Comparative Analysis of In Vivo and In Vitro Virulence Among Foodborne and Clinical Listeria monocytogenes Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Preparation of Bacterial Suspension
2.2. Assessing the Pathogenicity of L. monocytogenes Isolates Against Galleria mellonella
2.3. Cell Culture
2.4. Cytotoxicity Assays
2.5. Hemolysis Assay
2.6. RT-qPCR Analysis
2.7. Statistical Analysis
3. Results
3.1. The Pathogenicity of Different L. monocytogenes Strains in the G. mellonella Model
3.2. Cytotoxicity of Different L. monocytogenes Isolates
3.3. Hemolytic Activity of 26 L. monocytogenes Isolates
3.4. Expression Levels of Key Virulence Genes in 26 Strains of L. monocytogenes
3.5. Correlation Analysis of Factors Affecting L. monocytogenes Virulence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ravindhiran, R.; Sivarajan, K.; Sekar, J.N.; Murugesan, R.; Dhandapani, K. Listeria monocytogenes an Emerging Pathogen: A Comprehensive Overview on Listeriosis, Virulence Determinants, Detection, and Anti-Listerial Interventions. Microb. Ecol. 2023, 86, 2231–2251. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, X.; Liu, Y.; Qin, X.; Li, Z.; Dong, Q. Growth and survival characteristics of Listeria monocytogenes of different sources and subtypes. LWT 2023, 184, 115114. [Google Scholar] [CrossRef]
- Ranjbar, R.; Halaji, M. Epidemiology of Listeria monocytogenes prevalence in foods, animals and human origin from Iran: A systematic review and meta-analysis. BMC Public Health 2018, 18, 1057. [Google Scholar] [CrossRef] [PubMed]
- Garrido, V.; Vitas, A.I.; García-Jalón, I. Survey of Listeria monocytogenes in ready-to-eat products: Prevalence by brands and retail establishments for exposure assessment of listeriosis in Northern Spain. Food Control 2009, 20, 986–991. [Google Scholar] [CrossRef]
- King, M.T.; Huh, I.; Shenai, A.; Brooks, T.M.; Brooks, C.L. Structural basis of VHH-mediated neutralization of the food-borne pathogen Listeria monocytogenes. J. Biol. Chem. 2018, 293, 13626–13635. [Google Scholar] [CrossRef]
- Zilelidou, E.A.; Milina, V.; Paramithiotis, S.; Zoumpopoulou, G.; Poimenidou, S.V.; Mavrogonatou, E.; Kletsas, D.; Papadimitriou, K.; Tsakalidou, E.; Skandamis, P.N. Differential Modulation of Listeria monocytogenes Fitness, In Vitro Virulence, and Transcription of Virulence-Associated Genes in Response to the Presence of Different Microorganisms. Appl. Environ. Microbiol. 2020, 86, e01165-20. [Google Scholar] [CrossRef]
- Radoshevich, L.; Cossart, P. Listeria monocytogenes: Towards a complete picture of its physiology and pathogenesis. Nat. Rev. Microbiol. 2018, 16, 32–46. [Google Scholar] [CrossRef]
- Quereda, J.J.; Meza-Torres, J.; Cossart, P.; Pizarro-Cerdá, J. Listeriolysin S: A bacteriocin from epidemic Listeria monocytogenes strains that targets the gut microbiota. Gut Microbes 2017, 8, 384–391. [Google Scholar] [CrossRef]
- Quereda, J.J.; Dussurget, O.; Nahori, M.A.; Ghozlane, A.; Volant, S.; Dillies, M.A.; Regnault, B.; Kennedy, S.; Mondot, S.; Villoing, B.; et al. Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection. Proc. Natl. Acad. Sci. USA 2016, 113, 5706–5711. [Google Scholar] [CrossRef]
