Beyond Microbial Variability: Disclosing the Functional Redundancy of the Core Gut Microbiota of Farmed Gilthead Sea Bream from a Bayesian Network Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Microbial Datasets
2.2. The Inferred Metagenome
2.3. The Bayesian Network Construction
2.4. Statistical Analysis
3. Results
3.1. The Discordance of Taxonomical and Functional Microbiota Profiles
3.2. Discriminant Analysis Unveiled the Core Discriminant Microbiota
3.3. Independent Bayesian Network Meta-Analysis Revealed Reliable Gut Microbiota and Diet Associations
3.4. Combined Bayesian Network Analysis Disclosed a Highly Interconnected Core Microbiota with Changes in Diet Composition
3.5. Functional Redundancy Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esser, D.; Lange, J.; Marinos, G.; Sieber, M.; Best, L.; Prasse, D.; Bathia, J.; Rühlemann, M.C.; Boersch, K.; Jaspers, C.; et al. Functions of the Microbiota for the Physiology of Animal Metaorganisms. J. Innate Immun. 2019, 11, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Konopka, A. What Is Microbial Community Ecology. ISME J. 2009, 3, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Zaneveld, J.; Turnbaugh, P.J.; Lozupone, C.; Ley, R.E.; Hamady, M.; Gordon, J.I.; Knight, R. Host-Bacterial Coevolution and the Search for New Drug Targets. Curr. Opin. Chem. Biol. 2008, 12, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.C.; Marchesi, J.R.; Mougel, C.; Selosse, M.A. Host-Microbiota Interactions: From Holobiont Theory to Analysis. Microbiome 2019, 7, 5. [Google Scholar] [CrossRef]
- Guerrero, R.; Margulis, L.; Berlanga, M. Symbiogenesis: The Holobiont as a Unit of Evolution. Int. Microbiol. 2013, 16, 133–143. [Google Scholar] [CrossRef]
- Zilber-Rosenberg, I.; Rosenberg, E. Role of Microorganisms in the Evolution of Animals and Plants: The Hologenome Theory of Evolution. FEMS Microbiol. Rev. 2008, 32, 723–735. [Google Scholar] [CrossRef]
- Louca, S.; Polz, M.F.; Mazel, F.; Albright, M.B.N.; Huber, J.A.; O’Connor, M.I.; Ackermann, M.; Hahn, A.S.; Srivastava, D.S.; Crowe, S.A.; et al. Function and Functional Redundancy in Microbial Systems. Nat. Ecol. Evol. 2018, 2, 936–943. [Google Scholar] [CrossRef]
- Tian, L.; Wang, X.W.; Wu, A.K.; Fan, Y.; Friedman, J.; Dahlin, A.; Waldor, M.K.; Weinstock, G.M.; Weiss, S.T.; Liu, Y.Y. Deciphering Functional Redundancy in the Human Microbiome. Nat. Commun. 2020, 11, 6217. [Google Scholar] [CrossRef]
- Chen, H.; Ma, K.; Lu, C.; Fu, Q.; Qiu, Y.; Zhao, J.; Huang, Y.; Yang, Y.; Schadt, C.W.; Chen, H. Functional Redundancy in Soil Microbial Community Based on Metagenomics Across the Globe. Front. Microbiol. 2022, 13, 878978. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Cabezas-Cruz, A.; Obregón, D. Behind Taxonomic Variability: The Functional Redundancy in the Tick Microbiome. Microorganisms 2020, 8, 829. [Google Scholar] [CrossRef]
- Barnes, E.M.; Carter, E.L.; Lewis, J.D. Predicting Microbiome Function Across Space Is Confounded by Strain-Level Differences and Functional Redundancy Across Taxa. Front. Microbiol. 2020, 11, 101. [Google Scholar] [CrossRef] [PubMed]
- Bentzon-Tilia, M.; Sonnenschein, E.C.; Gram, L. Monitoring and Managing Microbes in Aquaculture—Towards a Sustainable Industry. Microb. Biotechnol. 2016, 9, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Dittmann, K.K.; Rasmussen, B.B.; Castex, M.; Gram, L.; Bentzon-Tilia, M. The Aquaculture Microbiome at the Centre of Business Creation. Microb. Biotechnol. 2017, 10, 1279–1282. [Google Scholar] [CrossRef] [PubMed]
