An Overview of the Skin Microbiome, the Potential for Pathogen Shift, and Dysbiosis in Common Skin Pathologies
Abstract
:1. Introduction
2. Methodology
2.1. Natural Resistance of Skin to Infection Including Barrier and Innate Defences
2.2. Commensal Organisms at Different Sites
2.3. Pathogenicity of Bacteria and Potential for Commensal–Pathogen Shift
2.4. Dysbiosis in Atopic Dermatitis
2.5. General Skin Care Measures for Atopic Dermatitis
2.6. Dysbiosis in Rosacea
2.7. Dysbiosis in Hidradenitis Suppurativa
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Knight, R.; Gallo, R.L. Evolving approaches to profiling the microbiome in skin disease. Front. Immunol. 2023, 14, 1151527. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.E.; Fischbach, M.A.; Belkaid, Y. Skin microbiota-host interactions. Nature 2018, 553, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Human Microbiome Project Consortium. A framework for human microbiome research. Nature 2012, 486, 215–221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oh, J.; Byrd, A.L.; Deming, C.; Conlan, S.; NISC Comparative Sequencing Program; Kong, H.H.; Segre, J.A. Biogeography and individuality shape function in the human skin metagenome. Nature 2014, 514, 59–64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harris-Tryon, T.A.; Grice, E.A. Microbiota and maintenance of skin barrier function. Science 2022, 376, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Roihu, T.; Kariniemi, A.L. Demodex mites in acne rosacea. J. Cutan. Pathol. 1998, 25, 550–552. [Google Scholar] [CrossRef]
- Forton, F.M.N. The Pathogenic Role of Demodex Mites in Rosacea: A Potential Therapeutic Target Already in Erythematotelangiectatic Rosacea? Dermatol. Ther. 2020, 10, 1229–1253. [Google Scholar] [CrossRef] [PubMed]
- Lacey, N.; Ní Raghallaigh, S.; Powell, F.C. Demodex mites--commensals, parasites or mutualistic organisms? Dermatology 2011, 222, 128–130. [Google Scholar] [CrossRef] [PubMed]
- Tuor, M.; LeibundGut-Landmann, S. The skin mycobiome and intermicrobial interactions in the cutaneous niche. Curr. Opin. Microbiol. 2023, 76, 102381. [Google Scholar] [CrossRef]
- Bjerre, R.D.; Bandier, J.; Skov, L.; Engstrand, L.; Johansen, J.D. The role of the skin microbiome in atopic dermatitis: A systematic review. Br. J. Dermatol. 2017, 177, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Li, R.; Wang, R. Skin microbiome alterations in seborrheic dermatitis and dandruff: A systematic review. Exp. Dermatol. 2021, 30, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Byrd, A.L.; NISC Comparative Sequencing Program; Kong, H.H.; Segre, J.A. Temporal stability of the human skin microbiome. Cell 2016, 165, 854–866. [Google Scholar] [CrossRef] [PubMed]
- Bjerre, R.D.; Hugerth, L.W.; Boulund, F.; Seifert, M.; Johansen, J.D.; Engstrand, L. Effects of sampling strategy and DNA extraction on human skin microbiome investigations. Sci. Rep. 2019, 9, 17287. [Google Scholar] [CrossRef] [PubMed]
- Greathouse, K.L.; Sinha, R.; Vogtmann, E. DNA extraction for human microbiome studies: The issue of standardization. Genome Biol. 2019, 20, 212. [Google Scholar] [CrossRef] [PubMed]