- Becattini, S.; Littmann, E.R.; Carter, R.A.; Kim, S.G.; Morjaria, S.M.; Ling, L.; Gyaltshen, Y.; Fontana, E.; Taur, Y.; Leiner, I.M.; et al. Commensal microbes provide first line defense against Listeria monocytogenes infection. J. Exp. Med. 2017, 214, 1973–1989. [Google Scholar] [CrossRef]
- Møretrø, T.; Wagner, E.; Heir, E.; Langsrud, S.; Fagerlund, A. Genomic analysis of Listeria monocytogenes CC7 associated with clinical infections and persistence in the food industry. Int. J. Food Microbiol. 2024, 410, 110482. [Google Scholar] [CrossRef] [PubMed]
- Orsi, R.H.; den Bakker, H.C.; Wiedmann, M. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int. J. Med. Microbiol. 2011, 301, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Doumith, M.; Buchrieser, C.; Glaser, P.; Jacquet, C.; Martin, P. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J. Clin. Microbiol. 2004, 42, 3819–3822. [Google Scholar] [CrossRef] [PubMed]
- Vines, A.; Swaminathan, B. Identification and characterization of nucleotide sequence differences in three virulence-associated genes of Listeria monocytogenes strains representing clinically important serotypes. Curr. Microbiol. 1998, 36, 309–318. [Google Scholar] [CrossRef]
- Domínguez, A.V.; Ledesma, M.C.; Domínguez, C.I.; Cisneros, J.M.; Lepe, J.A.; Smani, Y. In Vitro and In Vivo Virulence Study of Listeria monocytogenes Isolated from the Andalusian Outbreak in 2019. Trop. Med. Infect. Dis. 2023, 8, 58. [Google Scholar] [CrossRef]
- Myintzaw, P.; Pennone, V.; McAuliffe, O.; Begley, M.; Callanan, M. Association of Virulence, Biofilm, and Antimicrobial Resistance Genes with Specific Clonal Complex Types of Listeria monocytogenes. Microorganisms 2023, 11, 1603. [Google Scholar] [CrossRef]
- Gianfranceschi, M.; Gattuso, A.; Tartaro, S.; Aureli, P. Incidence of Listeria monocytogenes in food and environmental samples in Italy between 1990 and 1999: Serotype distribution in food, environmental and clinical samples. Eur. J. Epidemiol. 2003, 18, 1001–1006. [Google Scholar] [CrossRef]
- Quereda, J.J.; Morón-García, A.; Palacios-Gorba, C.; Dessaux, C.; García-del Portillo, F.; Pucciarelli, M.G.; Ortega, A.D. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021, 12, 2509–2545. [Google Scholar] [CrossRef]
- Cartwright, E.J.; Jackson, K.A.; Johnson, S.D.; Graves, L.M.; Silk, B.J.; Mahon, B.E. Listeriosis Outbreaks and Associated Food Vehicles, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 1–9. [Google Scholar] [CrossRef]
- Zhang, X.A.; Niu, Y.L.; Liu, Y.Z.; Lu, Z.; Wang, D.; Cui, X.; Chen, Q.; Ma, X.C. Isolation and Characterization of Clinical Listeria monocytogenes in Beijing, China, 2014–2016. Front. Microbiol. 2019, 10, 981. [Google Scholar] [CrossRef]
- Rugna, G.; Carra, E.; Bergamini, F.; Franzini, G.; Faccini, S.; Gattuso, A.; Morganti, M.; Baldi, D.; Naldi, S.; Serraino, A.; et al. Distribution, virulence, genotypic characteristics and antibiotic resistance of Listeria monocytogenes isolated over one-year monitoring from two pig slaughterhouses and processing plants and their fresh hams. Int. J. Food Microbiol. 2021, 336, 108912. [Google Scholar] [CrossRef] [PubMed]
- Althaus, D.; Lehner, A.; Brisse, S.; Maury, M.; Tasara, T.; Stephan, R. Characterization of Listeria monocytogenes Strains Isolated During 2011–2013 from Human Infections in Switzerland. Foodborne Pathog. Dis. 2014, 11, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Baba, H.; Kanamori, H.; Kakuta, R.; Sakurai, H.; Oshima, K.; Aoyagi, T.; Kaku, M. Genomic characteristics of listeria monocytogenes causing invasive listeriosis in Japan. Diagn. Microbiol. Infect. Dis. 2021, 99, 115233. [Google Scholar] [CrossRef]
