Key Taxa of the Gut Microbiome Associated with the Relationship Between Environmental Sensitivity and Inflammation-Related Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Procedure
2.2. Environmental Sensitivity
2.3. Blood Biomarkers
2.4. Gut Microbiome
2.5. Data Analyses
3. Results
3.1. Clinical and Biochemical Characteristics of the Subjects
3.2. Relative Abundance and Prevalence of Gut Microbiome Taxa, Along with the Correlations Between Alpha Diversity Indices and Bacterial Taxa
3.3. Interaction Between Environmental Sensitivity and Gut Microbiome Taxa at the Family Level
- Effect on CRP
- Effect on LBP
3.4. Interaction Between Environmental Sensitivity and Gut Microbiome Taxa at the Genus Level
- Effect on CRP
- Effect on LBP
3.5. Simple Slope Analysis
4. Discussion
5. Possible Limitations and Future Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pluess, M. Individual Differences in Environmental Sensitivity. Child Dev. Perspect. 2015, 9, 138–143. [Google Scholar] [CrossRef]
- Belsky, J.; Pluess, M. Beyond diathesis stress: Differential susceptibility to environmental influences. Psychol. Bull. 2009, 135, 885–908. [Google Scholar] [CrossRef]
- Boyce, W.T.; Ellis, B.J. Biological sensitivity to context: I. An evolutionary-developmental theory of the origins and functions of stress reactivity. Dev. Psychopathol. 2005, 17, 271–301. [Google Scholar] [CrossRef] [PubMed]
- Greven, C.U.; Lionetti, F.; Booth, C.; Aron, E.; Fox, E.; Schendan, H.E.; Pluess, M.; Bruining, H.; Acevedo, B.; Bijttebier, P.; et al. Sensory Processing Sensitivity in the context of Environmental Sensitivity: A critical review and development of research agenda. Neurosci. Biobehav. Rev. 2019, 98, 287–305. [Google Scholar] [CrossRef]
- Iimura, S.; Takasugi, S. Sensory Processing Sensitivity and Gastrointestinal Symptoms in Japanese Adults. Int. J. Environ. Res. Public Health 2022, 19, 9893. [Google Scholar] [CrossRef] [PubMed]
- Baliatsas, C.; van Kamp, I.; Hooiveld, M.; Lebret, E.; Yzermans, J. The relationship of modern health worries to non-specific physical symptoms and perceived environmental sensitivity: A study combining self-reported and general practice data. J. Psychosom. Res. 2015, 79, 355–361. [Google Scholar] [CrossRef]
- Le, T.L.; Geist, R.; Hunter, J.; Maunder, R.G. Relationship between insecure attachment and physical symptom severity is mediated by sensory sensitivity. Brain Behav. 2020, 10, e01717. [Google Scholar] [CrossRef]
- Benham, G. The Highly Sensitive Person: Stress and physical symptom reports. Personal. Individ. Differ. 2006, 40, 1433–1440. [Google Scholar] [CrossRef]
- Takahashi, T.; Kawashima, I.; Nitta, Y.; Kumano, H. Dispositional Mindfulness Mediates the Relationship Between Sensory-Processing Sensitivity and Trait Anxiety, Well-Being, and Psychosomatic Symptoms. Psychol. Rep. 2020, 123, 1083–1098. [Google Scholar] [CrossRef]
- Listou Grimen, H.; Diseth, Å. Sensory Processing Sensitivity: Factors of the Highly Sensitive Person Scale and Their relationships to Personality and Subjective Health Complaints. Percept. Mot. Ski. 2016, 123, 637–653. [Google Scholar] [CrossRef]
- Belsky, J.; Bakermans-Kranenburg, M.J.; van IJzendoorn, M.H. For Better and For Worse:Differential Susceptibility to Environmental Influences. Curr. Dir. Psychol. Sci. 2007, 16, 300–304. [Google Scholar] [CrossRef]
- Belsky, J.; Jonassaint, C.; Pluess, M.; Stanton, M.; Brummett, B.; Williams, R. Vulnerability genes or plasticity genes? Mol. Psychiatry 2009, 14, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Ellis, B.J.; Boyce, W.T.; Belsky, J.; Bakermans-Kranenburg, M.J.; van Ijzendoorn, M.H. Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Dev. Psychopathol. 2011, 23, 7–28. [Google Scholar] [CrossRef]
- Song, I.U.; Chung, S.W.; Kim, Y.D.; Maeng, L.S. Relationship between the hs-CRP as non-specific biomarker and Alzheimer’s disease according to aging process. Int. J. Med. Sci. 2015, 12, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Tegeler, C.; O’Sullivan, J.L.; Bucholtz, N.; Goldeck, D.; Pawelec, G.; Steinhagen-Thiessen, E.; Demuth, I. The inflammatory markers CRP, IL-6, and IL-10 are associated with cognitive function—Data from the Berlin Aging Study II. Neurobiol. Aging 2016, 38, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Baysak, E.; Guden, D.S.; Aricioglu, F.; Halaris, A. C-reactive protein as a potential biomarker in psychiatric practice: Are we there yet? World J. Biol. Psychiatry 2022, 23, 243–256. [Google Scholar] [CrossRef]
- Cesari, M.; Penninx, B.W.; Newman, A.B.; Kritchevsky, S.B.; Nicklas, B.J.; Sutton-Tyrrell, K.; Tracy, R.P.; Rubin, S.M.; Harris, T.B.; Pahor, M. Inflammatory markers and cardiovascular disease (The Health, Aging and Body Composition [Health ABC] Study). Am. J. Cardiol. 2003, 92, 522–528. [Google Scholar] [CrossRef]
- Danesh, J.; Whincup, P.; Walker, M.; Lennon, L.; Thomson, A.; Appleby, P.; Gallimore, J.R.; Pepys, M.B. Low grade inflammation and coronary heart disease: Prospective study and updated meta-analyses. BMJ 2000, 321, 199–204. [Google Scholar] [CrossRef]
- Makita, S.; Nakamura, M.; Hiramori, K. The association of C-reactive protein levels with carotid intima-media complex thickness and plaque formation in the general population. Stroke 2005, 36, 2138–2142. [Google Scholar] [CrossRef]
- Ridker, P.M. High-sensitivity C-reactive protein: Potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 2001, 103, 1813–1818. [Google Scholar] [CrossRef]
