Functional Significance of Probiotic Bacterial Interactions with Milk Fat Globules in a Human Host
Abstract
:1. Introduction
2. Methodology
3. Milk Fat Globule Membrane Constituents and Functionality
4. Benefits of Probiotic Bacteria
5. Effects of Milk Fat Globule and Probiotic Interaction
5.1. Probiotic Growth and Survival
5.2. Probiotic Adhesion to the MFGM
5.3. Probiotic Gene Expression
5.4. Host Health
6. Mechanisms of Probiotic and MFGM Interaction
6.1. Physical Mechanisms
6.1.1. Bacterial Hydrophobicity
6.1.2. Milk Fat Globule Hydrophobicity
6.1.3. Bacterial Surface Charge
6.1.4. Milk Fat Globule Surface Roughness
6.2. Chemical Mechanisms
6.3. Environmental Factors
7. Conclusions and Future Directions
- Investigate the interactions of probiotic survival, growth, and functionality and how different probiotic strains interact with MFGM components.
- Explore ways to optimize MFGM components (e.g., phospholipids, sphingomyelin, cholesterol) to enhance probiotic efficacy.
- Consider individual factors such as age, gut microbiota, and diet to develop tailored probiotic interventions.
- Expand in vivo research on the long-term effects of MFGM–probiotic combinations on gut health and immune function.
- Investigate how MFGM–probiotic interactions can be used in functional foods and improve viability during storage and digestion.
- Explore the combined effects of MFGM and prebiotics to enhance probiotic efficacy.
- Further investigate the mechanisms of MFGM–probiotic interactions in the gastrointestinal tract and broader gut microbiome and host health.
- Assess the potential for incorporating MFGM–probiotic formulations into commercial food products.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- Bull, M.J. Part 1: The Human Gut Microbiome in Health and Disease. Integr. Med. 2014, 13, 17–22. [Google Scholar]
- Guinane, C.M.; Cotter, P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: Understanding a hidden metabolic organ. Ther. Adv. Gastroenterol. 2013, 6, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Kho, Z.Y.; Lal, S.K. The Human Gut Microbiome—A Potential Controller of Wellness and Disease. Front. Microbiol. 2018, 9, 1835. [Google Scholar] [CrossRef]
- Sachan, R.S.K.; Khushboo; Devgon, I.; Wani, A.K.; Akhtar, N.; Mir, T.u.G.; Wani, A.W.; Prakash, A. Factors Affecting Composition and Diversity of Gut Microbiota: A Disease Hallmark. In The Gut Microbiota in Health and Disease; Wiley: Hoboken, NJ, USA, 2023; pp. 17–29. [Google Scholar]
- That, L.F.M.L.N.; Pandohee, J. Composition and Diversity of Gut Microbiota. In The Gut Microbiota in Health and Disease; Wiley: Hoboken, NJ, USA, 2023; pp. 7–16. [Google Scholar]
- Hemarajata, P.; Versalovic, J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Ther. Adv. Gastroenterol. 2013, 6, 39–51. [Google Scholar] [CrossRef]
- Leeming, E.R.; Johnson, A.J.; Spector, T.D.; Le Roy, C.I. Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients 2019, 11, 2862. [Google Scholar] [CrossRef]
- Wieers, G.; Belkhir, L.; Enaud, R.; Leclercq, S.; Philippart de Foy, J.M.; Dequenne, I.; de Timary, P.; Cani, P.D. How Probiotics Affect the Microbiota. Front. Cell. Infect. Microbiol. 2019, 9, 454. [Google Scholar] [CrossRef]
- Yadav, M.; Kapoor, A.; Verma, A.; Ambatipudi, K. Functional Significance of Different Milk Constituents in Modulating the Gut Microbiome and Infant Health. J. Agric. Food Chem. 2022, 70, 3929–3947. [Google Scholar] [CrossRef]
- Kosmerl, E.; Rocha-Mendoza, D.; Ortega-Anaya, J.; Jimenez-Flores, R.; Garcia-Cano, I. Improving Human Health with Milk Fat Globule Membrane, Lactic Acid Bacteria, and Bifidobacteria. Microorganisms 2021, 9, 341. [Google Scholar] [CrossRef]
- Benyacoub, J.; Blum-Sperisen, S.; Bosco, M.N.; Bovetto, L.J.R.; Bureau-Franz, I.; Donnet-Hughes, A.; Schiffrin, E.; Favre, L. Infant Formula with Probiotics and Milk Fat Globule Membrane Components. U.S. Patent 9226521B2, 5 January 2016.