- Rychli, K.; Stessl, B.; Szakmary-Brändle, K.; Strauss, A.; Wagner, M.; Schoder, D. Listeria monocytogenes Isolated from Illegally Imported Food Products into the European Union Harbor Different Virulence Factor Variants. Genes 2018, 9, 428. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Cai, H.; Xu, B.; Dong, Q.; Yan, H.; Bu, X.; Li, Z. Growth, biofilm formation, and motility of Listeria monocytogenes strains isolated from food and clinical samples located in Shanghai (China). Food Res. Int. 2024, 184, 114232. [Google Scholar] [CrossRef]
- Martinez, M.R.; Wiedmann, M.; Ferguson, M.; Datta, A.R. Assessment of Listeria monocytogenes virulence in the Galleria mellonella insect larvae model. PLoS ONE 2017, 12, e0184557. [Google Scholar] [CrossRef]
- Wu, M.; Dong, Q.; Song, Y.; Yan, H.; Gao, B.; Xu, L.; Hirata, T.; Li, Z. Effects of nisin and sesamol on biofilm formation and virulence of Listeria monocytogenes. Food Control 2024, 160, 110348. [Google Scholar] [CrossRef]
- Wang, Z.; Du, J.; Ma, W.; Diao, X.; Liu, Q.; Liu, G. Bacteriocins attenuate Listeria monocytogenes–induced intestinal barrier dysfunction and inflammatory response. Appl. Microbiol. Biotechnol. 2024, 108, 384. [Google Scholar] [CrossRef]
- Li, J.H.; Li, S.Q.; Li, H.Z.; Guo, X.Y.; Guo, D.; Yang, Y.P.; Wang, X.; Zhang, C.L.; Shan, Z.G.; Xia, X.D.; et al. Antibiofilm activity of shikonin against Listeria monocytogenes and inhibition of key virulence factors. Food Control 2021, 120, 107558. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Quereda, J.J.; Andersson, C.; Cossart, P.; Johansson, J.; Pizarro-Cerdá, J. Role in virulence of phospholipases, listeriolysin O and listeriolysin S from epidemic Listeria monocytogenes using the chicken embryo infection model. Vet. Res. 2018, 49, 13. [Google Scholar] [CrossRef] [PubMed]
- Werbrouck, H.; Grijspeerdt, K.; Botteldoorn, N.; Van Pamel, E.; Rijpens, N.; Van Damme, J.; Uyttendaele, M.; Herman, L.; Van Coillie, E. Differential inlA and inlB expression and interaction with human intestinal and liver cells by Listeria monocytogenes strains of different origins. Appl. Environ. Microbiol. 2006, 72, 3862–3871. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Grundström, C.; Begum, A.; Lindberg, M.J.; Sauer, U.H.; Almqvist, F.; Johansson, J.; Sauer-Eriksson, A.E. Structural basis for glutathione-mediated activation of the virulence regulatory protein PrfA in Listeria. Proc. Natl. Acad. Sci. USA 2016, 113, 14733–14738. [Google Scholar] [CrossRef]
- Hadjilouka, A.; Mavrogiannis, G.; Mallouchos, A.; Paramithiotis, S.; Mataragas, M.; Drosinos, E.H. Effect of lemongrass essential oil on Listeria monocytogenes gene expression. LWT-Food Sci. Technol. 2017, 77, 510–516. [Google Scholar] [CrossRef]
- Pereira, M.F.; Rossi, C.C.; da Silva, G.C.; Rosa, J.N.; Bazzolli, D.M.S. Galleria mellonella as an infection model: An in-depth look at why it works and practical considerations for successful application. Pathog. Dis. 2020, 78, ftaa056. [Google Scholar] [CrossRef]