- Ridker, P.M. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003, 107, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Tracy, R.P.; Lemaitre, R.N.; Psaty, B.M.; Ives, D.G.; Evans, R.W.; Cushman, M.; Meilahn, E.N.; Kuller, L.H. Relationship of C-reactive protein to risk of cardiovascular disease in the elderly. Results from the Cardiovascular Health Study and the Rural Health Promotion Project. Arter. Thromb. Vasc. Biol. 1997, 17, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Hod, K.; Dickman, R.; Sperber, A.; Melamed, S.; Dekel, R.; Ron, Y.; Halpern, Z.; Berliner, S.; Maharshak, N. Assessment of high-sensitivity CRP as a marker of micro-inflammation in irritable bowel syndrome. Neurogastroenterol. Motil. 2011, 23, 1105–1110. [Google Scholar] [CrossRef]
- Iimura, S.; Takasugi, S.; Yasuda, M.; Saito, Y.; Morifuji, M. Interactions between environmental sensitivity and gut microbiota are associated with biomarkers of stress-related psychiatric symptoms. J. Affect. Disord. 2023, 339, 136–144. [Google Scholar] [CrossRef]
- Iimura, S.; Yano, K.; Ishii, Y. Environmental Sensitivity in Adults: Psychometric Properties of the Japanese Version of the Highly Sensitive Person Scale 10-Item Version. J. Pers. Assess. 2023, 105, 87–99. [Google Scholar] [CrossRef]
- Iimura, S. Highly sensitive adolescents: The relationship between weekly life events and weekly socioemotional well-being. Br. J. Psychol. 2021, 112, 1103–1129. [Google Scholar] [CrossRef]
- Costa, P.T., Jr.; McCrae, R.R. Personality in adulthood: A six-year longitudinal study of self-reports and spouse ratings on the NEO Personality Inventory. J. Pers. Soc. Psychol. 1988, 54, 853–863. [Google Scholar] [CrossRef]
- Canipe, A.; Chidumayo, T.; Blevins, M.; Bestawros, M.; Bala, J.; Kelly, P.; Filteau, S.; Shepherd, B.E.; Heimburger, D.C.; Koethe, J.R. A 12 week longitudinal study of microbial translocation and systemic inflammation in undernourished HIV-infected Zambians initiating antiretroviral therapy. BMC Infect. Dis. 2014, 14, 521. [Google Scholar] [CrossRef]
- Stehle, J.R., Jr.; Leng, X.; Kitzman, D.W.; Nicklas, B.J.; Kritchevsky, S.B.; High, K.P. Lipopolysaccharide-Binding Protein, a Surrogate Marker of Microbial Translocation, Is Associated With Physical Function in Healthy Older Adults. J. Gerontol. Ser. A 2012, 67, 1212–1218. [Google Scholar] [CrossRef]
- Gonzalez-Quintela, A.; Alonso, M.; Campos, J.; Vizcaino, L.; Loidi, L.; Gude, F. Determinants of Serum Concentrations of Lipopolysaccharide-Binding Protein (LBP) in the Adult Population: The Role of Obesity. PLoS ONE 2013, 8, e54600. [Google Scholar] [CrossRef]
- Taylor, S.E.; Lehman, B.J.; Kiefe, C.I.; Seeman, T.E. Relationship of Early Life Stress and Psychological Functioning to Adult C-Reactive Protein in the Coronary Artery Risk Development in Young Adults Study. Biol. Psychiatry 2006, 60, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Costea, P.I.; Zeller, G.; Sunagawa, S.; Pelletier, E.; Alberti, A.; Levenez, F.; Tramontano, M.; Driessen, M.; Hercog, R.; Jung, F.-E.; et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 2017, 35, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; RStudio Team: Boston, MA, USA, 2020. [Google Scholar]
- Aiken, L.S.; West, S.G. Multiple Regression: Testing and Interpreting Interactions; Sage Publications, Inc: Thousand Oaks, CA, USA, 1991; 212p. [Google Scholar]
- Copeland, W.E.; Shanahan, L.; Worthman, C.; Angold, A.; Costello, E.J. Generalized anxiety and C-reactive protein levels: A prospective, longitudinal analysis. Psychol. Med. 2012, 42, 2641–2650. [Google Scholar] [CrossRef]
- Gimeno, D.; Kivimäki, M.; Brunner, E.J.; Elovainio, M.; De Vogli, R.; Steptoe, A.; Kumari, M.; Lowe, G.D.O.; Rumley, A.; Marmot, M.G.; et al. Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study. Psychol. Med. 2009, 39, 413–423. [Google Scholar] [CrossRef]
- Iordache, M.M.; Tocia, C.; Aschie, M.; Dumitru, A.; Manea, M.; Cozaru, G.C.; Petcu, L.; Vlad, S.E.; Dumitru, E.; Chisoi, A. Intestinal Permeability and Depression in Patients with Inflammatory Bowel Disease. J. Clin. Med. 2022, 11, 5121. [Google Scholar] [CrossRef]
- Alexander, N.; Wankerl, M.; Hennig, J.; Miller, R.; Zänkert, S.; Steudte-Schmiedgen, S.; Stalder, T.; Kirschbaum, C. DNA methylation profiles within the serotonin transporter gene moderate the association of 5-HTTLPR and cortisol stress reactivity. Transl. Psychiatry 2014, 4, e443. [Google Scholar] [CrossRef]
- Miller, R.; Wankerl, M.; Stalder, T.; Kirschbaum, C.; Alexander, N. The serotonin transporter gene-linked polymorphic region (5-HTTLPR) and cortisol stress reactivity: A meta-analysis. Mol. Psychiatry 2013, 18, 1018–1024. [Google Scholar] [CrossRef]
- Misiak, B.; Łoniewski, I.; Marlicz, W.; Frydecka, D.; Szulc, A.; Rudzki, L.; Samochowiec, J. The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 102, 109951. [Google Scholar] [CrossRef]
- Vicario, M.; Alonso, C.; Guilarte, M.; Serra, J.; Martínez, C.; González-Castro, A.M.; Lobo, B.; Antolín, M.; Andreu, A.L.; García-Arumí, E.; et al. Chronic psychosocial stress induces reversible mitochondrial damage and corticotropin-releasing factor receptor type-1 upregulation in the rat intestine and IBS-like gut dysfunction. Psychoneuroendocrinology 2012, 37, 65–77. [Google Scholar] [CrossRef]
- Vanuytsel, T.; van Wanrooy, S.; Vanheel, H.; Vanormelingen, C.; Verschueren, S.; Houben, E.; Rasoel, S.S.; Tόth, J.; Holvoet, L.; Farré, R.; et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014, 63, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Mukherji, A.; Kobiita, A.; Ye, T.; Chambon, P. Homeostasis in Intestinal Epithelium Is Orchestrated by the Circadian Clock and Microbiota Cues Transduced by TLRs. Cell 2013, 153, 812–827. [Google Scholar] [CrossRef] [PubMed]