- Bledsoe, J.W.; Small, B.C. Finfish Microbiota and Direct-Fed Microbial Applications in Aquaculture. In Direct-Fed Microbials and Prebiotics for Animals; Callaway, T.R., Ricke, S.C., Eds.; Springer: Cham, Switzerland, 2023; pp. 249–300. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022; ISBN 978-92-5-136364-5. [Google Scholar]
- Piazzon, M.C.; Naya-Català, F.; Perera, E.; Palenzuela, O.; Sitjà-Bobadilla, A.; Pérez-Sánchez, J. Genetic Selection for Growth Drives Differences in Intestinal Microbiota Composition and Parasite Disease Resistance in Gilthead Sea Bream. Microbiome 2020, 8, 174. [Google Scholar] [CrossRef]
- Rimoldi, S.; Montero, D.; Torrecillas, S.; Serradell, A.; Acosta, F.; Haffray, P.; Hostins, B.; Fontanillas, R.; Allal, F.; Bajek, A.; et al. Genetically Superior European Sea Bass (Dicentrarchus labrax) and Nutritional Innovations: Effects of Functional Feeds on Fish Immune Response, Disease Resistance, and Gut Microbiota. Aquac. Rep. 2023, 33, 101747. [Google Scholar] [CrossRef]
- Naya-Català, F.; Piazzon, M.C.; Torrecillas, S.; Toxqui-Rodríguez, S.; Calduch-Giner, J.A.; Fontanillas, R.; Sitjà-Bobadilla, A.; Montero, D.; Pérez-Sánchez, J. Genetics and Nutrition Drive the Gut Microbiota Succession and Host-Transcriptome Interactions through the Gilthead Sea Bream (Sparus aurata) Production Cycle. Biology 2022, 11, 1744. [Google Scholar] [CrossRef]
- Naya-Català, F.; Belenguer, A.; Montero, D.; Torrecillas, S.; Soriano, B.; Calduch-Giner, J.; Llorens, C.; Fontanillas, R.; Sarih, S.; Zamorano, M.J.; et al. Broodstock Nutritional Programming Differentially Affects the Hepatic Transcriptome and Genome-Wide DNA Methylome of Farmed Gilthead Sea Bream (Sparus aurata) Depending on Genetic Background. BMC Genom. 2023, 24, 670. [Google Scholar] [CrossRef]
- Naya-Català, F.; Torrecillas, S.; Piazzon, M.C.; Sarih, S.; Calduch-Giner, J.; Fontanillas, R.; Hostins, B.; Sitjà-Bobadilla, A.; Acosta, F.; Pérez-Sánchez, J.; et al. Can the Genetic Background Modulate the Effects of Feed Additives? Answers from Gut Microbiome and Transcriptome Interactions in Farmed Gilthead Sea Bream (Sparus aurata) Fed with a Mix of Phytogenics, Organic Acids or Probiotics. Aquaculture 2024, 586, 740770. [Google Scholar] [CrossRef]
- Givens, C.E.; Ransom, B.; Bano, N.; Hollibaugh, J.T. Comparison of the Gut Microbiomes of 12 Bony Fish and 3 Shark Species. Mar. Ecol. Prog. Ser. 2015, 518, 209–223. [Google Scholar] [CrossRef]
- Huang, Q.; Sham, R.C.; Deng, Y.; Mao, Y.; Wang, C.; Zhang, T.; Leung, K.M.Y. Diversity of Gut Microbiomes in Marine Fishes Is Shaped by Host-Related Factors. Mol. Ecol. 2020, 29, 5019–5034. [Google Scholar] [CrossRef]
- Sehnal, L.; Brammer-Robbins, E.; Wormington, A.M.; Blaha, L.; Bisesi, J.; Larkin, I.; Martyniuk, C.J.; Simonin, M.; Adamovsky, O. Microbiome Composition and Function in Aquatic Vertebrates: Small Organisms Making Big Impacts on Aquatic Animal Health. Front. Microbiol. 2021, 12, 567408. [Google Scholar] [CrossRef] [PubMed]
- Healey, G.R.; Murphy, R.; Brough, L.; Butts, C.A.; Coad, J. Interindividual Variability in Gut Microbiota and Host Response to Dietary Interventions. Nutr. Rev. 2017, 75, 1059–1080. [Google Scholar] [CrossRef] [PubMed]
- Kokou, F.; Sasson, G.; Friedman, J.; Eyal, S.; Ovadia, O.; Harpaz, S.; Cnaani, A.; Mizrahi, I. Core Gut Microbial Communities Are Maintained by Beneficial Interactions and Strain Variability in Fish. Nat. Microbiol. 2019, 4, 2456–2465. [Google Scholar] [CrossRef] [PubMed]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome Definition Re-Visited: Old Concepts and New Challenges. Microbiome 2020, 8, 103. [Google Scholar]
- Shade, A.; Handelsman, J. Beyond the Venn Diagram: The Hunt for a Core Microbiome. Environ. Microbiol. 2012, 14, 4–12. [Google Scholar] [CrossRef]
