Antibacterial Potential of Crude Extracts from Cylindrospermum alatosporum NR125682 and Loriellopsis cavernicola NR117881
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Isolation, Characterization, and Extraction
2.3. Bacteria Strains
2.4. Antibacterial Susceptibility Testing
2.4.1. Minimum Inhibitory Concentration (MIC)
2.4.2. Minimum Bactericidal Concentration (MBC)
2.5. Lactate Dehydrogenase (LDH) Release Assay
2.6. Rhodamine 6G Uptake (Efflux Pump Inhibition)
2.7. β-Lactamase Inhibitory Activity
2.8. DNA Degradation in Bleomycin-Fe3+ DNA System
2.9. Extract–Drug Interactions
2.10. Data Analysis
3. Results
3.1. Minimum Inhibitory Concentration (MIC)
3.2. Minimum Bactericidal Concentration (MBC)
3.3. Lactate Dehydrogenase (LDH) Release Assay (Membrane Damage)
3.4. Rhodamine 6G Uptake (Efflux Pump Inhibition)
3.5. β-Lactamase Inhibition Activity
3.6. DNA Degradation in Bleomycin-Fe3+ DNA System
3.7. Extract–Erythromycin Interactions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vestergaard, M.; Frees, D.; Ingmer, H. Antibiotic resistance and the MRSA problem. Microbiol. Spectr. 2019, 7, 57. [Google Scholar] [CrossRef]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Aguilar, G.R.; Mestrovic, T.; Smith, G.; Han, C. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Gorlenko, C.L.; Kiselev, H.Y.; Budanova, E.V.; Zamyatnin, A.A., Jr.; Ikryannikova, L.N. Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: New heroes or worse clones of antibiotics? Antibiotics 2020, 9, 170. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, R.P.; Sinha, R.P. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol. Adv. 2009, 27, 521–539. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Tiwari, S.P.; Rai, A.K.; Mohapatra, T.M. Cyanobacteria: An emerging source for drug discovery. J. Antibiot. 2011, 64, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Morel, C.M.; Lindahl, O.; Harbarth, S.; de Kraker, M.E.; Edwards, S.; Hollis, A. Industry incentives and antibiotic resistance: An introduction to the antibiotic susceptibility bonus. J. Antibiot. 2020, 73, 421–428. [Google Scholar] [CrossRef]
- Lima, L.M.; da Silva, B.N.M.; Barbosa, G.; Barreiro, E.J. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur. J. Med. Chem. 2020, 208, 112829. [Google Scholar] [CrossRef] [PubMed]
- Carcione, D.; Siracusa, C.; Sulejmani, A.; Leoni, V.; Intra, J. Old and new beta-lactamase inhibitors: Molecular structure, mechanism of action, and clinical Use. Antibiotics 2021, 10, 995. [Google Scholar] [CrossRef] [PubMed]
- Nishino, K.; Yamasaki, S.; Nakashima, R.; Zwama, M.; Hayashi-Nishino, M. Function and Inhibitory Mechanisms of Multidrug Efflux Pumps. Front. Microbiol. 2021, 12, 737288. [Google Scholar] [CrossRef]
- Jang, S. AcrAB− TolC, a major efflux pump in Gram negative bacteria: Toward understanding its operation mechanism. BMB Rep. 2023, 56, 326–334. [Google Scholar] [CrossRef]
- Wang, C.-H.; Hsieh, Y.-H.; Powers, Z.M.; Kao, C.-Y. Defeating antibiotic-resistant bacteria: Exploring alternative therapies for a post-antibiotic era. Int. J. Mol. Sci. 2020, 21, 1061. [Google Scholar] [CrossRef] [PubMed]