- Desbonnet, L.; Garrett, L.; Clarke, G.; Kiely, B.; Cryan, J.F.; Dinan, T.G. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 2010, 170, 1179–1188. [Google Scholar] [CrossRef]
- Eutamene, H.; Lamine, F.; Chabo, C.; Theodorou, V.; Rochat, F.; Bergonzelli, G.E.; Corthésy-Theulaz, I.; Fioramonti, J.; Bueno, L. Synergy between Lactobacillus paracasei and Its Bacterial Products to Counteract Stress-Induced Gut Permeability and Sensitivity Increase in Rats1,2. J. Nutr. 2007, 137, 1901–1907. [Google Scholar] [CrossRef]
- Gareau, M.G.; Jury, J.; MacQueen, G.; Sherman, P.M.; Perdue, M.H. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 2007, 56, 1522. [Google Scholar] [CrossRef]
- Clarke, G.; Stilling, R.M.; Kennedy, P.J.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Minireview: Gut Microbiota: The Neglected Endocrine Organ. Mol. Endocrinol. 2014, 28, 1221–1238. [Google Scholar] [CrossRef]
- Crumeyrolle-Arias, M.; Jaglin, M.; Bruneau, A.; Vancassel, S.; Cardona, A.; Daugé, V.; Naudon, L.; Rabot, S. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 2014, 42, 207–217. [Google Scholar] [CrossRef]
- Sudo, N. Role of microbiome in regulating the HPA axis and its relevance to allergy. Chem. Immunol. Allergy 2012, 98, 163–175. [Google Scholar] [CrossRef]
- Schmidt, K.; Cowen, P.J.; Harmer, C.J.; Tzortzis, G.; Errington, S.; Burnet, P.W.J. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology 2015, 232, 1793–1801. [Google Scholar] [CrossRef]
- Zijlmans, M.A.C.; Korpela, K.; Riksen-Walraven, J.M.; de Vos, W.M.; de Weerth, C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology 2015, 53, 233–245. [Google Scholar] [CrossRef]
- Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef] [PubMed]
- de Punder, K.; Pruimboom, L. Stress Induces Endotoxemia and Low-Grade Inflammation by Increasing Barrier Permeability. Front. Immunol. 2015, 6, 223. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, M.; Takagaki, A.; Matsumoto, K.; Kato, Y.; Goto, K.; Benno, Y. Butyricimonas synergistica gen. nov., sp. nov. and Butyricimonas virosa sp. nov., butyric acid-producing bacteria in the family ‘Porphyromonadaceae’ isolated from rat faeces. Int. J. Syst. Evol. Microbiol. 2009, 59, 1748–1753. [Google Scholar] [CrossRef]
- Resende, W.R.; Valvassori, S.S.; Réus, G.Z.; Varela, R.B.; Arent, C.O.; Ribeiro, K.F.; Bavaresco, D.V.; Andersen, M.L.; Zugno, A.I.; Quevedo, J. Effects of sodium butyrate in animal models of mania and depression: Implications as a new mood stabilizer. Behav. Pharmacol. 2013, 24, 569–579. [Google Scholar] [CrossRef]
- Valvassori, S.; Resende, W.; Budni, J.; Dal-Pont, G.; Bavaresco, D.; Reus, G.; Carvalho, A.; Goncalves, C.; Furlanetto, C.; Streck, E.; et al. Sodium Butyrate, a Histone Deacetylase Inhibitor, Reverses Behavioral and Mitochondrial Alterations in Animal Models of Depression Induced by Early- or Late-life Stress. Curr. Neurovascular Res. 2015, 12, 312–320. [Google Scholar] [CrossRef]
- Soret, R.; Chevalier, J.; De Coppet, P.; Poupeau, G.; Derkinderen, P.; Segain, J.P.; Neunlist, M. Short-Chain Fatty Acids Regulate the Enteric Neurons and Control Gastrointestinal Motility in Rats. Gastroenterology 2010, 138, 1772–1782.e1774. [Google Scholar] [CrossRef]
- Mowat, A.M.; Agace, W.W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 2014, 14, 667–685. [Google Scholar] [CrossRef]
- Kim, M.H.; Kang, S.G.; Park, J.H.; Yanagisawa, M.; Kim, C.H. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 2013, 145, 396–406.e10. [Google Scholar] [CrossRef]
- Chang, P.V.; Hao, L.; Offermanns, S.; Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA 2014, 111, 2247–2252. [Google Scholar] [CrossRef]
- Okumura, T.; Nozu, T.; Ishioh, M.; Igarashi, S.; Kumei, S.; Ohhira, M. Centrally administered butyrate improves gut barrier function, visceral sensation and septic lethality in rats. J. Pharmacol. Sci. 2021, 146, 183–191. [Google Scholar] [CrossRef]
- Borovikova, L.V.; Ivanova, S.; Zhang, M.; Yang, H.; Botchkina, G.I.; Watkins, L.R.; Wang, H.; Abumrad, N.; Eaton, J.W.; Tracey, K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000, 405, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Ishioh, M.; Nozu, T.; Igarashi, S.; Tanabe, H.; Kumei, S.; Ohhira, M.; Okumura, T. Ghrelin acts in the brain to block colonic hyperpermeability in response to lipopolysaccharide through the vagus nerve. Neuropharmacology 2020, 173, 108116. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Kim, C.Y.; Kaur, A.; Lamothe, L.; Shaikh, M.; Keshavarzian, A.; Hamaker, B.R. Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model. Food Funct. 2017, 8, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Song, Y.; Xu, Y.; Xu, H. Manipulating Microbiota in Inflammatory Bowel Disease Treatment: Clinical and Natural Product Interventions Explored. Int. J. Mol. Sci. 2023, 24, 11004. [Google Scholar] [CrossRef]
- Okuma, K.; Hatayama, K.; Tokuno, H.; Ebara, A.; Odachi, A.; Masuyama, H.; Hoshiko, N.; Tanaka, N. A risk estimation method for depression based on the dysbiosis of intestinal microbiota in Japanese patients. Front. Psychiatry 2024, 15, 1382175. [Google Scholar] [CrossRef]
- Shkoporov, A.N.; Khokhlova, E.V.; Chaplin, A.V.; Kafarskaia, L.I.; Nikolin, A.A.; Polyakov, V.Y.; Shcherbakova, V.A.; Chernaia, Z.A.; Efimov, B.A. Coprobacter fastidiosus gen. nov., sp. nov., a novel member of the family Porphyromonadaceae isolated from infant faeces. Int. J. Syst. Evol. Microbiol. 2013, 63, 4181–4188. [Google Scholar] [CrossRef]
- Yang, R.; Hu, X.; Xie, X.; Chen, H.; Fang, H.; Zhu, L.; Li, Z. Propionic Acid Targets the TLR4/NF-κB Signaling Pathway and Inhibits LPS-Induced Intestinal Barrier Dysfunction: In Vitro and In Vivo Studies. Front. Pharmacol. 2020, 11, 573475. [Google Scholar] [CrossRef]