- Tarnecki, A.M.; Burgos, F.A.; Ray, C.L.; Arias, C.R. Fish Intestinal Microbiome: Diversity and Symbiosis Unravelled by Metagenomics. J. Appl. Microbiol. 2017, 123, 2–17. [Google Scholar] [CrossRef]
- Diwan, A.D.; Harke, S.N.; Panche, A.N. Host-Microbiome Interaction in Fish and Shellfish: An Overview. Fish Shellfish Immunol. Rep. 2023, 4, 103. [Google Scholar] [CrossRef]
- Roeselers, G.; Mittge, E.K.; Stephens, W.Z.; Parichy, D.M.; Cavanaugh, C.M.; Guillemin, K.; Rawls, J.F. Evidence for a Core Gut Microbiota in the Zebrafish. ISME J. 2011, 5, 1595–1608. [Google Scholar] [CrossRef]
- Soriano, B.; Hafez, A.I.; Naya-Català, F.; Moroni, F.; Moldovan, R.A.; Toxqui-Rodríguez, S.; Piazzon, M.C.; Arnau, V.; Llorens, C.; Pérez-Sánchez, J. SAMBA: Structure-Learning of Aquaculture Microbiomes Using a Bayesian Approach. Genes 2023, 14, 1650. [Google Scholar] [CrossRef]
- Sazal, M.; Stebliankin, V.; Mathee, K.; Yoo, C.; Narasimhan, G. Causal Effects in Microbiomes Using Interventional Calculus. Sci. Rep. 2021, 11, 5724. [Google Scholar] [CrossRef]
- Faust, K.; Raes, J. Microbial Interactions: From Networks to Models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Michiels, M.; Larrañaga, P.; Bielza, C. BayeSuites: An Open Web Framework for Massive Bayesian Networks Focused on Neuroscience. Neurocomputing 2021, 428, 166–181. [Google Scholar] [CrossRef]
- Shafiei, M.; Dunn, K.A.; Boon, E.; MacDonald, S.M.; Walsh, D.A.; Gu, H.; Bielawski, J.P. BioMiCo: A Supervised Bayesian Model for Inference of Microbial Community Structure. Microbiome 2015, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Sazal, M.; Mathee, K.; Ruiz-Perez, D.; Cickovski, T.; Narasimhan, G. Inferring Directional Relationships in Microbial Communities Using Signed Bayesian Networks. BMC Genom. 2020, 21, 663. [Google Scholar] [CrossRef] [PubMed]
- Naya-Català, F.; Wiggers, G.A.; Piazzon, M.C.; López-Martínez, M.I.; Estensoro, I.; Calduch-Giner, J.A.; Martínez-Cuesta, M.C.; Requena, T.; Sitjà-Bobadilla, A.; Miguel, M.; et al. Modulation of Gilthead Sea Bream Gut Microbiota by a Bioactive Egg White Hydrolysate: Interactions Between Bacteria and Host Lipid Metabolism. Front. Mar. Sci. 2021, 8, 698484. [Google Scholar] [CrossRef]
- Solé-Jiménez, P.; Naya-Català, F.; Piazzon, M.C.; Estensoro, I.; Calduch-Giner, J.; Sitjà-Bobadilla, A.; Van Mullem, D.; Pérez-Sánchez, J. Reshaping of Gut Microbiota in Gilthead Sea Bream Fed Microbial and Processed Animal Proteins as the Main Dietary Protein Source. Front. Mar. Sci. 2021, 8, 705041. [Google Scholar] [CrossRef]
- Piazzon, M.C.; Naya-Català, F.; Pereira, G.V.; Estensoro, I.; Del Pozo, R.; Calduch-Giner, J.A.; Nuez-Ortín, W.G.; Palenzuela, O.; Sitjà-Bobadilla, A.; Dias, J.; et al. A Novel Fish Meal-Free Diet Formulation Supports Proper Growth and Does Not Impair Intestinal Parasite Susceptibility in Gilthead Sea Bream (Sparus aurata) with a Reshape of Gut Microbiota and Tissue-Specific Gene Expression Patterns. Aquaculture 2022, 558, 738362. [Google Scholar] [CrossRef]
- McKnight, D.T.; Huerlimann, R.; Bower, D.S.; Schwarzkopf, L.; Alford, R.A.; Zenger, K.R. Methods for Normalizing Microbiome Data: An Ecological Perspective. Methods Ecol. Evol. 2019, 10, 389–400. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for Taxonomy-Based Analysis of Pathways and Genomes. Nucleic. Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef]
- Traag, V.A.; Waltman, L.; van Eck, N.J. From Louvain to Leiden: Guaranteeing Well-Connected Communities. Sci. Rep. 2019, 9, 5233. [Google Scholar] [CrossRef]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. ClusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef] [PubMed]