- Tyers, M.; Wright, G.D. Drug combinations: A strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol. 2019, 17, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Demay, J.; Bernard, C.; Reinhardt, A.; Marie, B. Natural Products from Cyanobacteria: Focus on Beneficial Activities. Mar. Drugs 2019, 17, 320. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, Ł.; Wiśniewska, K.; Żabińska, M.; Konarzewska, M.; Zielenkiewicz, M.; Rintz, E.; Cyske, Z.; Gaffke, L.; Pierzynowska, K.; Mazur-Marzec, H. Cyanobacteria and their metabolites-can they be helpful in the fight against pathogenic microbes? Blue Biotechnol. 2024, 1, 4. [Google Scholar] [CrossRef]
- Ikhane, A.O.; Sithole, S.Z.; Cele, N.D.; Osunsanmi, F.O.; Mosa, R.A.; Opoku, A.R. In Vitro Antioxidant and In Silico Evaluation of the Anti-β-Lactamase Potential of the Extracts of Cylindrospermum alatosporum NR125682 and Loriellopsis cavenicola NR117881. Antioxidants 2024, 13, 608. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017; pp. 106–112. [Google Scholar]
- Sewanu, S.O.; Bongekile, M.C.; Folusho, O.O.; Adejumobi, L.O.; Rowland, O.A. Antimicrobial and efflux pumps inhibitory activities of Eucalyptus grandis essential oil against respiratory tract infectious bacteria. J. Med. Plants Res. 2015, 9, 343–348. [Google Scholar] [CrossRef]
- Yang, Z.; Niu, Y.; Le, Y.; Ma, X.; Qiao, C. Beta-lactamase inhibitory component from the roots of Fissistigma cavaleriei. Phytomedicine 2010, 17, 139–141. [Google Scholar] [CrossRef]
- Burger, R.M.; Peisach, J.; Horwitz, S.B. Activated bleomycin. A transient complex of drug, iron, and oxygen that degrades DNA. J. Biol. Chem. 1981, 256, 11636–11644. [Google Scholar] [CrossRef]
- Penduka, D.; Mosa, R.; Simelane, M.; Basson, A.; Okoh, A.; Opoku, A. Evaluation of the anti-Listeria potentials of some plant-derived triterpenes. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R. The overlooked pandemic of antimicrobial resistance. Lancet 2022, 399, 606–607. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira David, M.P.; Forde Brian, M.; Kidd Timothy, J.; Harris Patrick, N.A.; Schembri Mark, A.; Beatson Scott, A.; Paterson David, L.; Walker Mark, J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, 181. [Google Scholar] [CrossRef]
- Cook, M.A.; Wright, G.D. The past, present, and future of antibiotics. Sci. Transl. Med. 2022, 14, eabo7793. [Google Scholar] [CrossRef] [PubMed]
- Strieth, D.; Lenz, S.; Ulber, R. In vivo and in silico screening for antimicrobial compounds from cyanobacteria. MicrobiologyOpen 2022, 11, e1268. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.R.; Costa-Neves, A.; Conserva, G.A.A.; Brunetti, R.L.; Hentschke, G.S.; Malone, C.F.S.; Torres, L.M.B.; Sant’Anna, C.L.; Rangel, M. Biologically active compounds from cyanobacteria extracts:in vivo and in vitro aspects. Rev. Bras. Farmacogn. 2013, 23, 471–480. [Google Scholar] [CrossRef]
- Cepas, V.; López, Y.; Gabasa, Y.; Martins, C.B.; Ferreira, J.D.; Correia, M.J.; Santos, L.M.; Oliveira, F.; Ramos, V.; Reis, M.; et al. Inhibition of bacterial and fungal biofilm formation by 675 extracts from microalgae and cyanobacteria. Antibiotics 2019, 8, 77. [Google Scholar] [CrossRef] [PubMed]