- Cutuli, M.A.; Petronio, G.P.; Vergalito, F.; Magnifico, I.; Pietrangelo, L.; Venditti, N.; Di Marco, R. Galleria mellonella as a consol idated in vivo model hosts: New developments in antibacterial strategies and novel drug testing. Virulence 2019, 10, 527–541. [Google Scholar] [CrossRef]
- Piatek, M.; Sheehan, G.; Kavanagh, K. Utilising Galleria mellonella larvae for studying in vivo activity of conventional and novel antimicrobial agents. Pathog. Dis. 2020, 78, ftaa059. [Google Scholar] [CrossRef]
- Mukherjee, K.; Altincicek, B.; Hain, T.; Domann, E.; Vilcinskas, A.; Chakraborty, T. Galleria mellonella as a model system for studying Listeria pathogenesis. Appl. Environ. Microbiol. 2010, 76, 310–317. [Google Scholar] [CrossRef]
- Pouillot, R.; Kiermeier, A.; Guillier, L.; Cadavez, V.; Sanaa, M. Updated Parameters for Listeria monocytogenes Dose–Response Model Considering Pathogen Virulence and Age and Sex of Consumer. Foods 2024, 13, 751. [Google Scholar] [CrossRef]
- Joyce, S.A.; Gahan, C.G.M. Molecular pathogenesis of Listeria monocytogenes in the alternative model host Galleria mellonella. Microbiology 2010, 156, 3456–3468. [Google Scholar] [CrossRef]
- Vázquez-Boland, J.A.; Domínguez-Bernal, G.; González-Zorn, B.; Kreft, J.; Goebel, W. Pathogenicity islands and virulence evolution in Listeria. Microbes Infect. 2001, 3, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Vadia, S.; Arnett, E.; Haghighat, A.-C.; Wilson-Kubalek, E.M.; Tweten, R.K.; Seveau, S. The Pore-Forming Toxin Listeriolysin O Mediates a Novel Entry Pathway of L. monocytogenes into Human. Hepatocytes. PLoS Pathog. 2011, 7, e1002356. [Google Scholar] [CrossRef]
- Petrišič, N.; Kozorog, M.; Aden, S.; Podobnik, M.; Anderluh, G. The molecular mechanisms of listeriolysin O-induced lipid membrane damage. Biochim. Biophys. Acta (BBA)—Biomembr. 2021, 1863, 183604. [Google Scholar] [CrossRef]
- Disson, O.; Lecuit, M. In vitro and in vivo models to study human listeriosis: Mind the gap. Microbes Infect. 2013, 15, 971–980. [Google Scholar] [CrossRef]
- Jonquières, R.; Pizarro-Cerdá, J.; Cossart, P. Synergy between the N- and C-terminal domains of InlB for efficient invasion of non-phagocytic cells by Listeria monocytogenes. Mol. Microbiol. 2001, 42, 955–965. [Google Scholar] [CrossRef]
- Fedhila, S.; Buisson, C.; Dussurget, O.; Serror, P.; Glomski, I.J.; Liehl, P.; Lereclus, D.; Nielsen-LeRoux, C. Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella. J. Invertebr. Pathol. 2010, 103, 24–29. [Google Scholar] [CrossRef]
- de las Heras, A.; Cain, R.J.; Bielecka, M.K.; Vázquez-Boland, J.A. Regulation of Listeria virulence: PrfA master and commander. Curr. Opin. Microbiol. 2011, 14, 118–127. [Google Scholar] [CrossRef]
Gene | Primer | Sequence (5′-3′) |
---|---|---|
16S | forward | ACATCCTTTGACCACTCTGGA |
reverse | CAACATCTCACGACACGAGC | |
inlA | forward | ATAGGCACATTGGCGAGTTT |
reverse | GTGCGGTTAAACCTGCTAGG | |
inlB | forward | AAGCAMGATTTCATGGGAGAGT |
reverse | TTACCGTTCCATCAACATCATAACTT | |
actA | forward | CGGGTAAATGGGTACGTGAT |
reverse | TGGTCAATTAACCCTGCACTT | |
prfA | forward | CAACATCTCACGACACGAGC |
reverse | GCTAACAGCTGAGCTATGTGC | |
sigB | forward | TCATCGGTGTCACGGAAGAA |
reverse | TGACGTTGGATTCTAGACAC | |
hly | forward | CTTTTAACCGGGAAACACCA |
reverse | TCTTGCGTTACCTGGCAAA |
Strain Number | Serogroup * | Lineage * | ST * | Source | Year | Location | LT50 |