- Dinsdale, E.A.; Edwards, R.A.; Hall, D.; Angly, F.; Breitbart, M.; Brulc, J.M.; Furlan, M.; Desnues, C.; Haynes, M.; Li, L.; et al. Functional Metagenomic Profiling of Nine Biomes. Nature 2008, 452, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Sunagawa, S.; Coelho, P.; Chaffron, S.; Kultima, J.R.; Labadie, K.; Salazar, G.; Djahanschiri, B.; Zeller, G.; Mende, D.R.; Alberti, A.; et al. Structure and Function of the Global Ocean Microbiome. Science 2015, 15, 1261359. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; van der Heijden, M.G.A. Soil Microbiomes and One Health. Nat. Rev. Microbiol. 2023, 21, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.Y.; Fan, X.Y.; Zhang, Q.; Lu, Y.P.; Wu, S.; Wang, S.; Yu, M.; Cui, C.W.; Sun, Z.R. Bibliometric Analysis of Subject Trends and Knowledge Structures of Gut Microbiota. World J. Clin. Cases 2020, 8, 2817–2832. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Q.; Liu, H.; Jin, J.; Yang, Y.; Zhu, X.; Han, D.; Zhou, Z.; Xie, S. Potential Functions of the Gut Microbiome and Modulation Strategies for Improving Aquatic Animal Growth. Rev. Aquac. 2024, 17, e12959. [Google Scholar] [CrossRef]
- Ruiz, A.; Gisbert, E.; Andree, K.B. Impact of the Diet in the Gut Microbiota after an Inter-Species Microbial Transplantation in Fish. Sci. Rep. 2024, 14, 4007. [Google Scholar] [CrossRef]
- Tawfik, M.M.; Lorgen-Ritchie, M.; Król, E.; McMillan, S.; Norambuena, F.; Bolnick, D.I.; Douglas, A.; Tocher, D.R.; Betancor, M.B.; Martin, S.A.M. Modulation of Gut Microbiota Composition and Predicted Metabolic Capacity after Nutritional Programming with a Plant-Rich Diet in Atlantic Salmon (Salmo salar): Insights across Developmental Stages. Anim. Microbiome 2024, 6, 38. [Google Scholar] [CrossRef]
- Vargas-Albores, F.; Martínez-Córdova, L.R.; Hernández-Mendoza, A.; Cicala, F.; Lago-Lestón, A.; Martínez-Porchas, M. Therapeutic Modulation of Fish Gut Microbiota, a Feasible Strategy for Aquaculture? Aquaculture 2021, 544, 737050. [Google Scholar] [CrossRef]
- Vieira-Silva, S.; Falony, G.; Darzi, Y.; Lima-Mendez, G.; Garcia Yunta, R.; Okuda, S.; Vandeputte, D.; Valles-Colomer, M.; Hildebrand, F.; Chaffron, S.; et al. Species-Function Relationships Shape Ecological Properties of the Human Gut Microbiome. Nat. Microbiol. 2016, 1, 16088. [Google Scholar] [CrossRef]
- The Human Microbiome Project Consortium. Structure, Function and Diversity of the Healthy Human Microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Louca, S.; Jacques, S.M.S.; Pires, A.P.F.; Leal, J.S.; Srivastava, D.S.; Parfrey, L.W.; Farjalla, V.F.; Doebeli, M. High Taxonomic Variability despite Stable Functional Structure across Microbial Communities. Nat. Ecol. Evol. 2016, 1, 0015. [Google Scholar] [CrossRef] [PubMed]
- Escalas, A.; Troussellier, M.; Yuan, T.; Bouvier, T.; Bouvier, C.; Mouchet, M.A.; Flores Hernandez, D.; Ramos Miranda, J.; Zhou, J.; Mouillot, D. Functional Diversity and Redundancy across Fish Gut, Sediment and Water Bacterial Communities. Environ. Microbiol. 2017, 19, 3268–3282. [Google Scholar] [CrossRef] [PubMed]
- Burke, C.; Steinberg, P.; Rusch, D.; Kjelleberg, S.; Thomas, T. Bacterial Community Assembly Based on Functional Genes Rather than Species. Proc. Natl. Acad. Sci. USA 2011, 108, 14288–14293. [Google Scholar] [CrossRef]
- Sommer, F.; Anderson, J.M.; Bharti, R.; Raes, J.; Rosenstiel, P. The Resilience of the Intestinal Microbiota Influences Health and Disease. Nat. Rev. Microbiol. 2017, 15, 630–638. [Google Scholar] [CrossRef]
- Moya, A.; Ferrer, M. Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance. Trends Microbiol. 2016, 24, 402–413. [Google Scholar] [CrossRef]