- Eisenhofer, R.; Minich, J.J.; Marotz, C.; Cooper, A.; Knight, R.; Weyrich, L.S. Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations. Trends Microbiol. 2019, 27, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Salter, S.J.; Cox, M.J.; Turek, E.M.; Calus, S.T.; Cookson, W.O.; Moffatt, M.F.; Turner, P.; Parkhill, J.; Loman, N.J.; Walker, A.W. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- De Pessemier, B.; Grine, L.; Debaere, M.; Maes, A.; Paetzold, B.; Callewaert, C. Gut-Skin Axis: Current Knowledge of the Interrelationship between Microbial Dysbiosis and Skin Conditions. Microorganisms 2021, 9, 353. [Google Scholar] [CrossRef]
- Santiago-Rodriguez, T.M.; Le François, B.; Macklaim, J.M.; Doukhanine, E.; Hollister, E.B. The Skin Microbiome: Current Techniques, Challenges, and Future Directions. Microorganisms 2023, 11, 1222. [Google Scholar] [CrossRef]
- Grice, E.A.; Kong, H.H.; Renaud, G.; Young, A.C.; Bouffard, G.G.; Blakesley, R.W.; Wolfsberg, T.G.; Turner, M.L.; Segre, J.A. A diversity profile of the human skin microbiota. Genome Res. 2008, 18, 1043–1050. [Google Scholar] [CrossRef]
- Manus, M.B.; Kuthyar, S.; Perroni-Marañón, A.G.; la Mora, A.N.-D.; Amato, K.R. Infant Skin Bacterial Communities Vary by Skin Site and Infant Age across Populations in Mexico and the United States. mSystems 2020, 5, e00834-20. [Google Scholar] [CrossRef] [PubMed]
- Alyami, R.Y.; Cleary, D.W.; Forster, J.; Feelisch, M.; Ardern-Jones, M.R. Methods for the analysis of skin microbiomes: A comparison of sampling processes and 16S rRNA hypervariable regions. bioRxiv 2023. [Google Scholar] [CrossRef]
- Yao, Z.; Moy, R.; Allen, T.; Jansen, B. An Adhesive Patch-Based Skin Biopsy Device for Molecular Diagnostics and Skin Microbiome Studies. J. Drugs Dermatol. JDD 2017, 16, 979–986. [Google Scholar] [PubMed]
- Ring, H.C.; Thorsen, J.; Saunte, D.M.; Lilje, B.; Bay, L.; Riis, P.T.; Larsen, N.; Andersen, L.O.; Nielsen, H.V.; Miller, I.M.; et al. The Follicular Skin Microbiome in Patients with Hidradenitis Suppurativa and Healthy Controls. JAMA Dermatol. 2017, 153, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Pistone, D.; Meroni, G.; Panelli, S.; D’auria, E.; Acunzo, M.; Pasala, A.R.; Zuccotti, G.V.; Bandi, C.; Drago, L. A Journey on the Skin Microbiome: Pitfalls and Opportunities. Int. J. Mol. Sci. 2021, 22, 9846. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.H.; Oh, J.; Deming, C.; Conlan, S.; Grice, E.A.; Beatson, M.A.; Nomicos, E.; Polley, E.C.; Komarow, H.D.; NISC Comparative Sequence Program; et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012, 22, 850–859. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Langan, E.A.; Recke, A.; Bokor-Billmann, T.; Billmann, F.; Kahle, B.K.; Zillikens, D. The Role of the Cutaneous Microbiome in Hidradenitis Suppurativa-Light at the End of the Microbiological Tunnel. Int. J. Mol. Sci. 2020, 21, 1205. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Toohey-Kurth, K.L.; Mulrooney, D.M.; Hinkley, S.; Killian, M.L.; Pedersen, J.C.; Bounpheng, M.A.; Pogranichniy, R.; Bolin, S.; Maes, R.; Tallmadge, R.L.; et al. Best practices for performance of real-time PCR assays in veterinary diagnostic laboratories. J. Vet. Diagn. Investig. 2020, 32, 815–825. [Google Scholar] [CrossRef]
- Van Horn, K.G.; Audette, C.D.; Tucker, K.A.; Sebeck, D. Comparison of 3 swab transport systems for direct release and recovery of aerobic and anaerobic bacteria. Diagn. Microbiol. Infect. Dis. 2008, 62, 471–473. [Google Scholar] [CrossRef] [PubMed]