- Chai, C.; Oh, S.; Imm, J.Y. Roles of Milk Fat Globule Membrane on Fat Digestion and Infant Nutrition. Food Sci. Anim. Resour. 2022, 42, 351–371. [Google Scholar] [CrossRef]
- Lee, H.; Padhi, E.; Hasegawa, Y.; Larke, J.; Parenti, M.; Wang, A.; Hernell, O.; Lonnerdal, B.; Slupsky, C. Compositional Dynamics of the Milk Fat Globule and Its Role in Infant Development. Front. Pediatr. 2018, 6, 313. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Zavaleta, N.; Chen, S.Y.; Lönnerdal, B.; Slupsky, C. Effect of bovine milk fat globule membranes as a complementary food on the serum metabolome and immune markers of 6–11-month-old Peruvian infants. NPJ Sci. Food 2018, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chichlowski, M.; Gross, G.; Holle, M.J.; lbarra-Sánchez, L.A.; Wang, S.; Miller, M.J. Milk Fat Globule Membrane Protects Lactobacillus rhamnosus GG from Bile Stress by Regulating Exopolysaccharide Production and Biofilm Formation. J. Agric. Food Chem. 2020, 68, 6646–6655. [Google Scholar] [CrossRef]
- Ménard, O.; Ahmad, S.; Rousseau, F.; Briard-Bion, V.; Gaucheron, F.; Lopez, C. Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chem. 2010, 120, 544–551. [Google Scholar] [CrossRef]
- Cabassi, G.; Profaizer, M.; Marinoni, L.; Rizzi, N.; Cattaneo, T.M.P. Estimation of Fat Globule Size Distribution in Milk Using an Inverse Light Scattering Model in the near Infrared Region. J. Near Infrared Spectrosc. 2013, 21, 359–373. [Google Scholar] [CrossRef]
- Cavaletto, M.; Givonetti, A.; Cattaneo, C. The Immunological Role of Milk Fat Globule Membrane. Nutrients 2022, 14, 4574. [Google Scholar] [CrossRef]
- Thum, C.; Wall, C.; Day, L.; Szeto, I.M.Y.; Li, F.; Yan, Y.; Barnett, M.P.G. Changes in Human Milk Fat Globule Composition Throughout Lactation: A Review. Front. Nutr. 2022, 9, 835856. [Google Scholar] [CrossRef]
- Volstatova, T.; Havlik, J.; Potuckova, M.; Geigerova, M. Milk digesta and milk protein fractions influence the adherence of Lactobacillus gasseri R and Lactobacillus casei FMP to human cultured cells. Food Funct. 2016, 7, 3531–3538. [Google Scholar] [CrossRef]
- Quinn, E.M.; Slattery, H.; Thompson, A.P.; Kilcoyne, M.; Joshi, L.; Hickey, R.M. Mining Milk for Factors which Increase the Adherence of Bifidobacterium longum subsp. infantis to Intestinal Cells. Foods 2018, 7, 196. [Google Scholar] [CrossRef]
- Zhao, J.; Yi, W.; Liu, B.; Dai, Y.; Jiang, T.; Chen, S.; Wang, J.; Feng, B.; Qiao, W.; Liu, Y.; et al. MFGM components promote gut Bifidobacterium growth in infant and in vitro. Eur. J. Nutr. 2022, 61, 277–288. [Google Scholar] [CrossRef]
- Pan, J.; Chen, M.; Li, N.; Han, R.; Yang, Y.; Zheng, N.; Zhao, S.; Zhang, Y. Bioactive Functions of Lipids in the Milk Fat Globule Membrane: A Comprehensive Review. Foods 2023, 12, 3755. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Ranadheera, C.S.; Shen, C.; Wei, W.; Cheong, L.Z. Milk fat globule membrane: Composition, production and its potential as encapsulant for bioactives and probiotics. Crit. Rev. Food Sci. Nutr. 2023, 64, 12336–12351. [Google Scholar] [CrossRef] [PubMed]
- Singh, H. The milk fat globule membrane—A biophysical system for food applications. Curr. Opin. Colloid Interface Sci. 2006, 11, 154–163. [Google Scholar] [CrossRef]
- Jiménez-Flores, R.; Brisson, G. The milk fat globule membrane as an ingredient: Why, how, when? Dairy Sci. Technol. 2008, 88, 5–18. [Google Scholar] [CrossRef]