- Xiong, J.B.; Nie, L.; Chen, J. Current Understanding on the Roles of Gut Microbiota in Fish Disease and Immunity. Zool. Res. 2019, 40, 70–76. [Google Scholar]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Luan, Y.; Li, M.; Zhou, W.; Yao, Y.; Yang, Y.; Zhang, Z.; Ringø, E.; Erik Olsen, R.; Liu Clarke, J.; Xie, S.; et al. The Fish Microbiota: Research Progress and Potential Applications. Engineering 2023, 29, 137–146. [Google Scholar] [CrossRef]
- Muller, E.E.L. Determining Microbial Niche Breadth in the Environment for Better Ecosystem Fate Predictions. mSystems 2019, 4, e00080-19. [Google Scholar] [CrossRef]
- Astudillo-García, C.; Bell, J.J.; Webster, N.S.; Glasl, B.; Jompa, J.; Montoya, J.M.; Taylor, M.W. Evaluating the Core Microbiota in Complex Communities: A Systematic Investigation. Environ. Microbiol. 2017, 19, 1450–1462. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.; Waldrop, T.; Summerfelt, S.; Davidson, J.; Barrows, F.; Kenney, B.B.; Welch, T.; Wiens, G.D.; Snekvi, K.; Rawls, J.F.; et al. Aquacultured Rainbow Trout (Oncorhynchus mykiss) Possess a Large Core Intestinal Microbiota That Is Resistant to Variation in Diet and Rearing Density. Appl. Environ. Microbiol. 2013, 79, 4974–4984. [Google Scholar] [CrossRef] [PubMed]
- Lemanceau, P.; Blouin, M.; Muller, D.; Moënne-Loccoz, Y. Let the Core Microbiota Be Functional. Trends Plant Sci. 2017, 22, 583–595. [Google Scholar] [CrossRef]
- Bledsoe, J.W.; Peterson, B.C.; Swanson, K.S.; Small, B.C. Ontogenetic Characterization of the Intestinal Microbiota of Channel Catfish through 16S RRNA Gene Sequencing Reveals Insights on Temporal Shifts and the Influence of Environmental Microbes. PLoS ONE 2016, 11, e0166379. [Google Scholar] [CrossRef] [PubMed]
- Sharon, I.; Quijada, N.M.; Pasolli, E.; Fabbrini, M.; Vitali, F.; Agamennone, V.; Dötsch, A.; Selberherr, E.; Grau, J.H.; Meixner, M.; et al. The Core Human Microbiome: Does It Exist and How Can We Find It? A Critical Review of the Concept. Nutrients 2022, 14, 2872. [Google Scholar] [CrossRef]
- Yang, Z.; Algesheimer, R.; Tessone, C.J. A Comparative Analysis of Community Detection Algorithms on Artificial Networks. Sci. Rep. 2016, 6, 30750. [Google Scholar] [CrossRef]
- Javed, M.A.; Younis, M.S.; Latif, S.; Qadir, J.; Baig, A. Community Detection in Networks: A Multidisciplinary Review. J. Netw. Comput. Appl. 2018, 108, 87–111. [Google Scholar] [CrossRef]
- Le Doujet, T.; De Santi, C.; Klemetsen, T.; Hjerde, E.; Willassen, N.P.; Haugen, P. Closely-Related Photobacterium Strains Comprise the Majority of Bacteria in the Gut of Migrating Atlantic Cod (Gadus morhua). Microbiome 2019, 7, 64. [Google Scholar] [CrossRef]
- Wang, J.; Jaramillo-Torres, A.; Li, Y.; Kortner, T.M.; Gajardo, K.; Brevik, Ø.J.; Jakobsen, J.V.; Krogdahl, Å. Microbiota in Intestinal Digesta of Atlantic Salmon (Salmo Salar), Observed from Late Freshwater Stage until One Year in Seawater, and Effects of Functional Ingredients: A Case Study from a Commercial Sized Research Site in the Arctic Region. Anim. Microbiome 2021, 3, 14. [Google Scholar] [CrossRef]
- Piazzon, M.C.; Naya-català, F.; Simó-Mirabet, P.; Picard-sánchez, A.; Roig, F.J.; Calduch-giner, J.A.; Sitjà-Bobadilla, A.; Pérez-Sánchez, J. Sex, Age, and Bacteria: How the Intestinal Microbiota Is Modulated in a Protandrous Hermaphrodite Fish. Front. Microbiol. 2019, 10, 2512. [Google Scholar] [CrossRef]