- Shishido, T.K.; Popin, R.V.; Jokela, J.; Wahlsten, M.; Fiore, M.F.; Fewer, D.P.; Herfindal, L.; Sivonen, K. Dereplication of natural products with antimicrobial and anticancer activity from Brazilian cyanobacteria. Toxins 2019, 12, 12. [Google Scholar] [CrossRef]
- Kalweit, C.; Berger, S.; Kämpfe, A.; Rapp, T. Quantification and stability assessment of 7,9-di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione leaching from cross-linked polyethylene pipes using gas and liquid chromatography. Water Res. 2023, 243, 120306. [Google Scholar] [CrossRef] [PubMed]
- Sanjay, K.R.; Sudarshan, B.L.; Maheshwar, P.K.; Priya, P. Volatile and phenolic compounds in freshwater diatom Nitzschia palea as a potential oxidative damage protective and anti-inflammatory source. Pharmacogn. Mag. 2019, 15, 228–236. [Google Scholar] [CrossRef]
- Zhang, J.-h.; Sun, H.-l.; Chen, S.-y.; Zeng, L.; Wang, T.-t. Anti-fungal activity, mechanism studies on α-Phellandrene and Nonanal against Penicillium cyclopium. Bot. Stud. 2017, 58, 13. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.; Rauter, A.P. Membrane-targeting antibiotics: Recent developments outside the peptide space. Future Med. Chem. 2019, 11, 211–228. [Google Scholar] [CrossRef] [PubMed]
- Konings, W.N.; Albers, S.-V.; Koning, S.; Driessen, A.J. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie Van Leeuwenhoek 2002, 81, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Cong, Y.; Yang, S.; Rao, X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J. Adv. Res. 2020, 21, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Gray, D.A.; Wenzel, M. More than a pore: A current perspective on the in vivo mode of action of the lipopeptide antibiotic daptomycin. Antibiotics 2020, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Ledger, E.V.; Sabnis, A.; Edwards, A.M. Polymyxin and lipopeptide antibiotics: Membrane-targeting drugs of last resort. Microbiology 2022, 168, 001136. [Google Scholar] [CrossRef]
- Miklasińska-Majdanik, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Wąsik, T.J. Phenolic compounds diminish antibiotic resistance of Staphylococcus aureus clinical strains. Int. J. Environ. Res. Public Health 2018, 15, 2321. [Google Scholar] [CrossRef] [PubMed]
- Ojkic, N.; Serbanescu, D.; Banerjee, S. Antibiotic resistance via bacterial cell shape-shifting. Mbio 2022, 13, e00659-22. [Google Scholar] [CrossRef] [PubMed]
- Casillas-Vargas, G.; Ocasio-Malavé, C.; Medina, S.; Morales-Guzmán, C.; Del Valle, R.G.; Carballeira, N.M.; Sanabria-Ríos, D.J. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog. Lipid Res. 2021, 82, 101093. [Google Scholar] [CrossRef] [PubMed]
- Nowruzi, B.; Porzani, S.J. Toxic compounds produced by cyanobacteria belonging to several species of the order Nostocales: A review. J. Appl. Toxicol. 2021, 41, 510–548. [Google Scholar] [CrossRef]
- Hassanzadeh, S.; Ganjloo, S.; Pourmand, M.R.; Mashhadi, R.; Ghazvini, K. Epidemiology of efflux pumps genes mediating resistance among Staphylococcus aureus; A systematic review. Microb. Pathog. 2020, 139, 103850. [Google Scholar] [CrossRef]