- Lopez, C.; Briard-Bion, V.; Menard, O.; Rousseau, F.; Pradel, P.; Besle, J.M. Phospholipid, Sphingolipid, and Fatty Acid Compositions of the Milk Fat Globule Membrane are Modified by Diet. J. Agric. Food Chem. 2008, 56, 5226–5236. [Google Scholar] [CrossRef]
- El-Loly, M.M. Composition, Properties and Nutritional Aspects of Milk Fat Globule Membrane. Pol. J. Food Nutr. Sci. 2011, 61, 7–32. [Google Scholar] [CrossRef]
- Lopez, C.; Madec, M.; Jimenez-Flores, R. Lipid rafts in the bovine milk fat globule membrane revealed by the lateral segregation of phospholipids and heterogeneous distribution of glycoproteins. Food Chem. 2010, 120, 22–33. [Google Scholar] [CrossRef]
- Murthy, A.V.; Guyomarc’h, F.; Lopez, C. Cholesterol Decreases the Size and the Mechanical Resistance to Rupture of Sphingomyelin Rich Domains, in Lipid Bilayers Studied as a Model of the Milk Fat Globule Membrane. Langmuir 2016, 32, 6757–6765. [Google Scholar] [CrossRef]
- Oshida, K.; Shimizu, T.; Takase, M.; Tamura, Y.; Shimizu, T.; Yamashiro, Y. Effects of dietary sphingomyelin on central nervous system myelination in developing rats. Pediatr. Res. 2003, 53, 589–593. [Google Scholar] [CrossRef]
- Schubert, M.; Contreras, C.; Franz, N.; Hellhammer, J. Milk-based phospholipids increase morning cortisol availability and improve memory in chronically stressed men. Nutrtion Res. 2011, 31, 413–420. [Google Scholar] [CrossRef]
- Liu, H.; Radlowski, E.C.; Conrad, M.S.; Li, Y.; Dilger, R.N.; Johnson, R.W. Early supplementation of phospholipids and gangliosides affects brain and cognitive development in neonatal piglets. J. Nutr. 2014, 144, 1903–1909. [Google Scholar] [CrossRef] [PubMed]
- Guerin, J.; Burgain, J.; Gomand, F.; Scher, J.; Gaiani, C. Milk fat globule membrane glycoproteins: Valuable ingredients for lactic acid bacteria encapsulation? Crit. Rev. Food Sci. Nutr. 2019, 59, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Recio, I.; Moreno, F.J.; López-Fandiño, R. Glycosylated dairy components: Their roles in nature and ways to make use of their biofunctionality in dairy products. In Dairy-Derived Ingredients; Woodhead Publishing: Cambridge, UK, 2009; pp. 170–211. [Google Scholar]
- Fong, B.Y.; Norris, C.S.; MacGibbon, A.K.H. Protein and lipid composition of bovine milk-fat-globule membrane. Int. Dairy J. 2007, 17, 275–288. [Google Scholar] [CrossRef]
- Liao, Y.; Alvarado, R.; Phinney, B.; Lonnerdal, B. Proteomic characterization of human milk fat globule membrane proteins during a 12 month lactation period. J. Proteome Res. 2011, 10, 3530–3541. [Google Scholar] [CrossRef]
- Yang, M.; Cong, M.; Peng, X.; Wu, J.; Wu, R.; Liu, B.; Ye, W.; Yue, X. Quantitative proteomic analysis of milk fat globule membrane (MFGM) proteins in human and bovine colostrum and mature milk samples through iTRAQ labeling. Food Funct. 2016, 7, 2438–2450. [Google Scholar] [CrossRef]
- Charlwood, J.; Hanrahan, S.; Tyldesley, R.; Langridge, J.; Dwek, M.; Camilleri, P. Use of proteomic methodology for the characterization of human milk fat globular membrane proteins. Anal. Biochem. 2002, 301, 314–324. [Google Scholar] [CrossRef]
- Nie, C.; Zhao, Y.; Wang, X.; Li, Y.; Fang, B.; Wang, R.; Wang, X.; Liao, H.; Li, G.; Wang, P.; et al. Structure, Biological Functions, Separation, Properties, and Potential Applications of Milk Fat Globule Membrane (MFGM): A Review. Nutrients 2024, 16, 587. [Google Scholar] [CrossRef]