- Das, S.; Ward, L.R.; Burke, C. Prospects of Using Marine Actinobacteria as Probiotics in Aquaculture. Appl. Microbiol. Biotechnol. 2008, 81, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, C.; Romero, J. Fine Flounder (Paralichthys adspersus) Microbiome Showed Important Differences between Wild and Reared Specimens. Front. Microbiol. 2017, 8, 271. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.K. Role of Gastrointestinal Microbiota in Fish. Aquac. Res. 2010, 41, 1553–1573. [Google Scholar] [CrossRef]
- Xiong, F.; Wu, S.G.; Zhang, J.; Jakovlic, I.; Li, W.X.; Zou, H.; Li, M.; Wang, G.T. Dietary Bile Salt Types Influence the Composition of Biliary Bile Acids and Gut Microbiota in Grass Carp. Front. Microbiol. 2018, 9, 2209. [Google Scholar] [CrossRef]
- Kisiela, M.; Skarka, A.; Ebert, B.; Maser, E. Hydroxysteroid Dehydrogenases (HSDs) in Bacteria—A Bioinformatic Perspective. J. Steroid Biochem. Mol. Biol. 2012, 129, 31–46. [Google Scholar] [CrossRef]
- Romano, N.; Kumar, V.; Yang, G.; Kajbaf, K.; Rubio, M.B.; Overturf, K.; Brezas, A.; Hardy, R. Bile Acid Metabolism in Fish: Disturbances Caused by Fishmeal Alternatives and Some Mitigating Effects from Dietary Bile Inclusions. Rev. Aquac. 2020, 12, 1792–1817. [Google Scholar] [CrossRef]
- Xiong, H.-H.; Lin, S.-Y.; Chen, L.-L.; Ouyang, K.-H.; Wang, W.-J. The Interaction between Flavonoids and Intestinal Microbes: A Review. Foods 2023, 12, 320. [Google Scholar] [CrossRef]
- Sharma, S.; Tripathi, P.; Sharma, J.; Dixit, A. Flavonoids Modulate Tight Junction Barrier Functions in Hyperglycemic Human Intestinal Caco-2 Cells. Nutrition 2020, 78, 110792. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, H.; Poolsawat, L.; Rahman, M.M.; Xu, X.; Jiang, X.; Li, X.; Tan, H.; Leng, X. Flavonoid-Enriched Diets Improved the Growth and Flesh Quality of Grass Carp (Ctenopharyngodon idellus) Based on Metabolomics. Aquac. Nutr. 2021, 27, 2514–2528. [Google Scholar] [CrossRef]
- Nazeri, S.; Farhangi, M.; Modarres, S. The Effect of Different Dietary Inclusion Levels of Rutin (a Flavonoid) on Some Liver Enzyme Activities and Oxidative Stress Indices in Rainbow Trout, Oncorhynchus mykiss (Walbaum) Exposed to Oxytetracycline. Aquac. Res. 2017, 48, 4356–4362. [Google Scholar] [CrossRef]
- Moroni, F.; Naya-Català, F.; Piazzon, M.C.; Rimoldi, S.; Calduch-Giner, J.; Giardini, A.; Martínez, I.; Brambilla, F.; Pérez-Sánchez, J.; Terova, G. The Effects of Nisin-Producing Lactococcus Lactis Strain Used as Probiotic on Gilthead Sea Bream (Sparus aurata) Growth, Gut Microbiota, and Transcriptional Response. Front. Mar. Sci. 2021, 8, 659519. [Google Scholar] [CrossRef]
- Legrand, T.P.R.A.; Wynne, J.W.; Weyrich, L.S.; Oxley, A.P.A. A Microbial Sea of Possibilities: Current Knowledge and Prospects for an Improved Understanding of the Fish Microbiome. Rev. Aquac. 2020, 12, 1101–1134. [Google Scholar] [CrossRef]
- Firmino, J.P.; Vallejos-Vidal, E.; Balebona, M.C.; Ramayo-Caldas, Y.; Cerezo, I.M.; Salomón, R.; Tort, L.; Estevez, A.; Moriñigo, M.Á.; Reyes-López, F.E.; et al. Diet, Immunity, and Microbiota Interactions: An Integrative Analysis of the Intestine Transcriptional Response and Microbiota Modulation in Gilthead Seabream (Sparus aurata) Fed an Essential Oils-Based Functional Diet. Front. Immunol. 2021, 12, 625297. [Google Scholar] [CrossRef] [PubMed]
- Barrett, K.E.; Wu, G.D. Influence of the Microbiota on Host Physiology—Moving beyond the Gut. J. Physiol. 2017, 595, 433–435. [Google Scholar] [CrossRef]
- Rutsch, A.; Kantsjö, J.B.; Ronchi, F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front. Immunol. 2020, 11, 604179. [Google Scholar] [CrossRef]
- Schroeder, B.O.; Bäckhed, F. Signals from the Gut Microbiota to Distant Organs in Physiology and Disease. Nat. Med. 2016, 22, 1079–1089. [Google Scholar] [CrossRef]