- Deleu, S.; Arnauts, K.; Deprez, L.; Machiels, K.; Ferrante, M.; Huys, G.R.B.; Thevelein, J.M.; Raes, J.; Vermeire, S. High Acetate Concentration Protects Intestinal Barrier and Exerts Anti-Inflammatory Effects in Organoid-Derived Epithelial Monolayer Cultures from Patients with Ulcerative Colitis. Int. J. Mol. Sci. 2023, 24, 768. [Google Scholar] [CrossRef]
- Shang, P.; Wei, M.; Duan, M.; Yan, F.; Chamba, Y. Healthy Gut Microbiome Composition Enhances Disease Resistance and Fat Deposition in Tibetan Pigs. Front. Microbiol. 2022, 13, 965292. [Google Scholar] [CrossRef]
- Mao, B.; Guo, W.; Cui, S.; Zhang, Q.; Zhao, J.; Tang, X.; Zhang, H. Blautia producta displays potential probiotic properties against dextran sulfate sodium-induced colitis in mice. Food Sci. Hum. Wellness 2024, 13, 709–720. [Google Scholar] [CrossRef]
- Cao, F.; Ding, Q.; Zhuge, H.; Lai, S.; Chang, K.; Le, C.; Yang, G.; Valencak, T.G.; Li, S.; Ren, D. Lactobacillus plantarum ZJUIDS14 alleviates non-alcoholic fatty liver disease in mice in association with modulation in the gut microbiota. Front. Nutr. 2022, 9, 1071284. [Google Scholar] [CrossRef] [PubMed]
- Keers, R.; Coleman, J.R.; Lester, K.J.; Roberts, S.; Breen, G.; Thastum, M.; Bögels, S.; Schneider, S.; Heiervang, E.; Meiser-Stedman, R.; et al. A Genome-Wide Test of the Differential Susceptibility Hypothesis Reveals a Genetic Predictor of Differential Response to Psychological Treatments for Child Anxiety Disorders. Psychother. Psychosom. 2016, 85, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Weyn, S.; Van Leeuwen, K.; Pluess, M.; Goossens, L.; Claes, S.; Bosmans, G.; Noortgate, W.V.D.; Lutin, E.; Bröhl, A.S.; Chubar, V.; et al. Individual differences in environmental sensitivity at physiological and phenotypic level: Two sides of the same coin? Int. J. Psychophysiol. 2022, 176, 36–53. [Google Scholar] [CrossRef] [PubMed]
- Saji, N.; Niida, S.; Murotani, K.; Hisada, T.; Tsuduki, T.; Sugimoto, T.; Kimura, A.; Toba, K.; Sakurai, T. Analysis of the relationship between the gut microbiome and dementia: A cross-sectional study conducted in Japan. Sci. Rep. 2019, 9, 1008. [Google Scholar] [CrossRef]
- Vu Thi Ngoc, B.; Ho Bich, H.; Galazzo, G.; Vu Tien Viet, D.; Oomen, M.; Nghiem Nguyen Minh, T.; Tran Huy, H.; van Doorn, H.R.; Wertheim, H.F.L.; Penders, J. Cross-Sectional Analysis of the Microbiota of Human Gut and Its Direct Environment in a Household Cohort with High Background of Antibiotic Use. Microorganisms 2021, 9, 2115. [Google Scholar] [CrossRef]
- Kashtanova, D.A.; Klimenko, N.S.; Strazhesko, I.D.; Starikova, E.V.; Glushchenko, O.E.; Gudkov, D.A.; Tkacheva, O.N. A Cross-Sectional Study of the Gut Microbiota Composition in Moscow Long-Livers. Microorganisms 2020, 8, 1162. [Google Scholar] [CrossRef]
- Esmaillzadeh, A.; Kimiagar, M.; Mehrabi, Y.; Azadbakht, L.; Hu, F.B.; Willett, W.C. Fruit and vegetable intakes, C-reactive protein, and the metabolic syndrome. Am. J. Clin. Nutr. 2006, 84, 1489–1497. [Google Scholar] [CrossRef]
- Milajerdi, A.; Ebrahimi-Daryani, N.; Dieleman, L.A.; Larijani, B.; Esmaillzadeh, A. Association of Dietary Fiber, Fruit, and Vegetable Consumption with Risk of Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Adv. Nutr. 2021, 12, 735–743. [Google Scholar] [CrossRef]
- Frankenfeld, C.L.; Hullar, M.A.J.; Maskarinec, G.; Monroe, K.R.; Shepherd, J.A.; Franke, A.A.; Randolph, T.W.; Wilkens, L.R.; Boushey, C.J.; Le Marchand, L.; et al. The Gut Microbiome Is Associated with Circulating Dietary Biomarkers of Fruit and Vegetable Intake in a Multiethnic Cohort. J. Acad. Nutr. Diet. 2022, 122, 78–98. [Google Scholar] [CrossRef]
Mean ± SD | 95% CI | |
---|---|---|
Age (years) | 42 ± 10 | 40–44 |
Sex (female/male) | 44/44 (50%/50%) | |
Body weight (kg) | 62.6 ± 12.7 | 60.0–65.3 |
Height (m) | 1.65 ± 0.08 | 1.63–1.67 |
BMI (kg/m2) | 22.8 ± 3.4 | 22.1–23.5 |
Environmental sensitivity | 4.4 ± 1.0 | 4.2–4.6 |
CRP (ng/mL) | 7994 ± 31040 | 1509–14480 |
LBP (µg/mL) | 13.6 ± 4.0 | 12.8–14.5 |
Log-normalized CRP | 7.33 ± 1.45 | 7.03–7.64 |
Log-normalized LBP | 2.58 ± 0.26 | 2.52–2.63 |
Prevalence (%) | Relative Abundance (%) | Correlation Coefficients | ||||||
---|---|---|---|---|---|---|---|---|
OTUs | PD | |||||||
Mean | SD | r | r | |||||
Family | ||||||||
Methanobacteriaceae | 8.0 | 0.035 | ± | 0.182 | 0.380 | ** | 0.399 | ** |
Actinomycetaceae | 93.2 | 0.050 | ± | 0.037 | −0.193 | † | −0.138 | |
Bifidobacteriaceae | 98.9 | 15.542 | ± | 10.569 | −0.197 | † | −0.199 | † |
Corynebacteriaceae | 15.9 | 0.003 | ± | 0.015 | −0.020 | −0.039 | ||
Micrococcaceae | 28.4 | 0.005 | ± | 0.014 | −0.164 | −0.159 | ||
Atopobiaceae | 39.8 | 0.086 | ± | 0.220 | 0.105 | 0.081 | ||
Coriobacteriaceae | 89.8 | 6.444 | ± | 4.769 | 0.004 | −0.047 | ||
Coriobacteriales Incertae Sedis | 38.6 | 0.052 | ± | 0.115 | 0.405 | ** | 0.341 | ** |
Eggerthellaceae | 98.9 | 0.728 | ± | 0.570 | 0.271 | * | 0.203 | † |
Coriobacteriales unclassified family | 20.5 | 0.036 | ± | 0.121 | 0.320 | ** | 0.265 | * |
Bacteroidaceae | 100.0 | 11.113 | ± | 6.507 | −0.217 | * | −0.115 | |
Barnesiellaceae | 64.8 | 0.420 | ± | 0.603 | 0.323 | ** | 0.361 | ** |
Marinifilaceae | 81.8 | 0.161 | ± | 0.218 | 0.510 | ** | 0.485 | ** |
Muribaculaceae | 18.2 | 0.085 | ± | 0.297 | 0.120 | 0.075 | ||
Porphyromonadaceae | 8.0 | 0.002 | ± | 0.009 | 0.134 | 0.136 | ||
Prevotellaceae | 60.2 | 1.561 | ± | 3.280 | −0.059 | −0.143 | ||
Rikenellaceae | 87.5 | 0.923 | ± | 0.890 | 0.613 | ** | 0.586 | ** |
