uploads/2023/11/Teicoplanin-dosing-and-monitoring_FINAL2023.pdf (accessed on 15 November 2024).
- Cojutti, P.G.; Gatti, M.; Bonifazi, F.; Caramelli, F.; Castelli, A.; Cavo, M.; Cescon, M.; Corvaglia, L.T.; Lanari, M.; Marinelli, S.; et al. Impact of a Newly Established Expert Clinical Pharmacological Advice Programme Based on Therapeutic Drug Monitoring Results in Tailoring Antimicrobial Therapy Hospital-Wide in a Tertiary University Hospital: Findings after the First Year of Implementation. Int. J. Antimicrob. Agents 2023, 62, 106884. [Google Scholar] [CrossRef]
- Sandoe, J.A.T.; Witherden, I.R.; Au-Yeung, H.-K.C.; Kite, P.; Kerr, K.G.; Wilcox, M.H. Enterococcal Intravascular Catheter-Related Bloodstream Infection: Management and Outcome of 61 Consecutive Cases. J. Antimicrob. Chemother. 2002, 50, 577–582. [Google Scholar] [CrossRef]
- Awadh, H.; Chaftari, A.-M.; Khalil, M.; Fares, J.; Jiang, Y.; Deeba, R.; Ali, S.; Hachem, R.; Raad, I.I. Management of Enterococcal Central Line-Associated Bloodstream Infections in Patients with Cancer. BMC Infect. Dis. 2021, 21, 643. [Google Scholar] [CrossRef]
- Tsiatis, A.C.; Manes, B.; Calder, C.; Billheimer, D.; Wilkerson, K.S.; Frangoul, H. Incidence and Clinical Complications of Vancomycin-Resistant Enterococcus in Pediatric Stem Cell Transplant Patients. Bone Marrow Transpl. 2004, 33, 937–941. [Google Scholar] [CrossRef]
- Fitzgibbons, L.N.; Puls, D.L.; Mackay, K.; Forrest, G.N. Management of Gram-Positive Coccal Bacteremia and Hemodialysis. Am. J. Kidney Dis. 2011, 57, 624–640. [Google Scholar] [CrossRef]
- Mermel, L.A.; Allon, M.; Bouza, E.; Craven, D.E.; Flynn, P.; O’Grady, N.P.; Raad, I.I.; Rijnders, B.J.A.; Sherertz, R.J.; Warren, D.K. Clinical Practice Guidelines for the Diagnosis and Management of Intravascular Catheter-Related Infection: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 49, 1–45. [Google Scholar] [CrossRef]
Demographic and Clinical Variables | Patients (N = 67) |
---|---|
Patient demographics | |
Age (years) [median (IQR)] | 70 (60–77) |
Gender (male/female) [n (%)] | 37/30 (55.2/44.8) |
Body weight (kg) [median (IQR)] | 65.0 (60.0–75.5) |
Body mass index (kg/m2) [median (IQR)] | 23.0 (20.9–25.0) |
Obesity [n (%)] | 7 (10.4) |
Admission ward [n (%)] | |
Medical | 44 (65.7) |
Surgical | 9 (13.4) |
ICU | 11 (16.4) |
Hematology | 3 (4.5) |
Underlying conditions | |
Charlson Comorbidity Index [median (IQR)] | 6 (4–8) |
Immunosuppression [n (%)] | 35 (52.2) |
Status of renal function and serum albumin levels | |
Baseline CLCR (mL/min/1.73 m2) [median (IQR)] | 62.0 (35.5–87.5) |
IHD/CRRT [n (%)] | 3 (4.5) |
Augmented renal clearance [n (%)] | 3 (4.5) |
Serum albumin (mg/dL) [median (IQR)] | 2.95 (2.72–3.19) |
Hypoalbuminemia [n (%)] * | 5 (10.4) |
Primary source of BSI | |
CR-BSI | 34 (50.7) |
IAI/biliary | 20 (29.9) |
UTI | 8 (11.9) |
Endocarditis | 3 (4.5) |
SSTI | 2 (3.0) |
Failing in effective source control [n (%)] | 11 (16.4) |
Enterococcus faecium susceptibility | |
Vancomycin | 67 (100.0) |
Linezolid | 67 (100.0) |
Daptomycin | 66 (98.5) |
Teicoplanin MIC | |
0.5 mg/L | 1 (1.5) |
1 mg/L | 62 (92.5) |
2 mg/L | 4 (6.0) |
Teicoplanin treatment | |
Daily dose (mg) [median (IQR)] | 600 mg/day (400–800 mg/day) |
Treatment duration (days) [median (IQR)] | 12.0 (9.0–15.5) |
Teicoplanin average Cmin (mg/L) [median (IQR)] | 26.0 (21.6–29.8) |
Teicoplanin Cmin at first TDM assessment [median (IQR)] | 22.0 (15.0–33.0) |
PK/PD target attainment | |
Overall optimal PK/PD target [n (%)] | 57 (85.1) |
Overall suboptimal PK/PD target [n (%)] | 10 (14.9) |
Overall optimal PK/PD target at first TDM assessment [n (%)] | 42 (62.7) |
Overall suboptimal PK/PD target at first TDM assessment [n (%)] | 25 (37.3) |
ECPA program | |
Overall TDM-based ECPAs | 229 |
N. of TDM-based ECPA per treatment course [median (IQR)] | 3 (2–4) |
N. of dosage confirmations at first TDM assessment [n (%)] | 20 (29.9) |
N. of dosage decreases at first TDM assessment [n (%)] | 41 (61.1) |