- Parker, P.; Sando, L.; Pearson, R.; Kongsuwan, K.; Tellam, R.L.; Smith, S. Bovine Muc1 inhibits binding of enteric bacteria to Caco-2 cells. Glycoconj. J. 2010, 27, 89–97. [Google Scholar] [CrossRef]
- Martin, M.J.; Martin-Sosa, S.; Hueso, P. Bovine milk gangliosides: Changes in ceramide moiety with stage of lactation. Lipids 2001, 36, 291–298. [Google Scholar] [CrossRef]
- Iwamori, M.; Takamizawa, K.; Momoeda, M.; Iwamori, Y.; Taketani, Y. Gangliosides in human, cow and goat milk, and their abilities as to neutralization of cholera toxin and botulinum type A neurotoxin. Glycoconj. J. 2008, 25, 675–683. [Google Scholar] [CrossRef]
- Brink, L.R.; Lonnerdal, B. Milk fat globule membrane: The role of its various components in infant health and development. J. Nutr. Biochem. 2020, 85, 108465. [Google Scholar] [CrossRef] [PubMed]
- Kvistgaard, A.S.; Pallesen, L.T.; Arias, C.F.; López, S.; Petersen, T.E.; Heegaard, C.W.; Rasmussen, J.T. Inhibitory Effects of Human and Bovine Milk Constituents on Rotavirus Infections. J. Dairy Sci. 2004, 87, 4088–4096. [Google Scholar] [CrossRef] [PubMed]
- Oosting, A.; van Vlies, N.; Kegler, D.; Schipper, L.; Abrahamse-Berkeveld, M.; Ringler, S.; Verkade, H.J.; van der Beek, E.M. Effect of dietary lipid structure in early postnatal life on mouse adipose tissue development and function in adulthood. Br. J. Nutr. 2014, 111, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Billeaud, C.; Puccio, G.; Saliba, E.; Guillois, B.; Vaysse, C.; Pecquet, S.; Steenhout, P. Safety and tolerance evaluation of milk fat globule membrane-enriched infant formulas: A randomized controlled multicenter non-inferiority trial in healthy term infants. Clin. Med. Insight Pediatr. 2014, 8, 51–60. [Google Scholar] [CrossRef]
- Hedrick, J.; Yeiser, M.; Harris, C.L.; Wampler, J.L.; London, H.E.; Patterson, A.C.; Wu, S.S. Infant Formula with Added Bovine Milk Fat Globule Membrane and Modified Iron Supports Growth and Normal Iron Status at One Year of Age: A Randomized Controlled Trial. Nutrients 2021, 13, 4541. [Google Scholar] [CrossRef]
- Gazquez, A.; Sabater-Molina, M.; Dominguez-Lopez, I.; Sanchez-Campillo, M.; Torrento, N.; Tibau, J.; Moreno-Munoz, J.A.; Rodriguez-Palmero, M.; Lopez-Sabater, M.C.; Larque, E. Milk fat globule membrane plus milk fat increase docosahexaenoic acid availability in infant formulas. Eur. J. Nutr. 2023, 62, 833–845. [Google Scholar] [CrossRef]
- Lee, H.; Slupsky, C.M.; Heckmann, A.B.; Christensen, B.; Peng, Y.; Li, X.; Hernell, O.; Lonnerdal, B.; Li, Z. Milk Fat Globule Membrane as a Modulator of Infant Metabolism and Gut Microbiota: A Formula Supplement Narrowing the Metabolic Differences Between Breastfed and Formula-Fed Infants. Mol. Nutr. Food Res. 2021, 65, e2000603. [Google Scholar] [CrossRef]
- Jiang, B.; Xia, Y.; Zhou, L.; Liang, X.; Chen, X.; Chen, M.; Li, X.; Lin, S.; Zhang, N.; Zheng, L.; et al. Safety and tolerance assessment of milk fat globule membrane-enriched infant formulas in healthy term Chinese infants: A randomised multicenter controlled trial. BMC Pediatr. 2022, 22, 465. [Google Scholar] [CrossRef]
- Veereman-Wauters, G.; Staelens, S.; Rombaut, R.; Dewettinck, K.; Deboutte, D.; Brummer, R.J.; Boone, M.; Le Ruyet, P. Milk fat globule membrane (INPULSE) enriched formula milk decreases febrile episodes and may improve behavioral regulation in young children. Nutrition 2012, 28, 749–752. [Google Scholar] [CrossRef]