Tannerellaceae | 90.9 | 1.444 | ± | 2.328 | −0.122 | −0.164 | ||
Bacteroidia unclassified order unclassified family | 6.8 | 0.004 | ± | 0.020 | 0.277 | ** | 0.288 | ** |
Campylobacteraceae | 5.7 | 0.004 | ± | 0.025 | 0.000 | 0.083 | ||
Bacillaceae | 47.7 | 0.278 | ± | 0.838 | 0.058 | 0.055 | ||
Bacillales Family XI | 53.4 | 0.011 | ± | 0.019 | −0.199 | † | −0.160 | |
Aerococcaceae | 5.7 | 0.001 | ± | 0.002 | −0.097 | −0.127 | ||
Carnobacteriaceae | 48.9 | 0.010 | ± | 0.013 | −0.280 | ** | −0.256 | * |
Enterococcaceae | 27.3 | 0.021 | ± | 0.059 | −0.261 | * | −0.274 | ** |
Lactobacillaceae | 50.0 | 0.100 | ± | 0.298 | −0.148 | −0.156 | ||
Leuconostocaceae | 9.1 | 0.009 | ± | 0.048 | 0.281 | ** | 0.210 | * |
Streptococcaceae | 98.9 | 1.837 | ± | 2.553 | −0.248 | * | −0.229 | * |
Christensenellaceae | 65.9 | 0.532 | ± | 1.069 | 0.669 | ** | 0.609 | ** |
Clostridiaceae 1 | 61.4 | 0.259 | ± | 0.848 | 0.298 | ** | 0.221 | * |
Clostridiales vadin BB60 group | 26.1 | 0.013 | ± | 0.038 | 0.519 | ** | 0.509 | ** |
Defluviitaleaceae | 37.5 | 0.011 | ± | 0.019 | 0.710 | ** | 0.653 | ** |
Eubacteriaceae | 61.4 | 0.053 | ± | 0.129 | 0.044 | 0.096 | ||
Clostridiales Family XI | 33.0 | 0.011 | ± | 0.038 | 0.162 | 0.224 | * | |
Clostridiales Family XIII | 90.9 | 0.246 | ± | 0.269 | 0.603 | ** | 0.570 | ** |
Lachnospiraceae | 100.0 | 26.567 | ± | 9.196 | −0.359 | ** | −0.369 | ** |
Peptococcaceae | 36.4 | 0.029 | ± | 0.120 | 0.276 | ** | 0.258 | * |
Peptostreptococcaceae | 97.7 | 1.497 | ± | 1.864 | 0.283 | ** | 0.225 | * |
Ruminococcaceae | 100.0 | 18.208 | ± | 8.074 | 0.691 | ** | 0.639 | ** |
Clostridiales unclassified family | 13.6 | 0.003 | ± | 0.012 | 0.434 | ** | 0.405 | ** |
DTU014 uncultured bacterium | 11.4 | 0.002 | ± | 0.007 | 0.477 | ** | 0.491 | ** |
Erysipelotrichaceae | 100.0 | 2.792 | ± | 2.801 | 0.185 | † | 0.200 | † |
Acidaminococcaceae | 80.7 | 1.184 | ± | 1.222 | −0.196 | † | −0.103 | |
Veillonellaceae | 90.9 | 4.426 | ± | 6.978 | −0.286 | ** | −0.255 | * |
Fusobacteriaceae | 43.2 | 0.168 | ± | 0.479 | −0.170 | −0.117 | ||
Saccharimonadaceae | 22.7 | 0.003 | ± | 0.007 | −0.097 | −0.106 | ||
Saccharimonadales uncultured bacterium | 5.7 | 0.001 | ± | 0.003 | 0.151 | 0.158 | ||
Rhodospirillales uncultured bacterium | 14.8 | 0.028 | ± | 0.151 | 0.182 | † | 0.178 | † |
Desulfovibrionaceae | 81.8 | 0.129 | ± | 0.168 | 0.236 | * | 0.274 | ** |
Succinivibrionaceae | 5.7 | 0.002 | ± | 0.011 | −0.101 | −0.090 | ||
Burkholderiaceae | 86.4 | 0.232 | ± | 0.362 | −0.215 | * | −0.077 | |
Enterobacteriaceae | 81.8 | 0.349 | ± | 0.691 | −0.118 | −0.017 | ||
Pasteurellaceae | 33.0 | 0.035 | ± | 0.163 | −0.092 | −0.123 | ||
Synergistaceae | 18.2 | 0.020 | ± | 0.119 | 0.370 | ** | 0.351 | ** |
Izimaplasmatales unclassified family | 6.8 | 0.003 | ± | 0.017 | 0.151 | 0.266 | * | |
Mollicutes RF39 uncultured bacterium | 9.1 | 0.006 | ± | 0.028 | 0.425 | ** | 0.400 | ** |
Akkermansiaceae | 56.8 | 2.211 | ± | 4.247 | 0.279 | ** | 0.333 | ** |
Prevalence (%) | Relative Abundance (%) | Correlation Coefficients | ||||||
---|---|---|---|---|---|---|---|---|
OTUs | PD | |||||||
Mean | SD | r | r | |||||
Genus | ||||||||
Methanobrevibacter | 8.0 | 0.035 | ± | 0.182 | 0.380 | ** | 0.399 | ** |
Actinomyces | 93.2 | 0.048 | ± | 0.036 | −0.270 | * | −0.201 | † |
F0332 | 5.7 | 0.001 | ± | 0.002 | 0.018 | 0.009 | ||
Varibaculum | 6.8 | 0.002 | ± | 0.007 | 0.302 | ** | 0.235 | * |
Bifidobacterium | 98.9 | 15.539 | ± | 10.570 | −0.197 | † | −0.199 | † |
Corynebacterium | 11.4 | 0.003 | ± | 0.015 | −0.047 | −0.062 | ||
Rothia | 28.4 | 0.005 | ± | 0.014 | −0.164 | −0.159 | ||
Atopobium | 11.4 | 0.001 | ± | 0.004 | −0.164 | −0.154 | ||
Olsenella | 27.3 | 0.075 | ± | 0.210 | 0.091 | 0.066 | ||
Collinsella | 89.8 | 6.410 | ± | 4.777 | −0.005 | −0.054 | ||
Coriobacteriaceae unclassified genus | 8.0 | 0.033 | ± | 0.206 | 0.204 | † | 0.152 | |
Raoultibacter | 22.7 | 0.005 | ± | 0.011 | 0.262 | * | 0.238 | * |
Coriobacteriales Incertae Sedis uncultured bacterium | 28.4 | 0.047 | ± | 0.112 | 0.386 | ** | 0.324 | ** |
Adlercreutzia | 51.1 | 0.077 | ± | 0.157 | 0.291 | ** | 0.195 | † |
Eggerthella | 88.6 | 0.337 | ± | 0.375 | −0.140 | −0.099 | ||
Enterorhabdus | 23.9 | 0.036 | ± | 0.090 | 0.312 | ** | 0.291 | ** |
Gordonibacter | 56.8 | 0.034 | ± | 0.058 | 0.271 | * | 0.288 | ** |
Senegalimassilia | 15.9 | 0.073 | ± | 0.194 | 0.351 | ** | 0.307 | ** |
Slackia | 28.4 | 0.108 | ± | 0.337 | 0.020 | −0.031 | ||
Eggerthellaceae uncultured bacterium | 12.5 | 0.049 | ± | 0.158 | 0.234 | * | 0.162 | |
Eggerthellaceae unclassified genus | 39.8 | 0.015 | ± | 0.034 | 0.168 | 0.133 | ||
Coriobacteriales unclassified family unclassified genus | 20.5 | 0.036 | ± | 0.121 | 0.320 | ** | 0.265 | * |
Bacteroides | 100.0 | 11.113 | ± | 6.507 | −0.217 | * | −0.115 | |
Barnesiella | 51.1 | 0.355 | ± | 0.561 | 0.302 | ** | 0.344 | ** |
Coprobacter | 43.2 | 0.058 | ± | 0.141 | 0.138 | 0.142 | ||
Barnesiellaceae uncultured bacterium | 18.2 | 0.006 | ± | 0.020 | 0.271 | * | 0.224 | * |
Butyricimonas | 55.7 | 0.056 | ± | 0.089 | 0.355 | ** | 0.402 | ** |
Odoribacter | 78.4 | 0.106 | ± | 0.168 | 0.473 | ** | 0.417 | ** |
Muribaculaceae uncultured bacterium | 18.2 | 0.085 | ± | 0.297 | 0.120 | 0.073 | ||
Porphyromonas | 8.0 | 0.002 | ± | 0.009 | 0.134 | 0.136 | ||
Alloprevotella | 9.1 | 0.193 | ± | 1.244 | −0.160 | −0.158 | ||
Paraprevotella | 20.5 | 0.203 | ± | 0.566 | −0.060 | −0.078 | ||
Prevotella | 15.9 | 0.006 | ± | 0.028 | 0.175 | 0.180 | † | |
Prevotella 2 | 18.2 | 0.245 | ± | 1.096 | −0.114 | −0.146 | ||
Prevotella 9 | 23.9 | 0.808 | ± | 2.228 | 0.054 | −0.047 | ||
Alistipes | 86.4 | 0.914 | ± | 0.895 | 0.613 | ** | 0.586 | ** |