---|---|---|---|---|---|---|---|
112 | II b | I | ST87 | Human blood | 2021 | Shanghai, China | <12 h |
113 | II b | I | ST1032 | Human blood | 2021 | Shanghai, China | >120 h |
114 | II b | I | ST1930 | Human blood | 2021 | Shanghai, China | <12 h |
115 | II b | I | ST1032 | Human uterine contents | 2021 | Shanghai, China | ≤36 h |
116 | II b | I | ST1930 | Human uterine contents | 2021 | Shanghai, China | >120 h |
117 | II a | II | ST451 | Human uterine contents | 2021 | Shanghai, China | >120 h |
118 | II a | II | ST451 | Human blood | 2021 | Shanghai, China | >120 h |
119 | II b | I | ST87 | Human blood | 2021 | Shanghai, China | >120 h |
120 | II b | I | ST5 | Human blood | 2021 | Shanghai, China | <120 h |
121 | II b | I | ST87 | Human blood | 2022 | Shanghai, China | >120 h |
122 | II b | I | ST5 | Human blood | 2022 | Shanghai, China | >120 h |
123 | II b | I | ST2106 | Human vaginal secretion | 2022 | Shanghai, China | >120 h |
124 | II c | II | ST9 | Chilled pork | 2021 | Shanghai, China | <96 h |
125 | II c | II | ST9 | Fresh pork | 2021 | Shanghai, China | ≤24 h |
126 | II a | II | ST8 | Frozen processed beef | 2021 | Shanghai, China | >120 h |
127 | II a | II | ST121 | Frozen processed beef | 2021 | Shanghai, China | <12 h |
128 | II a | II | ST121 | Chilled chicken | 2021 | Shanghai, China | <12 h |
129 | II b | I | ST3 | Chilled duck | 2021 | Shanghai, China | >120 h |
130 | II a | II | ST155 | Chilled chicken | 2021 | Shanghai, China | >120 h |
131 | II b | I | ST87 | Cooked beef | 2021 | Shanghai, China | >120 h |
132 | II b | I | ST87 | Chilled cooked beef | 2021 | Shanghai, China | >120 h |
133 | II a | II | ST307 | Chilled cooked beef | 2021 | Shanghai, China | >120 h |
134 | II c | II | ST9 | Frozen processed fork | 2020 | Shanghai, China | >120 h |
135 | II a | II | ST121 | Chilled processed chicken | 2020 | Shanghai, China | >120 h |
136 | II c | II | ST9 | Frozen processed chicken | 2020 | Shanghai, China | ≤36 h |
137 | II a | II | ST8 | Frozen processed beef | 2020 | Shanghai, China | >120 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Xu, B.; Gao, B.; Xu, Y.; Xia, X.; Ma, Y.; Qin, X.; Dong, Q.; Hirata, T.; Li, Z. Comparative Analysis of In Vivo and In Vitro Virulence Among Foodborne and Clinical Listeria monocytogenes Strains. Microorganisms 2025, 13, 191. https://doi.org/10.3390/microorganisms13010191
Yan H, Xu B, Gao B, Xu Y, Xia X, Ma Y, Qin X, Dong Q, Hirata T, Li Z. Comparative Analysis of In Vivo and In Vitro Virulence Among Foodborne and Clinical Listeria monocytogenes Strains. Microorganisms. 2025; 13(1):191. https://doi.org/10.3390/microorganisms13010191
Chicago/Turabian StyleYan, Hui, Biyao Xu, Binru Gao, Yunyan Xu, Xuejuan Xia, Yue Ma, Xiaojie Qin, Qingli Dong, Takashi Hirata, and Zhuosi Li. 2025. "Comparative Analysis of In Vivo and In Vitro Virulence Among Foodborne and Clinical Listeria monocytogenes Strains" Microorganisms 13, no. 1: 191. https://doi.org/10.3390/microorganisms13010191
APA StyleYan, H., Xu, B., Gao, B., Xu, Y., Xia, X., Ma, Y., Qin, X., Dong, Q., Hirata, T., & Li, Z. (2025). Comparative Analysis of In Vivo and In Vitro Virulence Among Foodborne and Clinical Listeria monocytogenes Strains. Microorganisms, 13(1), 191. https://doi.org/10.3390/microorganisms13010191