- Zavaleta, N.; Kvistgaard, A.S.; Graverholt, G.; Respicio, G.; Guija, H.; Valencia, N.; Lonnerdal, B. Efficacy of an MFGM-enriched complementary food in diarrhea, anemia, and micronutrient status in infants. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 561–568. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, X.; Hadiatullah, H.; Li, C.; Wang, X.; Wang, S. Effects of Human, Caprine, and Bovine Milk Fat Globules on Microbiota Adhesion and Gut Microecology. J. Agric. Food Chem. 2021, 69, 9778–9787. [Google Scholar] [CrossRef] [PubMed]
- Sprong, R.C.; Hulstein, M.F.E.; Lambers, T.T.; van der Meer, R. Sweet buttermilk intake reduces colonisation and translocation ofListeria monocytogenesin rats by inhibiting mucosal pathogen adherence. Br. J. Nutr. 2012, 108, 2026–2033. [Google Scholar] [CrossRef] [PubMed]
- Bhinder, G.; Allaire, J.M.; Garcia, C.; Lau, J.T.; Chan, J.M.; Ryz, N.R.; Bosman, E.S.; Graef, F.A.; Crowley, S.M.; Celiberto, L.S.; et al. Milk Fat Globule Membrane Supplementation in Formula Modulates the Neonatal Gut Microbiome and Normalizes Intestinal Development. Sci. Rep. 2017, 7, 45274. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wu, S.S.; Berseth, C.L.; Harris, C.L.; Richards, J.D.; Wampler, J.L.; Zhuang, W.; Cleghorn, G.; Rudolph, C.D.; Liu, B.; et al. Improved Neurodevelopmental Outcomes Associated with Bovine Milk Fat Globule Membrane and Lactoferrin in Infant Formula: A Randomized, Controlled Trial. J. Pediatr. 2019, 215, 24–31.e28. [Google Scholar] [CrossRef]
- Timby, N.; Hernell, O.; Vaarala, O.; Melin, M.; Lonnerdal, B.; Domellof, M. Infections in infants fed formula supplemented with bovine milk fat globule membranes. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 384–389. [Google Scholar] [CrossRef]
- Li, X.; Peng, Y.; Li, Z.; Christensen, B.; Heckmann, A.B.; Lagerqvist, C.; Stenlund, H.; Lonnerdal, B.; Hernell, O.; West, C.E. Serum cytokine patterns are modulated in infants fed formula with probiotics or milk fat globule membranes: A randomized controlled trial. PLoS ONE 2021, 16, e0251293. [Google Scholar] [CrossRef]
- Timby, N.; Domellof, E.; Hernell, O.; Lonnerdal, B.; Domellof, M. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: A randomized controlled trial. Am. J. Clin. Nutr. 2014, 99, 860–868. [Google Scholar] [CrossRef]
- Xia, Y.; Jiang, B.; Zhou, L.; Ma, J.; Yang, L.; Wang, F.; Liu, H.; Zhang, N.; Li, X.; Petocz, P.; et al. Neurodevelopmental outcomes of healthy Chinese term infants fed infant formula enriched in bovine milk fat globule membrane for 12 months—A randomized controlled trial. Asia Pac. J. Clin. Nutr. 2021, 30, 401–414. [Google Scholar] [CrossRef]
- Sedzikowska, A.; Szablewski, L. Human Gut Microbiota in Health and Selected Cancers. Int. J. Mol. Sci. 2021, 22, 13440. [Google Scholar] [CrossRef]
- Cani, P.D. Human gut microbiome: Hopes, threats and promises. Gut 2018, 67, 1716–1725. [Google Scholar] [CrossRef]
- FAO/WHO. Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Acid Bacteria; FAO/WHO: Córdoba, Argentina, 2001. [Google Scholar]
- Wang, Z.; Li, L.; Wang, S.; Wei, J.; Qu, L.; Pan, L.; Xu, K. The role of the gut microbiota and probiotics associated with microbial metabolisms in cancer prevention and therapy. Front. Pharmacol. 2022, 13, 1025860. [Google Scholar] [CrossRef] [PubMed]