Parabacteroides | 90.9 | 1.444 | ± | 2.328 | −0.122 | −0.164 | ||
Bacteroidia unclassified order unclassified family unclassified genus | 6.8 | 0.004 | ± | 0.020 | 0.277 | ** | 0.288 | ** |
Campylobacter | 5.7 | 0.004 | ± | 0.025 | 0.000 | 0.083 | ||
Bacillus | 47.7 | 0.278 | ± | 0.838 | 0.058 | 0.055 | ||
Gemella | 53.4 | 0.011 | ± | 0.019 | −0.199 | † | −0.160 | |
Abiotrophia | 5.7 | 0.001 | ± | 0.002 | −0.097 | −0.127 | ||
Granulicatella | 48.9 | 0.010 | ± | 0.013 | −0.280 | ** | −0.256 | * |
Enterococcus | 27.3 | 0.021 | ± | 0.059 | −0.261 | * | −0.274 | ** |
Lactobacillus | 50.0 | 0.091 | ± | 0.235 | −0.134 | −0.150 | ||
Leuconostoc | 8.0 | 0.006 | ± | 0.038 | 0.274 | ** | 0.212 | * |
Lactococcus | 25.0 | 0.036 | ± | 0.260 | 0.236 | * | 0.188 | † |
Streptococcus | 98.9 | 1.801 | ± | 2.555 | −0.272 | * | −0.247 | * |
Christensenellaceae R-7 group | 59.1 | 0.492 | ± | 1.026 | 0.657 | ** | 0.597 | ** |
Christensenellaceae uncultured bacterium | 50.0 | 0.030 | ± | 0.065 | 0.558 | ** | 0.512 | ** |
Christensenellaceae unclassified genus | 44.3 | 0.010 | ± | 0.016 | 0.394 | ** | 0.376 | ** |
Clostridium sensu stricto 1 | 61.4 | 0.259 | ± | 0.848 | 0.298 | ** | 0.221 | * |
Clostridiales vadin BB60 group uncultured bacterium | 26.1 | 0.013 | ± | 0.034 | 0.521 | ** | 0.511 | ** |
Defluviitaleaceae UCG-011 | 37.5 | 0.011 | ± | 0.019 | 0.710 | ** | 0.653 | ** |
Anaerofustis | 30.7 | 0.005 | ± | 0.009 | 0.266 | * | 0.295 | ** |
Eubacterium | 37.5 | 0.048 | ± | 0.127 | 0.027 | 0.079 | ||
Anaerococcus | 8.0 | 0.001 | ± | 0.003 | 0.257 | * | 0.251 | * |
Ezakiella | 10.2 | 0.002 | ± | 0.009 | 0.132 | 0.145 | ||
Finegoldia | 5.7 | 0.001 | ± | 0.002 | −0.021 | −0.038 | ||
Parvimonas | 15.9 | 0.005 | ± | 0.025 | 0.113 | 0.184 | † | |
Peptoniphilus | 11.4 | 0.002 | ± | 0.009 | 0.172 | 0.230 | * | |
Family XIII AD3011 group | 75.0 | 0.156 | ± | 0.207 | 0.606 | ** | 0.549 | ** |
Family XIII UCG-001 | 56.8 | 0.029 | ± | 0.039 | 0.464 | ** | 0.459 | ** |
[Eubacterium] brachy group | 70.5 | 0.042 | ± | 0.061 | 0.244 | * | 0.246 | * |
[Eubacterium] nodatum group | 40.9 | 0.017 | ± | 0.057 | 0.086 | 0.127 | ||
Anaerostipes | 100.0 | 1.914 | ± | 1.880 | −0.181 | † | −0.198 | † |
Blautia | 100.0 | 6.486 | ± | 4.263 | −0.253 | * | −0.158 | |
CAG-56 | 21.6 | 0.047 | ± | 0.133 | 0.196 | † | 0.157 | |
Coprococcus 1 | 35.2 | 0.104 | ± | 0.185 | 0.327 | ** | 0.242 | * |
Coprococcus 2 | 10.2 | 0.115 | ± | 0.500 | 0.313 | ** | 0.218 | * |
Coprococcus 3 | 42.0 | 0.346 | ± | 0.600 | 0.086 | 0.012 | ||
Dorea | 79.5 | 1.331 | ± | 1.363 | −0.137 | −0.163 | ||
Eisenbergiella | 50.0 | 0.052 | ± | 0.119 | 0.212 | * | 0.323 | ** |
Fusicatenibacter | 85.2 | 2.052 | ± | 2.045 | −0.195 | † | −0.290 | ** |
GCA900066575 | 46.6 | 0.016 | ± | 0.022 | 0.479 | ** | 0.410 | ** |
Howardella | 5.7 | 0.006 | ± | 0.031 | 0.147 | 0.159 | ||
Hungatella | 39.8 | 0.019 | ± | 0.034 | −0.165 | −0.043 | ||
Lachnoclostridium | 100.0 | 1.356 | ± | 1.096 | −0.406 | ** | −0.286 | ** |
Lachnospira | 69.3 | 0.458 | ± | 0.761 | −0.230 | * | −0.295 | ** |
Lachnospiraceae FCS020 group | 64.8 | 0.094 | ± | 0.132 | 0.316 | ** | 0.278 | ** |
Lachnospiraceae ND3007 group | 73.9 | 0.283 | ± | 0.336 | 0.064 | −0.036 | ||
Lachnospiraceae NK4A136 group | 77.3 | 0.391 | ± | 0.737 | 0.302 | ** | 0.271 | * |
Lachnospiraceae UCG-001 | 19.3 | 0.050 | ± | 0.166 | 0.129 | 0.073 | ||
Lachnospiraceae UCG-004 | 53.4 | 0.078 | ± | 0.168 | −0.179 | † | −0.192 | † |
Lachnospiraceae UCG-008 | 14.8 | 0.004 | ± | 0.012 | 0.148 | 0.077 | ||
Lachnospiraceae UCG-010 | 36.4 | 0.008 | ± | 0.016 | −0.110 | −0.143 | ||
Lactonifactor | 44.3 | 0.009 | ± | 0.014 | 0.100 | 0.065 | ||
Marvinbryantia | 43.2 | 0.072 | ± | 0.150 | 0.429 | ** | 0.389 | ** |
Roseburia | 89.8 | 0.790 | ± | 1.062 | −0.106 | −0.198 | † | |
Sellimonas | 65.9 | 0.266 | ± | 0.432 | −0.332 | ** | −0.267 | * |
Shuttleworthia | 44.3 | 0.030 | ± | 0.055 | 0.313 | ** | 0.330 | ** |
Tyzzerella | 40.9 | 0.058 | ± | 0.122 | 0.122 | 0.176 | ||
Tyzzerella 3 | 27.3 | 0.107 | ± | 0.274 | −0.030 | −0.073 | ||
Tyzzerella 4 | 29.5 | 0.205 | ± | 0.527 | −0.262 | * | −0.124 | |
[Eubacterium] eligens group | 33.0 | 0.114 | ± | 0.303 | 0.077 | 0.032 | ||
[Eubacterium] fissicatena group | 50.0 | 0.012 | ± | 0.017 | 0.066 | 0.203 | † | |
[Eubacterium] hallii group | 88.6 | 1.587 | ± | 1.355 | 0.020 | −0.042 | ||
[Eubacterium] ruminantium group | 12.5 | 0.163 | ± | 0.563 | 0.240 | * | 0.159 | |
[Eubacterium] ventriosum group | 78.4 | 0.333 | ± | 0.389 | 0.222 | * | 0.093 | |
[Eubacterium] xylanophilum group | 14.8 | 0.014 | ± | 0.056 | 0.162 | 0.218 | * | |
[Ruminococcus] gauvreauii group | 60.2 | 0.413 | ± | 0.789 | 0.065 | −0.002 | ||
[Ruminococcus] gnavus group | 86.4 | 1.248 | ± | 2.124 | −0.537 | ** | −0.387 | ** |
[Ruminococcus] torques group | 96.6 | 1.620 | ± | 1.664 | 0.086 | 0.076 | ||
Lachnospiraceae uncultured bacterium | 96.6 | 0.622 | ± | 0.592 | −0.076 | −0.100 | ||
Lachnospiraceae unclassified genus | 100.0 | 3.695 | ± | 2.897 | −0.094 | −0.155 | ||
Peptococcus | 11.4 | 0.019 | ± | 0.116 | 0.162 | 0.146 | ||
Peptococcaceae uncultured bacterium | 31.8 | 0.011 | ± | 0.025 | 0.566 | ** | 0.559 | ** |
Intestinibacter | 75.0 | 0.347 | ± | 0.593 | −0.026 | −0.019 | ||
Peptostreptococcus | 9.1 | 0.001 | ± | 0.004 | −0.145 | 0.008 | ||
Romboutsia | 92.0 | 1.062 | ± | 1.540 | 0.369 | ** | 0.301 | ** |
Terrisporobacter | 18.2 | 0.036 | ± | 0.149 | 0.097 | 0.055 | ||
Anaerofilum | 17.0 | 0.002 | ± | 0.005 | 0.378 | ** | 0.300 | ** |
Anaerotruncus | 51.1 | 0.015 | ± | 0.021 | 0.413 | ** | 0.461 | ** |
Butyricicoccus | 98.9 | 0.624 | ± | 0.575 | −0.346 | ** | −0.347 | ** |