- Wise, N.M.; Wagner, S.J.; Worst, T.J.; Sprague, J.E.; Oechsle, C.M. Comparison of swab types for collection and analysis of microorganisms. MicrobiologyOpen 2021, 10, e1244. [Google Scholar] [CrossRef]
- Nakatsuji, T.; Gallo, R.L. Antimicrobial peptides: Old molecules with new ideas. J. Investig. Dermatol. 2012, 132 Pt 2, 887–895. [Google Scholar] [CrossRef]
- Griffiths, C.; Barker, J.; Bleiker, T.; Chalmers, R.; Creamer, D. (Eds.) Rook’s Textbook of Dermatology, 9th ed.; John Wiley & Sons Inc.: Chichester, UK, 2016. [Google Scholar]
- Afshar, M.; Gallo, R.L. Innate immune defense system of the skin. Vet. Dermatol. 2013, 24, e8–e9. [Google Scholar] [CrossRef] [PubMed]
- Steinhoff, M.; Schauber, J.; Leyden, J.J. New insights into rosacea pathophysiology: A review of recent findings. J. Am. Acad. Dermatol. 2013, 69 (Suppl. S1), S15–S26. [Google Scholar] [CrossRef] [PubMed]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qu, L.; Mijakovic, I.; Wei, Y. Advances in the human skin microbiota and its roles in cutaneous diseases. Microb. Cell Fact. 2022, 21, 176. [Google Scholar] [CrossRef]
- Chen, Y.E.; Tsao, H. The skin microbiome: Current perspectives and future challenges. J. Am. Acad. Dermatol. 2013, 69, 143–155. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smythe, P.; Wilkinson, H.N. The Skin Microbiome: Current Landscape and Future Opportunities. Int. J. Mol. Sci. 2023, 24, 3950. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smith, A.; Ghori, N.U.; Foster, R.; Nicol, M.P.; Barnett, T.; Pickering, J.; Whelan, A.; Strunk, T.; Wood, F.; Raby, E.; et al. Optimisation of the sampling method for skin microbiome studies in healthy children: A pilot cohort study. Front. Microbiomes 2024, 3, 1446394. [Google Scholar] [CrossRef]
- Reynolds, F.H., 2nd; Tusa, M.G.; Banks, S.L. Toe Web Infections, the Microbiome, and Toe Web Psoriasis: A Review. Adv. Skin Wound Care 2023, 36, 377–384. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leyden, J.J.; McGinley, K.J.; Nordstrom, K.M.; Webster, G.F. Skin microflora. J. Investig. Dermatol. 1987, 88 (Suppl. S3), 65s–72s. [Google Scholar] [CrossRef] [PubMed]
- Wollenberg, M.S.; Claesen, J.; Escapa, I.F.; Aldridge, K.L.; Fischbach, M.A.; Lemon, K.P. Propionibacterium-produced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation. mBio 2014, 5, e01286-14. [Google Scholar] [CrossRef]
- Ramsey, M.M.; Freire, M.O.; Gabrilska, R.A.; Rumbaugh, K.P.; Lemon, K.P. Staphylococcus aureus Shifts toward Commensalism in Response to Corynebacterium Species. Front. Microbiol. 2016, 7, 1230. [Google Scholar] [CrossRef]
- Bomar, L.; Brugger, S.D.; Yost, B.H.; Davies, S.S.; Lemon, K.P. Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols. mBio 2016, 7, e01725-15. [Google Scholar] [CrossRef] [PubMed]
- Bolognia, J.L. (Ed.) Dermatology: ExpertConsult, 4th ed.; Elsevier: Edinburgh, UK, 2018. [Google Scholar]
- Alomar, A. Can microbial superantigens influence atopic dermatitis flares? Chem. Immunol. Allergy 2012, 96, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Cookson, W. The immunogenetics of asthma and eczema: A new focus on the epithelium. Nat. Rev. Immunol. 2004, 4, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Woo, T.E.; Sibley, C.D. The emerging utility of the cutaneous microbiome in the treatment of acne and atopic dermatitis. J. Am. Acad. Dermatol. 2020, 82, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Ellis, S.R.; Nguyen, M.; Vaughn, A.R.; Notay, M.; Burney, W.A.; Sandhu, S.; Sivamani, R.K. The Skin and Gut Microbiome and Its Role in Common Dermatologic Conditions. Microorganisms 2019, 7, 550. [Google Scholar] [CrossRef] [PubMed]