- Debnath, N.; Kumar, R.; Kumar, A.; Mehta, P.K.; Yadav, A.K. Gut-Microbiota Derived Bioactive Metabolites and Their Functions in Host Physiology. Biotechnol. Genet. Eng. Rev. 2021, 37, 105–153. [Google Scholar] [CrossRef]
- Egerton, S.; Culloty, S.; Whooley, J.; Stanton, C.; Ross, R.P. The Gut Microbiota of Marine Fish. Front. Microbiol. 2018, 9, 873. [Google Scholar] [CrossRef]
- Ringø, E.; Zhou, Z.; Vecino, J.L.G.; Wadsworth, S.; Romero, J.; Krogdahl, Å.; Olsen, R.E.; Dimitroglou, A.; Foey, A.; Davies, S.; et al. Effect of Dietary Components on the Gut Microbiota of Aquatic Animals. A Never-Ending Story? Aquac. Nutr. 2016, 22, 219–282. [Google Scholar] [CrossRef]
NOPAP | ||||||
---|---|---|---|---|---|---|
Clusters | Level 2 | Description | Ratio | Bg Ratio | p Value | p. Adjust |
2 | Biosynthesis of other secondary metabolites | Flavone and flavonol biosynthesis | 5/19 | 182/3364 | 0.003 | 0.033 |
Biosynthesis of other secondary metabolites | Biosynthesis of various alkaloids | 3/19 | 58/3364 | 0.004 | 0.037 | |
Folding, sorting and degradation | Proteasome | 8/19 | 440/3364 | 0.002 | 0.026 | |
Immune system | RIG-I-like receptor signaling pathway | 10/19 | 420/3364 | <0.001 | 0.001 | |
5 | Biosynthesis of other secondary metabolites | Staurosporine biosynthesis | 5/11 | 239/3364 | 0.001 | 0.014 |
Biosynthesis of other secondary metabolites | Isoflavonoid biosynthesis | 3/11 | 95/3364 | 0.003 | 0.022 | |
Digestive system | Bile secretion | 5/11 | 183/3364 | <0.001 | 0.011 | |
Endocrine system | Relaxin signaling pathway | 2/11 | 12/3364 | 0.001 | 0.014 | |
Endocrine system | Parathyroid hormone synthesis, secretion and action | 4/11 | 146/3364 | 0.001 | 0.014 | |
Endocrine system | Melanogenesis | 3/11 | 84/3364 | 0.002 | 0.021 | |
Immune system | Platelet activation | 2/11 | 22/3364 | 0.002 | 0.021 | |
Infectious disease: bacterial | Yersinia infection | 3/11 | 107/3364 | 0.004 | 0.026 | |
Metabolism of terpenoids and polyketides | Biosynthesis of type II polyketide products | 3/11 | 136/3364 | 0.008 | 0.044 | |
Nervous system | Retrograde endocannabinoid signaling | 3/11 | 97/3364 | 0.003 | 0.022 | |
Signaling molecules and interaction | ECM-receptor interaction | 2/11 | 36/3364 | 0.006 | 0.033 | |
7 | Immune system | RIG-I-like receptor signaling pathway | 11/33 | 420/3364 | 0.001 | 0.037 |
Biosynthesis of other secondary metabolites | Flavone and flavonol biosynthesis | 7/33 | 182/3364 | 0.002 | 0.037 | |
8 | Biosynthesis of other secondary metabolites | Indole alkaloid biosynthesis | 5/11 | 212/3364 | <0.001 | 0.013 |
PAP | ||||||
1 | Folding, sorting and degradation | Proteasome | 9/17 | 440/3364 | <0.001 | 0.004 |
Digestive system | Bile secretion | 6/17 | 183/3364 | <0.001 | 0.004 | |
Biosynthesis of other secondary metabolites | Biosynthesis of various other secondary metabolites | 7/17 | 331/3364 | 0.001 | 0.009 | |
3 | Endocrine system | Parathyroid hormone synthesis, secretion and action | 4/10 | 146/3364 | 0.001 | 0.034 |
4 | Cell growth and death | Cellular senescence | 2/10 | 20/3364 | 0.001 | 0.009 |
Circulatory system | Vascular smooth muscle contraction | 2/10 | 20/3364 | 0.001 | 0.009 | |
Circulatory system | Adrenergic signaling in cardiomyocytes | 2/10 | 38/3364 | 0.005 | 0.015 | |
Digestive system | Gastric acid secretion | 2/10 | 33/3364 | 0.004 | 0.013 | |
Digestive system | Bile secretion | 3/10 | 183/3364 | 0.014 | 0.035 | |
Endocrine system | Regulation of lipolysis in adipocytes | 3/10 | 25/3364 | <0.001 | 0.002 | |
Endocrine system | Melanogenesis | 4/10 | 84/3364 | <0.001 | 0.002 | |
Endocrine system | Relaxin signaling pathway | 2/10 | 12/3364 | 0.001 | 0.006 | |