N. of dosage increases at first TDM assessment [n (%)] | 6 (9.0) |
Overall n. of dosage confirmations [n (%)] | 136 (59.4) |
Overall n. of dosage decreases [n (%)] | 80 (34.9) |
Overall n. of dosage increases [n (%)] | 13 (5.7) |
Outcome | |
Microbiological eradication [n (%)] | 63 (94.0) |
Resistance development [n (%)] | 1 (1.5) |
Persistent BSI | 2 (3.0) |
30-day relapse [n (%)] | 2 (3.0) |
Clinical cure [n (%)] | 53 (79.1) |
30-day mortality [n (%)] | 8 (11.9) |
Variables | Microbiological Eradication (N = 63) | Microbiological Failure (N = 4) | Univariate Analysis p Value |
---|---|---|---|
Patient demographics | |||
Age (years) [median (IQR)] | 68.0 (59.0–77.0) | 75.0 (69.5–81.8) | 0.20 |
Gender (male/female) [n (%)] | 35/28 (55.6/44.4) | 2/2 (50.0/50.0) | 0.99 |
Body weight (kg) [median (IQR)] | 65.0 (60.0–76.0) | 65.0 (58.8–72.1) | 0.91 |
Body mass index (kg/m2) [median (IQR)] | 23.0 (20.8–25.0) | 25.0 (22.9–27.7) | 0.27 |
Obesity [n (%)] | 6 (9.5) | 1 (25.0) | 0.36 |
Admission ward [n (%)] | |||
Medical | 41 (65.0) | 3 (75.0) | 0.99 |
Surgical | 9 (14.3) | 0 (0.0) | 0.99 |
ICU | 10 (15.9) | 1 (25.0) | 0.52 |
Hematology | 3 (4.8) | 0 (0.0) | 0.99 |
Underlying conditions | |||
Charlson Comorbidity Index [median (IQR)] | 6 (4–8) | 7 (4.75–9.25) | 0.47 |
Immunosuppression [n (%)] | 32 (50.8) | 3 (75.0) | 0.62 |
Status of renal function and serum albumin levels | |||
Baseline CLCR (mL/min/1.73 m2) [median (IQR)] | 63.0 (37.0–89.0) | 43.0 (22.5–66.0) | 0.27 |
IHD/CRRT [n (%)] | 3 (4.8) | 0 (0.0) | 0.99 |
Augmented renal clearance [n (%)] | 3 (4.8) | 0 (0.0) | 0.99 |
Hypoalbuminemia [n (%)] * | 4 (8.7) | 1 (50.0) | 0.20 |
Source of BSI [n (%)] | |||
CR-BSI | 31 (49.2) | 3 (75.0) | 0.61 |
IAI/biliary | 19 (30.1) | 1 (25.0) | 0.99 |
UTI | 8 (12.7) | 0 (0.0) | 0.99 |
Endocarditis | 3 (4.8) | 0 (0.0) | 0.99 |
SSTI | 2 (3.2) | 0 (0.0) | 0.99 |
Failing effective source control [n (%)] | 8 (12.7) | 3 (75.0) | 0.01 |
MIC value [n (%)] | |||
0.5 mg/L | 1 (1.6) | 0 (0.0) | 0.99 |
1 mg/L | 59 (93.7) | 3 (75.0) | 0.27 |
2 mg/L | 3 (4.7) | 1 (25.0) | 0.22 |
Teicoplanin treatment and PK/PD target attainment | |||
Treatment duration (days) [median (IQR)] | 12.0 (9.0–15.0) | 17.5 (13.75–22) | 0.08 |
Teicoplanin average Cmin (mg/L) [median (IQR)] | 26.0 (21.6–30.0) | 26.9 (23.9–27.3) | 0.67 |
Teicoplanin Cmin at first TDM assessment [median (IQR)] | 22.0 (15.0–32.0) | 27.5 (19.3–40.5) | 0.63 |
Overall teicoplanin suboptimal PK/PD target attainment | 9 (14.3) | 1 (25.0) | 0.48 |
Overall teicoplanin suboptimal PK/PD target attainment at first TDM assessment | 24 (38.1) | 1 (25.0) | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatti, M.; Rinaldi, M.; Giannella, M.; Viale, P.; Pea, F. Usefulness of a TDM-Guided Approach for Optimizing Teicoplanin Exposure in the Treatment of Secondary Bloodstream Infections Caused by Glycopeptide-Susceptible Enterococcus faecium. Microorganisms 2025, 13, 162. https://doi.org/10.3390/microorganisms13010162
Gatti M, Rinaldi M, Giannella M, Viale P, Pea F. Usefulness of a TDM-Guided Approach for Optimizing Teicoplanin Exposure in the Treatment of Secondary Bloodstream Infections Caused by Glycopeptide-Susceptible Enterococcus faecium. Microorganisms. 2025; 13(1):162. https://doi.org/10.3390/microorganisms13010162
Chicago/Turabian StyleGatti, Milo, Matteo Rinaldi, Maddalena Giannella, Pierluigi Viale, and Federico Pea. 2025. "Usefulness of a TDM-Guided Approach for Optimizing Teicoplanin Exposure in the Treatment of Secondary Bloodstream Infections Caused by Glycopeptide-Susceptible Enterococcus faecium" Microorganisms 13, no. 1: 162. https://doi.org/10.3390/microorganisms13010162
APA StyleGatti, M., Rinaldi, M., Giannella, M., Viale, P., & Pea, F. (2025). Usefulness of a TDM-Guided Approach for Optimizing Teicoplanin Exposure in the Treatment of Secondary Bloodstream Infections Caused by Glycopeptide-Susceptible Enterococcus faecium. Microorganisms, 13(1), 162. https://doi.org/10.3390/microorganisms13010162