- The Australian Healthy Skin Consortium. National Healthy Skin Guideline: For the Diagnosis, Treatment and Prevention of Skin Infections for Aboriginal and Torres Strait Islander Children and Communities in Australia, 2nd ed.; Telethon Kids Institute: Nedlands, Australia, 2023. [Google Scholar]
- Marson, J.; Bhatia, N.; Graber, E.; Harper, J.; Lio, P.; Tlougan, B.; Nussbaum, D.; Baldwin, H. Supplement Article: The Role of Epidermal Barrier Dysfunction and Cutaneous Microbiome Dysbiosis in the Pathogenesis and Management of Acne Vulgaris and Rosacea. J. Drugs Dermatol. 2022, 21, SF3502915–SF35029114. [Google Scholar] [PubMed]
- Sattler, E.C.; Hoffmann, V.S.; Ruzicka, T.; Braunmühl, T.V.; Berking, C. Reflectance confocal microscopy for monitoring the density of Demodex mites in patients with rosacea before and after treatment. Br. J. Dermatol. 2015, 173, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Paichitrojjana, A.; Chalermchai, T. Comparison of in vitro Killing Effect of Thai Herbal Essential Oils, Tea Tree Oil, and Metronidazole 0.75% versus Ivermectin 1% on Demodex folliculorum. Clin. Cosmet. Investig. Dermatol. 2023, 16, 1279–1286. [Google Scholar] [CrossRef]
- Jarmuda, S.; McMahon, F.; Żaba, R.; O’Reilly, N.; Jakubowicz, O.; Holland, A.; Szkaradkiewicz, A.; Kavanagh, K. Correlation between serum reactivity to Demodex-associated Bacillus oleronius proteins, and altered sebum levels and Demodex populations in erythematotelangiectatic rosacea patients. J. Med. Microbiol. 2014, 63 Pt 2, 258–262. [Google Scholar] [CrossRef]
- Whitfeld, M.; Gunasingam, N.; Leow, L.J.; Shirato, K.; Preda, V. Staphylococcus epidermidis: A possible role in the pustules of rosacea. J. Am. Acad. Dermatol. 2011, 64, 49–52. [Google Scholar] [CrossRef]
- Rademaker, M. Medical Management of Rosacea—An Australian/New Zealand Medical Dermatology narrative. In Proceedings of the Australasian College of Dermatologists 55th Annual Scientific Meeting, Sydney, Australia, 28 May 2023. [Google Scholar]
- Armour, K. Cosmeceuticals: Advice in Rosacea including sun protection. In Proceedings of the Australasian College of Dermatologists 55th Annual Scientific Meeting, Sydney, Australia, 28 May 2023. [Google Scholar]
- McCarthy, S.; Barrett, M.; Kirthi, S.; Pellanda, P.; Vlckova, K.; Tobin, A.-M.; Murphy, M.; Shanahan, F.; O’toole, P.W. Altered Skin and Gut Microbiome in Hidradenitis Suppurativa. J. Investig. Dermatol. 2022, 142, 459–468.e15. [Google Scholar] [CrossRef] [PubMed]
- Mintoff, D.; Borg, I.; Pace, N.P. The Clinical Relevance of the Microbiome in Hidradenitis Suppurativa: A Systematic Review. Vaccines 2021, 9, 1076. [Google Scholar] [CrossRef] [PubMed]
- Kimball, A.B.; Ganguli, A.; Fleischer, A. Reliability of the hidradenitis suppurativa clinical response in the assessment of patients with hidradenitis suppurativa. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 2254–2256. [Google Scholar] [CrossRef] [PubMed]