- Chu, A.S.; Harkness, J. Alcaligenes faecalis cellulitis after a dog bite: Case report and literature review. Pediatr. Emerg. Care 2017, 33, 497–498. [Google Scholar] [CrossRef]
- Remm, S.; Earp, J.C.; Dick, T.; Dartois, V.; Seeger, M.A. Critical discussion on drug efflux in Mycobacterium tuberculosis. FEMS Microbiol. Rev. 2022, 46, fuab050. [Google Scholar] [CrossRef] [PubMed]
- Reza, A.; Sutton, J.M.; Rahman, K.M. Effectiveness of efflux pump inhibitors as biofilm disruptors and resistance breakers in gram-negative (ESKAPEE) bacteria. Antibiotics 2019, 8, 229. [Google Scholar] [CrossRef] [PubMed]
- Lamut, A.; Mašič, L.P.; Kikelj, D.; Tomašič, T. Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Med. Res. Rev. 2019, 39, 2460–2504. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wu, C.; Gao, H.; Xu, C.; Dai, M.; Huang, L.; Hao, H.; Wang, X.; Cheng, G. Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview. Antibiotics 2022, 11, 520. [Google Scholar] [CrossRef] [PubMed]
- M-Hamvas, M.; Vasas, G.; Beyer, D.; Nagylaki, E.; Máthé, C. Microcystin-LR, a Cyanobacterial Toxin, Induces DNA Strand Breaks Correlated with Changes in Specific Nuclease and Protease Activities in White Mustard (Sinapis alba) Seedlings. Plants 2021, 10, 2045. [Google Scholar] [CrossRef] [PubMed]
AH | AD | AE | BH | BD | BE | ERY | PEN-G | |
---|---|---|---|---|---|---|---|---|
Alcaligenes faecalis CP033861 | 7.50 ± 0.01 b | 1.88 ± 0.41 c | 10.72 ± 0.95 a | 3.34 ± 0.31 d | 1.46 ± 0.05 f | 1.41 ± 0.003 f | 1.00 ± 0.10 f | 1.00 ± 0.10 f |
Micrococcus luteus KT805418 | 7.50 ± 0.02 b | 3.75 ± 0.51 c | 5.36 ± 0.4 a | 3.34 ± 0.32 c | 2.92 ± 0.08 h | 1.41 ± 0.00 f | 1.00 ± 0.52 f | 1.00 ± 0.21 f |
Staphylococcus sciuri MN788638 | 7.50 ± 0.01 b | 3.75 ± 0.63 c | 5.36 ± 0.02 a | 3.34 ± 0.19 c | 5.83 ± 0.91 a | 0.70 ± 0.002 f | 1.00 ± 0.01 f | - |
Bacillus sp. MH412683 | 3.75 ± 0.08 c | 3.75 ± 0.51 c | 5.36 ± 0.45 a | 3.34 ± 0.14 c | 5.83 ± 0.96 a | 0.70 ± 0.11 f | 1.00 ± 0.09 f | - |
Glutamicibacter creatinolyticus MT235529 | 3.75 ± 0.02 c | 3.75 ± 0.21 c | 5.36 ± 0.56 a | 3.34 ± 0.27 c | 11.67 ± 1.8 a | 0.70 ± 0.23 f | 0.50 ± 0.01 f | 1.00 ± 0.01 f |
Corynebacterium striatum MN121138 | 7.50 ± 0.15 b | 3.75 ± 0.16 c | 2.68 ± 0.15 c | 3.34 ± 0.24 c | 11.67 ± 2.6 a | 1.41 ± 0.05 f | - | - |
Klebsiella aerogenes CP035466 | 7.50 ± 0.01 b | 3.75 ± 0.01 c | 0.67 ± 0.03 f | 3.34 ± 0.61 c | 11.67 ± 0.1 a | 0.70 ± 0.1 f | 1.00 ± 0.05 f | - |
Glutamicibacter creatinolyticus CP034412 | 3.75 ± 0.05 c | 3.75 ± 0.15 c | 0.67 ± 0.04 f | 3.34 ± 0.01 c | 11.6 ± 0.90 a | 0.70 ± 0.2 f | - | - |
Staphylococcus aureus AP025177 | 1.88 ± 0.09 b | 1.88 ± 0.1 f | 0.67 ± 0.01 f | 3.34 ± 0.05 f | 11.6 ± 1.89 a | 0.70 ± 0.1 f | 0.06 ± 0.01 f | - |
Staphylococcus aureus ATCC 25923 | 0.94 ± 0.01 b | 3.75 ± 0.21 c | 1.34 ± 0.31 f | 3.34 ± 0.21 f | 11.67 ± 1.15 a | 0.70 ± 0.014 f | 0.06 ± 0.01 f | 0.06 ± 0.08 f |
Bacillus subtilis ATCC 6633 | 0.94 ± 0.02 b | 3.75 ± 0.02 c | 1.34 ± 0.11 f | 3.34 ± 0.01 c | 11.67 ± 1.50 a | 0.70 ± 0.003 f | 0.06 ± 0.01 f | - |
AH | AD | AE | BH | BD | BE | ERY | PEN-G | |
---|---|---|---|---|---|---|---|---|
Alcaligenes faecalis CP033861 | - | 3.75 ± 0.11 b | - | - | 2.92 ± 0.01 a | 2.81 ± 0.01 a | - | - |