Candidatus Soleaferrea | 12.5 | 0.003 | ± | 0.010 | −0.029 | 0.123 | ||
DTU089 | 75.0 | 0.034 | ± | 0.036 | 0.352 | ** | 0.333 | ** |
Faecalibacterium | 96.6 | 4.966 | ± | 3.755 | −0.127 | −0.148 | ||
Flavonifractor | 92.0 | 0.224 | ± | 0.268 | −0.247 | * | −0.094 | |
Fournierella | 20.5 | 0.011 | ± | 0.044 | −0.001 | 0.090 | ||
GCA-900066225 | 53.4 | 0.017 | ± | 0.031 | 0.426 | ** | 0.422 | ** |
Hydrogenoanaerobacterium | 6.8 | 0.002 | ± | 0.011 | 0.337 | ** | 0.325 | ** |
Negativibacillus | 68.2 | 0.093 | ± | 0.154 | 0.415 | ** | 0.491 | ** |
Oscillibacter | 92.0 | 0.279 | ± | 0.332 | 0.233 | * | 0.290 | ** |
Oscillospira | 10.2 | 0.011 | ± | 0.061 | 0.093 | 0.061 | ||
Papillibacter | 8.0 | 0.001 | ± | 0.004 | 0.314 | ** | 0.290 | ** |
Ruminiclostridium | 47.7 | 0.011 | ± | 0.021 | 0.452 | ** | 0.379 | ** |
Ruminiclostridium 1 | 9.1 | 0.001 | ± | 0.005 | 0.368 | ** | 0.299 | ** |
Ruminiclostridium 5 | 98.9 | 0.852 | ± | 1.256 | 0.284 | ** | 0.217 | * |
Ruminiclostridium 6 | 13.6 | 0.173 | ± | 1.006 | 0.127 | 0.180 | † | |
Ruminiclostridium 9 | 83.0 | 0.213 | ± | 0.215 | 0.156 | 0.251 | * | |
Ruminococcaceae NK4A214 group | 53.4 | 0.292 | ± | 0.692 | 0.462 | ** | 0.414 | ** |
Ruminococcaceae UCG-002 | 59.1 | 0.704 | ± | 1.170 | 0.550 | ** | 0.544 | ** |
Ruminococcaceae UCG-003 | 31.8 | 0.034 | ± | 0.091 | 0.216 | * | 0.245 | * |
Ruminococcaceae UCG-004 | 25.0 | 0.130 | ± | 0.239 | 0.124 | 0.207 | † | |
Ruminococcaceae UCG-005 | 63.6 | 0.323 | ± | 0.531 | 0.647 | ** | 0.587 | ** |
Ruminococcaceae UCG-007 | 8.0 | 0.001 | ± | 0.004 | 0.426 | ** | 0.416 | ** |
Ruminococcaceae UCG-009 | 43.2 | 0.017 | ± | 0.029 | 0.388 | ** | 0.329 | ** |
Ruminococcaceae UCG-010 | 31.8 | 0.040 | ± | 0.109 | 0.606 | ** | 0.533 | ** |
Ruminococcaceae UCG-013 | 88.6 | 0.479 | ± | 0.508 | 0.059 | 0.023 | ||
Ruminococcaceae UCG-014 | 28.4 | 0.590 | ± | 1.781 | 0.433 | ** | 0.404 | ** |
Ruminococcus 1 | 48.9 | 0.719 | ± | 1.113 | 0.390 | ** | 0.318 | ** |
Ruminococcus 2 | 54.5 | 1.820 | ± | 2.636 | 0.335 | ** | 0.349 | ** |
Subdoligranulum | 95.5 | 3.194 | ± | 2.771 | 0.150 | 0.084 | ||
UBA1819 | 83.0 | 0.116 | ± | 0.191 | 0.352 | ** | 0.356 | ** |
[Eubacterium] coprostanoligenes group | 76.1 | 1.308 | ± | 1.701 | 0.623 | ** | 0.558 | ** |
Ruminococcaceae uncultured bacterium | 95.5 | 0.795 | ± | 1.991 | 0.214 | * | 0.251 | * |
Ruminococcaceae unclassified genus | 81.8 | 0.098 | ± | 0.176 | 0.400 | ** | 0.344 | ** |
Clostridiales unclassified family unclassified genus | 13.6 | 0.003 | ± | 0.012 | 0.434 | ** | 0.405 | ** |
DTU014 uncultured bacterium uncultured bacterium | 11.4 | 0.002 | ± | 0.007 | 0.477 | ** | 0.491 | ** |
Catenibacterium | 11.4 | 0.515 | ± | 1.706 | 0.173 | 0.140 | ||
Catenisphaera | 12.5 | 0.059 | ± | 0.315 | 0.193 | † | 0.144 | |
Dielma | 13.6 | 0.002 | ± | 0.007 | 0.106 | 0.107 | ||
Erysipelatoclostridium | 88.6 | 0.398 | ± | 0.606 | −0.127 | −0.024 | ||
Erysipelotrichaceae UCG-003 | 36.4 | 0.511 | ± | 1.020 | 0.047 | 0.024 | ||
Faecalitalea | 35.2 | 0.109 | ± | 0.297 | −0.127 | −0.070 | ||
Holdemanella | 21.6 | 0.820 | ± | 2.032 | 0.054 | 0.079 | ||
Holdemania | 63.6 | 0.023 | ± | 0.028 | 0.345 | ** | 0.349 | ** |
Solobacterium | 23.9 | 0.014 | ± | 0.105 | −0.054 | 0.031 | ||
Turicibacter | 70.5 | 0.163 | ± | 0.309 | 0.260 | * | 0.189 | † |
[Clostridium] innocuum group | 81.8 | 0.055 | ± | 0.072 | −0.281 | ** | −0.139 | |
Erysipelotrichaceae unclassified genus | 77.3 | 0.100 | ± | 0.158 | 0.345 | ** | 0.414 | ** |
Acidaminococcus | 35.2 | 0.309 | ± | 0.820 | −0.207 | † | −0.221 | * |
Phascolarctobacterium | 72.7 | 0.872 | ± | 1.024 | −0.068 | 0.054 | ||
Allisonella | 26.1 | 0.029 | ± | 0.077 | −0.152 | −0.173 | ||
Dialister | 44.3 | 0.899 | ± | 1.870 | 0.047 | 0.014 | ||
Megamonas | 26.1 | 1.667 | ± | 6.081 | −0.130 | −0.093 | ||
Megasphaera | 35.2 | 0.946 | ± | 2.058 | −0.213 | * | −0.199 | † |
Mitsuokella | 12.5 | 0.321 | ± | 1.466 | −0.098 | −0.104 | ||
Veillonella | 46.6 | 0.533 | ± | 1.594 | −0.413 | ** | −0.394 | ** |
Fusobacterium | 43.2 | 0.168 | ± | 0.479 | −0.170 | −0.117 | ||
Saccharimonadaceae uncultured bacterium | 22.7 | 0.003 | ± | 0.006 | −0.185 | † | −0.180 | † |
Saccharimonadales uncultured bacterium uncultured bacterium | 5.7 | 0.001 | ± | 0.003 | 0.151 | 0.158 | ||
Rhodospirillales uncultured bacterium uncultured bacterium | 14.8 | 0.028 | ± | 0.151 | 0.182 | † | 0.178 | † |
Bilophila | 78.4 | 0.083 | ± | 0.117 | 0.024 | 0.074 | ||
Desulfovibrio | 26.1 | 0.040 | ± | 0.105 | 0.302 | ** | 0.295 | ** |
Desulfovibrionaceae uncultured bacterium | 13.6 | 0.005 | ± | 0.019 | 0.261 | * | 0.307 | ** |
Parasutterella | 48.9 | 0.124 | ± | 0.347 | −0.171 | −0.002 | ||
Sutterella | 67.0 | 0.104 | ± | 0.178 | −0.135 | −0.181 | † | |
Burkholderiaceae unclassified genus | 5.7 | 0.003 | ± | 0.015 | 0.313 | ** | 0.282 | ** |
Citrobacter | 9.1 | 0.009 | ± | 0.059 | 0.269 | * | 0.242 | * |
Enterobacter | 10.2 | 0.031 | ± | 0.163 | −0.021 | −0.078 | ||
Escherichia-Shigella | 71.6 | 0.267 | ± | 0.584 | −0.143 | 0.021 | ||
Raoultella | 5.7 | 0.006 | ± | 0.048 | −0.069 | −0.094 | ||
Haemophilus | 33.0 | 0.035 | ± | 0.163 | −0.092 | −0.123 | ||
Cloacibacillus | 17.0 | 0.019 | ± | 0.119 | 0.369 | ** | 0.350 | ** |
Izimaplasmatales unclassified family unclassified genus | 6.8 | 0.003 | ± | 0.017 | 0.151 | 0.266 | * | |
Mollicutes RF39 uncultured bacterium uncultured bacterium | 9.1 | 0.006 | ± | 0.028 | 0.425 | ** | 0.400 | ** |
Akkermansia | 56.8 | 2.211 | ± | 4.247 | 0.279 | ** | 0.333 | ** |
Log-Normalized CRP | ||||
---|---|---|---|---|
Step1 | Step2 | |||
Predictors | β | p | β | p |
Age | −0.151 | −0.162 | † | |
Sex | −0.090 | −0.109 | ||