- Join-Lambert, O.; Duchatelet, S.; Delage, M.; Miskinyte, S.; Coignard, H.; Lemarchand, N.; Alemy-Carreau, M.; Lortholary, O.; Nassif, X.; Hovnanian, A.; et al. Remission of refractory pyoderma gangrenosum, severe acne, and hidradenitis suppurativa (PASH) syndrome using targeted antibiotic therapy in 4 patients. J. Am. Acad. Dermatol. 2015, 73 (Suppl. S1), S66–S69. [Google Scholar] [CrossRef]
- Fontao, F.; von Engelbrechten, M.; Seilaz, C.; Sorg, O.; Saurat, J.H. Microcomedones in non-lesional acne prone skin New orientations on comedogenesis and its prevention. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Frew, J.W.; Hawkes, J.E.; Krueger, J.G. A systematic review and critical evaluation of inflammatory cytokine associations in hidradenitis suppurativa. F1000Res 2018, 7, 1930. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wolk, K.; Join-Lambert, O.; Sabat, R. Aetiology and pathogenesis of hidradenitis suppurativa. Br. J. Dermatol. 2020, 183, 999–1010. [Google Scholar] [CrossRef]
- Bowen, A.C.; Mahé, A.; Hay, R.J.; Andrews, R.M.; Steer, A.C.; Tong, S.Y.C.; Carapetis, J.R. The Global Epidemiology of Impetigo: A Systematic Review of the Population Prevalence of Impetigo and Pyoderma. PLoS ONE 2015, 10, e0136789. [Google Scholar] [CrossRef]
- Piewngam, P.; Khongthong, S.; Roekngam, N.; Theapparat, Y.; Sunpaweravong, S.; Faroongsarng, D.; Otto, M. Probiotic for pathogen-specific Staphylococcus aureus decolonisation in Thailand: A phase 2, double-blind, randomised, placebo-controlled trial. Lancet Microbe 2023, 4, e75–e83. [Google Scholar] [CrossRef] [PubMed]
- Sadowsky, R.L.; Sulejmani, P.; Lio, P.A. Atopic Dermatitis: Beyond the Skin and Into the Gut. J. Clin. Med. 2023, 12, 5534. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, A.H.; Egeberg, A.; Gideonsson, R.; Weinstock, L.B.; Thyssen, E.P.; Thyssen, J.P. Rosacea is associated with Helicobacter pylori: A systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 2010–2015. [Google Scholar] [CrossRef] [PubMed]
Mild | Moderate | Severe |
---|---|---|
Emollients: Apply moisturiser at least daily in thick layer. If unresponsive to use of regular moisturiser, recommend mild–moderate-strength topical corticosteroids: treat until clear then reduce frequency. Research suggests that daily application of some topical corticosteroids is adequate; however, topical corticosteroids twice daily is usually recommended for AD. To prevent recurrent skin infections: dilute bleach baths (details below). | Emollients: Apply moisturiser at least daily in thick layer. Moderate-strength topical corticosteroids, i.e., methylprednisolone aceponate 0.1%, for use until skin is pruritus-free and smooth, then reduce gradually to minimum frequency that allows skin to be inflammation-free. Facial or eyelid dermatitis maintenance (age > 3 months): pimecrolimus 1% cream recommended for patients who have not had satisfactory control with use of intermittent topical corticosteroid or where topical steroid is contra-indicated. Consider referral to dermatologist if no improvement. To prevent recurrent skin infections: dilute bleach baths (details below). Oral antibiotics (e.g., cephalexin)—if clinically impetiginised, or anti-virals if Herpes Simplex is present. | Emollients: Apply moisturiser at least daily in thick layer. Potent topical corticosteroids (such as betamethasone dipropionate 0.05%) to affected areas on trunk and limbs. If non-responsive or symptoms persist while on potent topical steroids, refer to dermatologist. To decrease severity during flares, wet wraps with topical corticosteroids are recommended. Immune modulation with phototherapy, methotrexate, ciclosporin, mycophenolate, and azathioprine may be indicated in severe disease (refer to dermatologist). New management options such as dupilumab and JAK inhibitor, upadacitinib, can be accessed via dermatologists in patients meeting PBS criteria. |