Endocrine system | Oxytocin signaling pathway | 3/10 | 64/3364 | 0.001 | 0.008 | |
Endocrine system | GnRH signaling pathway | 3/10 | 72/3364 | 0.001 | 0.009 | |
Endocrine system | Renin secretion | 4/10 | 209/3364 | 0.002 | 0.009 | |
Endocrine system | Aldosterone synthesis and secretion | 2/10 | 32/3364 | 0.004 | 0.013 | |
Environmental adaptation | Circadian entrainment | 2/10 | 26/3364 | 0.002 | 0.009 | |
Immune system | Platelet activation | 2/10 | 22/3364 | 0.002 | 0.009 | |
Immune system | RIG-I-like receptor signaling pathway | 5/10 | 420/3364 | 0.004 | 0.014 | |
Immune system | C-type lectin receptor signaling pathway | 2/10 | 38/3364 | 0.005 | 0.015 | |
Nervous system | Cholinergic synapse | 2/10 | 22/3364 | 0.002 | 0.009 | |
Nervous system | Long-term potentiation | 2/10 | 25/3364 | 0.002 | 0.009 | |
Nervous system | Retrograde endocannabinoid signaling | 3/10 | 97/3364 | 0.002 | 0.009 | |
Sensory system | Inflammatory mediator regulation of TRP channels | 2/10 | 22/3364 | 0.002 | 0.009 | |
Signal transduction | Ras signaling pathway | 3/10 | 68/3364 | 0.001 | 0.008 | |
Signal transduction | NF-kappa B signaling pathway | 2/10 | 25/3364 | 0.002 | 0.009 | |
Signal transduction | TNF signaling pathway | 2/10 | 25/3364 | 0.002 | 0.009 | |
Signal transduction | VEGF signaling pathway | 2/10 | 26/3364 | 0.002 | 0.009 | |
Signal transduction | Apelin signaling pathway | 2/10 | 38/3364 | 0.005 | 0.015 | |
Signal transduction | Calcium signaling pathway | 3/10 | 151/3364 | 0.008 | 0.022 | |
Signal transduction | Sphingolipid signaling pathway | 3/10 | 170/3364 | 0.012 | 0.03 | |
5 | Xenobiotics biodegradation and metabolism | Bisphenol degradation | 2/3 | 68/3364 | 0.001 | 0.043 |
Infectious disease: bacterial | Yersinia infection | 2/3 | 107/3364 | 0.003 | 0.043 | |
6 | Lipid metabolism | Steroid biosynthesis | 4/6 | 259/3364 | <0.001 | 0.012 |
7 | Biosynthesis of other secondary metabolites | Flavone and flavonol biosynthesis | 3/4 | 182/3364 | 0.001 | 0.011 |
8 | Biosynthesis of other secondary metabolites | Staurosporine biosynthesis | 5/13 | 239/3364 | 0.001 | 0.043 |
9 | Transcription | Spliceosome | 1/3 | 18/3364 | 0.016 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moroni, F.; Naya-Català, F.; Hafez, A.I.; Domingo-Bretón, R.; Soriano, B.; Llorens, C.; Pérez-Sánchez, J. Beyond Microbial Variability: Disclosing the Functional Redundancy of the Core Gut Microbiota of Farmed Gilthead Sea Bream from a Bayesian Network Perspective. Microorganisms 2025, 13, 198. https://doi.org/10.3390/microorganisms13010198
Moroni F, Naya-Català F, Hafez AI, Domingo-Bretón R, Soriano B, Llorens C, Pérez-Sánchez J. Beyond Microbial Variability: Disclosing the Functional Redundancy of the Core Gut Microbiota of Farmed Gilthead Sea Bream from a Bayesian Network Perspective. Microorganisms. 2025; 13(1):198. https://doi.org/10.3390/microorganisms13010198
Chicago/Turabian StyleMoroni, Federico, Fernando Naya-Català, Ahmed Ibrahem Hafez, Ricardo Domingo-Bretón, Beatriz Soriano, Carlos Llorens, and Jaume Pérez-Sánchez. 2025. "Beyond Microbial Variability: Disclosing the Functional Redundancy of the Core Gut Microbiota of Farmed Gilthead Sea Bream from a Bayesian Network Perspective" Microorganisms 13, no. 1: 198. https://doi.org/10.3390/microorganisms13010198
APA StyleMoroni, F., Naya-Català, F., Hafez, A. I., Domingo-Bretón, R., Soriano, B., Llorens, C., & Pérez-Sánchez, J. (2025). Beyond Microbial Variability: Disclosing the Functional Redundancy of the Core Gut Microbiota of Farmed Gilthead Sea Bream from a Bayesian Network Perspective. Microorganisms, 13(1), 198. https://doi.org/10.3390/microorganisms13010198