BMI | 0.542 | ** | 0.537 | ** |
HSP-J10 | 0.166 | † | 0.162 | † |
Family Marinifilaceae | 0.015 | 0.032 | ||
HSP-J10 × Family Marinifilaceae | −0.183 | * | ||
R2 | 0.342 | ** | 0.375 | ** |
ΔR2 | 0.033 | * |
Log-Normalized LBP | ||||
---|---|---|---|---|
Step1 | Step2 | |||
Predictors | β | p | β | p |
Age | 0.041 | 0.059 | ||
Sex | −0.035 | −0.041 | ||
BMI | 0.507 | ** | 0.443 | ** |
HSP-J10 | 0.140 | 0.122 | ||
Family Barnesiellaceae | 0.126 | 0.136 | ||
HSP-J10 × Family Barnesiellaceae | −0.200 | * | ||
R2 | 0.304 | ** | 0.340 | ** |
ΔR2 | 0.036 | * |
Log-Normalized LBP | ||||
---|---|---|---|---|
Step1 | Step2 | |||
Predictors | β | p | β | p |
Age | 0.042 | 0.033 | ||
Sex | −0.021 | −0.031 | ||
BMI | 0.506 | ** | 0.526 | ** |
HSP-J10 | 0.134 | 0.109 | ||
Family Akkermansiaceae | 0.028 | 0.058 | ||
HSP-J10 × Family Akkermansiaceae | −0.192 | * | ||
R2 | 0.290 | ** | 0.325 | ** |
ΔR2 | 0.035 | * |
Log-Normalized LBP | ||||
---|---|---|---|---|
Step1 | Step2 | |||
Predictors | β | p | β | p |
Age | 0.034 | 0.023 | ||
Sex | −0.001 | −0.019 | ||
BMI | 0.504 | ** | 0.499 | ** |
HSP-J10 | 0.129 | 0.126 | ||
Family Marinifilaceae | −0.050 | −0.034 | ||
HSP-J10 × Family Marinifilaceae | −0.175 | † | ||
R2 | 0.291 | ** | 0.321 | ** |
ΔR2 | 0.030 | † |
Log-Normalized LBP | ||||
---|---|---|---|---|
Step1 | Step2 | |||
Predictors | β | p | β | p |
Age | 0.041 | 0.038 | ||
Sex | −0.035 | −0.046 | ||
BMI | 0.533 | ** | 0.538 | ** |
HSP-J10 | 0.143 | 0.119 | ||
Family Defluviitaleaceae | 0.101 | 0.095 | ||
HSP-J10 × Family Defluviitaleaceae | −0.166 | † | ||
R2 | 0.298 | ** | 0.324 | ** |
ΔR2 | 0.027 | † |
Log-Normalized LBP | ||||
---|---|---|---|---|
Step1 | Step2 | |||
Predictors | β | p | β | p |
Age | 0.043 | 0.015 | ||
Sex | 0.027 | 0.022 | ||
BMI | 0.501 | ** | 0.516 | ** |
HSP-J10 | 0.142 | 0.127 | ||
Family Family XIII | −0.114 | −0.043 | ||
HSP-J10 × Family Family XIII | −0.169 | † | ||
R2 | 0.300 | ** | 0.323 | ** |
ΔR2 | 0.023 | † |
Log-Normalized CRP | ||||
---|---|---|---|---|
Step1 | Step2 | |||
Predictors | β | p | β | p |
Age | −0.152 | −0.141 | ||
Sex | −0.089 | −0.106 | ||
BMI | 0.541 | ** | 0.516 | ** |
HSP-J10 | 0.165 | † | 0.206 | * |
Genus Butyricimonas | 0.005 | −0.035 | ||
HSP-J10 × Genus Butyricimonas | −0.218 | * | ||
R2 | 0.342 | ** | 0.385 | ** |
ΔR2 | 0.044 | * |
Log-Normalized LBP | ||||
---|---|---|---|---|
Step1 | Step2 | |||
Variables | β | p | Β | p |
Age | 0.041 | −0.005 | ||
Sex | −0.014 | −0.018 | ||
BMI | 0.507 | ** | 0.484 | ** |
HSP-J10 | 0.134 | 0.163 | † | |
Genus Coprobacter | 0.019 | −0.077 | ||
HSP-J10 × Genus Coprobacter | −0.233 | * | ||
R2 | 0.289 | ** | 0.331 | ** |
ΔR2 | 0.042 | * |
Log-Normalized LBP | ||||
---|---|---|---|---|
Step1 | Step2 | |||
Predictors | β | p | β | p |
Age | 0.037 | 0.063 | ||
Sex | −0.030 | −0.030 | ||
BMI | 0.511 | ** | 0.456 | ** |
HSP-J10 | 0.138 | 0.112 | ||
Genus Barnesiella | 0.130 | 0.147 | ||
HSP-J10 × Genus Barnesiella | −0.175 | † | ||
R2 | 0.305 | ** | 0.332 | ** |
ΔR2 | 0.027 | † |
Log-Normalized LBP | ||||
---|---|---|---|---|
Step1 | Step2 | |||
Predictors | β | p | β | p |
Age | 0.042 | 0.033 | ||
Sex | −0.021 | −0.031 | ||
BMI | 0.506 | ** | 0.526 | ** |
HSP-J10 | 0.134 | 0.109 | ||
Genus Akkermansia | 0.028 | 0.058 | ||
HSP-J10 × Genus Akkermansia | −0.192 | * | ||
R2 | 0.290 | ** | 0.325 | ** |
ΔR2 | 0.035 | * |
Log-Normalized LBP | ||||
---|---|---|---|---|
Step1 | Step2 | |||
Predictors | β | p | β | p |
Age | 0.045 | −0.014 | ||
Sex | 0.015 | 0.020 | ||
BMI | 0.493 | ** | 0.556 | ** |
HSP-J10 | 0.148 | 0.134 | ||
Genus Family XIII AD3011 group | −0.102 | 0.065 | ||
HSP-J10 × Genus Family XIII AD3011 group | −0.284 | * | ||
R2 | 0.298 | ** | 0.351 | ** |
ΔR2 | 0.053 | * |
Log-Normalized LBP | ||||
---|---|---|---|---|
Step1 | Step2 | |||
Predictors | β | p | β | p |
Age | 0.031 | 0.001 | ||
Sex | 0.004 | −0.025 | ||
BMI | 0.500 | ** | 0.521 | ** |
HSP-J10 | 0.148 | 0.091 | ||
Genus GCA-900066225 | −0.121 | −0.050 | ||
HSP-J10 × Genus GCA-900066225 | −0.228 | * | ||
R2 | 0.303 | ** | 0.346 | ** |
ΔR2 | 0.043 | * |
Log-Normalized LBP | ||||
---|---|---|---|---|
Step1 | Step2 | |||
Predictors | β | p | β | p |
Age | 0.039 | 0.047 | ||
Sex | −0.012 | −0.037 | ||
BMI | 0.511 | ** | 0.508 | ** |
HSP-J10 | 0.134 | 0.115 | ||
Genus Ruminiclostridium 1 | 0.016 | −0.068 | ||
HSP-J10 × Genus Ruminiclostridium 1 | −0.208 | * | ||
R2 | 0.289 | ** | 0.324 | ** |
ΔR2 | 0.035 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takasugi, S.; Iimura, S.; Yasuda, M.; Saito, Y.; Morifuji, M. Key Taxa of the Gut Microbiome Associated with the Relationship Between Environmental Sensitivity and Inflammation-Related Biomarkers. Microorganisms 2025, 13, 185. https://doi.org/10.3390/microorganisms13010185
Takasugi S, Iimura S, Yasuda M, Saito Y, Morifuji M. Key Taxa of the Gut Microbiome Associated with the Relationship Between Environmental Sensitivity and Inflammation-Related Biomarkers. Microorganisms. 2025; 13(1):185. https://doi.org/10.3390/microorganisms13010185
Chicago/Turabian StyleTakasugi, Satoshi, Shuhei Iimura, Miyabi Yasuda, Yoshie Saito, and Masashi Morifuji. 2025. "Key Taxa of the Gut Microbiome Associated with the Relationship Between Environmental Sensitivity and Inflammation-Related Biomarkers" Microorganisms 13, no. 1: 185. https://doi.org/10.3390/microorganisms13010185
APA StyleTakasugi, S., Iimura, S., Yasuda, M., Saito, Y., & Morifuji, M. (2025). Key Taxa of the Gut Microbiome Associated with the Relationship Between Environmental Sensitivity and Inflammation-Related Biomarkers. Microorganisms, 13(1), 185. https://doi.org/10.3390/microorganisms13010185