Treatment Options for Rosacea Subtypes | ||||||||
---|---|---|---|---|---|---|---|---|
Phenotype | Erythema | Papules and/or Pustules | Phyma | |||||
Transient | Persistent | Telangiectasis * | Mild | Moderate * | Severe * | Inflamed | Non-Inflamed | |
Starting Rx | Start one of topical brimonidine gel or oxymetazoline cream | Start one of topical brimonidine gel or oxymetazoline cream | Trial one of IPL Laser RF | Start one of topical azelaic acid ivermectin metronidazole | Start one of topical azelaic acid ivermectin metronidazole | Start one of Doxycycline or low-dose isotretinoin * | Start one of doxycycline or low-dose isotretinoin * | Ablative laser * |
Inadequate response at 3/12 * | Add in oral β-blocker or clonidine | Add in a physical therapy *: IPL Laser RF Consider BoNTA * | Try a different physical therapy *: IPL Laser RF | Add in another topical: azelaic acid or ivermectin or metronidazole Consider topical BPO or retinoid | 3/12 of doxycycline | Low-dose isotretinoin * or hydroxychloroquine * or RF * | RF * | Surgical curettage * or RF * |
Next step | Consider treating low-grade inflammation with low-dose isotretinoin * or hydroxychloroquine for 12 months * | Consider systemic Rx | Low-dose isotretinoin * RF * | Oral ivermectin or short-course systemic steroids * or dapsone * | ||||
Maintenance (12 months) | Continue topical Rx if it was effective, repeat physical therapy when appropriate | Switch to topical Rx if possible, or continue low-dose isotretinoin * | Continue low-dose isotretinoin * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, A.; Dumbrava, R.; Ghori, N.-U.-H.; Foster, R.; Campbell, J.; Duthie, A.; Hoyne, G.; Rademaker, M.; Bowen, A.C. An Overview of the Skin Microbiome, the Potential for Pathogen Shift, and Dysbiosis in Common Skin Pathologies. Microorganisms 2025, 13, 54. https://doi.org/10.3390/microorganisms13010054
Smith A, Dumbrava R, Ghori N-U-H, Foster R, Campbell J, Duthie A, Hoyne G, Rademaker M, Bowen AC. An Overview of the Skin Microbiome, the Potential for Pathogen Shift, and Dysbiosis in Common Skin Pathologies. Microorganisms. 2025; 13(1):54. https://doi.org/10.3390/microorganisms13010054
Chicago/Turabian StyleSmith, Anita, Roberta Dumbrava, Noor-Ul-Huda Ghori, Rachael Foster, James Campbell, Andrew Duthie, Gerard Hoyne, Marius Rademaker, and Asha C. Bowen. 2025. "An Overview of the Skin Microbiome, the Potential for Pathogen Shift, and Dysbiosis in Common Skin Pathologies" Microorganisms 13, no. 1: 54. https://doi.org/10.3390/microorganisms13010054
APA StyleSmith, A., Dumbrava, R., Ghori, N.-U.-H., Foster, R., Campbell, J., Duthie, A., Hoyne, G., Rademaker, M., & Bowen, A. C. (2025). An Overview of the Skin Microbiome, the Potential for Pathogen Shift, and Dysbiosis in Common Skin Pathologies. Microorganisms, 13(1), 54. https://doi.org/10.3390/microorganisms13010054