Micrococcus luteus KT805418 | - | - | - | - | 5.83 ± 0.01 b | 2.81 ± 0.14 a | - | - |
Staphylococcus sciuri MN788638 | - | - | - | - | 11.67 ± 0.01 b | 1.41 ± 0.02 a | - | - |
Bacillus sp. MH412683 | - | - | - | - | 11.67 ± 0.01 b | 1.41 ± 0.15 a | - | - |
Glutamicibacter creatinolyticus MT235529 | 7.50 ± 0.5 c | - | 10.72 ± 1.2 b | - | - | 1.41 ± 0.12 a | - | - |
Corynebacterium striatum MN121138 | - | - | 5.36 ± 0.3 b | - | - | 2.81 ± 0.15 a | - | - |
Klebsiella aerogenes CP035466 | - | - | 2.68 ± 0.1 a | - | - | 1.41 ± 0.23 a | - | - |
Glutamicibacter creatinolyticus CP034412 | 7.50 ± 0.014 c | - | 2.68 ± 0.19 a | - | - | 1.41 ± 0.14 a | - | - |
Staphylococcus aureus AP025177 | 7.50 ± 0.7 c | - | 2.68 ± 0.14 a | - | - | 1.41 ± 0.08 a | - | - |
Staphylococcus aureus ATCC 25923 | 3.75 ± 0.021 c | - | 2.68 ± 0.15 a | - | - | 1.41 ± 0.11 a | - | - |
Bacillus subtilis ATCC 6633 | - | - | 2.68 ± 0.01 a | - | - | 1.41 ± 0.31 a | - | - |
Bacteria | %Enzyme Release | %Enzyme Release in Relation (Where 1 Indicates Equal 100% Activity as 3% Triton X-100) |
---|---|---|
Alcaligenes faecalis CP033861 | 117 ± 0.01 c | 1.0 |
Micrococcus luteus KT805418 | 89 ± 0.02 c | 0.9 |
Staphylococcus sciuri MN788638 | 600 ± 0.01 f | 6 |
Bacillus sp. MH412683 | 39 ± 0.03 c | 0.4 |
Glutamicibacter creatinolyticus MT235529 | 32 ± 0.04 c | 0.3 |
Corynebacterium striatum MN121138 | 0 | 0 |
Klebsiella aerogenes CP035466 | 0 | 0 |
Glutamicibacter creatinolyticus CP034412 | 0 | 0 |
Staphylococcus aureus AP025177 | 640 ± 0.02 f | 6 |
Organism | FIC Index of L. cavernicola Extract | FIC Index of Erythromycin | Interactions | |
---|---|---|---|---|
Bacillus sp. MH412683 | 0.1 | 0.3 | 0.4 | Synergism |
Glutamicibacter creatinolyticus MT235529 | 0.1 | 0.3 | 0.4 | Synergism |
Alcaligenes faecalis CP033861 | 0.2 | 1.3 | 1.5 | Indifference |
Staphylococcus aureus AP025177 | 0.3 | 0.2 | 0.5 | Synergism |
Glutamicibacter creatinolyticus CP034412 | 0.5 | 0.3 | 0.8 | Indifference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikhane, A.O.; Osunsanmi, F.O.; Mosa, R.A.; Opoku, A.R. Antibacterial Potential of Crude Extracts from Cylindrospermum alatosporum NR125682 and Loriellopsis cavernicola NR117881. Microorganisms 2025, 13, 211. https://doi.org/10.3390/microorganisms13010211
Ikhane AO, Osunsanmi FO, Mosa RA, Opoku AR. Antibacterial Potential of Crude Extracts from Cylindrospermum alatosporum NR125682 and Loriellopsis cavernicola NR117881. Microorganisms. 2025; 13(1):211. https://doi.org/10.3390/microorganisms13010211
Chicago/Turabian StyleIkhane, Albert Olufemi, Foluso Oluwagbemiga Osunsanmi, Rebamang Anthony Mosa, and Andrew Rowland Opoku. 2025. "Antibacterial Potential of Crude Extracts from Cylindrospermum alatosporum NR125682 and Loriellopsis cavernicola NR117881" Microorganisms 13, no. 1: 211. https://doi.org/10.3390/microorganisms13010211
APA StyleIkhane, A. O., Osunsanmi, F. O., Mosa, R. A., & Opoku, A. R. (2025). Antibacterial Potential of Crude Extracts from Cylindrospermum alatosporum NR125682 and Loriellopsis cavernicola NR117881. Microorganisms, 13(1), 211. https://doi.org/10.3390/microorganisms13010211