- Mendonca, A.A.; Pinto-Neto, W.P.; da Paixao, G.A.; Santos, D.D.S.; De Morais, M.A., Jr.; De Souza, R.B. Journey of the Probiotic Bacteria: Survival of the Fittest. Microorganisms 2022, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Freter, R.O.L.F.; De Maclas, M.E. Factors affecting the colonization of the gut by lactobacilli and other bacteria. In Proceedings of the Old Herborn University Seminar, Herborn-Dill, Germany, 26 June 1995; pp. 19–34. [Google Scholar]
- Oelschlaeger, T.A. Mechanisms of probiotic actions—A review. Int. J. Med. Microbiol. 2010, 300, 57–62. [Google Scholar] [CrossRef]
- Thomas, C.M.; Versalovic, J. Probiotics-host communication:modulation of signaling pathways in the intestine. Gut Microbes 2010, 1, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, M.; Saeed, F.; Shah, Y.A.; Hussain, M.; Rabail, R.; Socol, C.T.; Hassoun, A.; Pateiro, M.; Lorenzo, J.M.; Rusu, A.V.; et al. Human gut microbiota in health and disease: Unveiling the relationship. Front. Microbiol. 2022, 13, 999001. [Google Scholar] [CrossRef]
- Kim, S.K.; Guevarra, R.B.; Kim, Y.T.; Kwon, J.; Kim, H.; Cho, J.H.; Kim, H.B.; Lee, J.H. Role of Probiotics in Human Gut Microbiome-Associated Diseases. J. Microbiol. Biotechnol. 2019, 29, 1335–1340. [Google Scholar] [CrossRef]
- Vakadaris, G.; Stefanis, C.; Giorgi, E.; Brouvalis, M.; Voidarou, C.C.; Kourkoutas, Y.; Tsigalou, C.; Bezirtzoglou, E. The Role of Probiotics in Inducing and Maintaining Remission in Crohn’s Disease and Ulcerative Colitis: A Systematic Review of the Literature. Biomedicines 2023, 11, 494. [Google Scholar] [CrossRef]
- Salminen, S.; Isolauri, E. Intestinal colonization, microbiota, and probiotics. J. Pediatr. 2006, 149, S115–S120. [Google Scholar] [CrossRef]
- Westermann, C.; Gleinser, M.; Corr, S.C.; Riedel, C.U. A Critical Evaluation of Bifidobacterial Adhesion to the Host Tissue. Front. Microbiol. 2016, 7, 1220. [Google Scholar] [CrossRef]
- Piewngam, P.; Chiou, J.; Ling, J.; Liu, R.; Pupa, P.; Zheng, Y.; Otto, M. Enterococcal bacteremia in mice is prevented by oral administration of probiotic Bacillus spores. Sci. Transl. Med. 2021, 13, eabf4692. [Google Scholar] [CrossRef]
- Fan, H.; Chen, Z.; Lin, R.; Liu, Y.; Wu, X.; Puthiyakunnon, S.; Wang, Y.; Zhu, B.; Zhang, Q.; Bai, Y.; et al. Bacteroides fragilis Strain ZY-312 Defense against Cronobacter sakazakii-Induced Necrotizing Enterocolitis In Vitro and in a Neonatal Rat Model. mSystems 2019, 4, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Djukovic, A.; Garzon, M.J.; Canlet, C.; Cabral, V.; Lalaoui, R.; Garcia-Garcera, M.; Rechenberger, J.; Tremblay-Franco, M.; Penaranda, I.; Puchades-Carrasco, L.; et al. Lactobacillus supports Clostridiales to restrict gut colonization by multidrug-resistant Enterobacteriaceae. Nat. Commun. 2022, 13, 5617. [Google Scholar] [CrossRef] [PubMed]
- Korpela, K.; Salonen, A.; Vepsalainen, O.; Suomalainen, M.; Kolmeder, C.; Varjosalo, M.; Miettinen, S.; Kukkonen, K.; Savilahti, E.; Kuitunen, M.; et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome 2018, 6, 182. [Google Scholar] [CrossRef]
- Esaiassen, E.; Hjerde, E.; Cavanagh, J.P.; Pedersen, T.; Andresen, J.H.; Rettedal, S.I.; Stoen, R.; Nakstad, B.; Willassen, N.P.; Klingenberg, C. Effects of Probiotic Supplementation on the Gut Microbiota and Antibiotic Resistome Development in Preterm Infants. Front. Pediatr. 2018, 6, 347. [Google Scholar] [CrossRef]
- Hui, Y.; Smith, B.; Mortensen, M.S.; Krych, L.; Sorensen, S.J.; Greisen, G.; Krogfelt, K.A.; Nielsen, D.S. The effect of early probiotic exposure on the preterm infant gut microbiome development. Gut Microbes 2021, 13, 1951113. [Google Scholar] [CrossRef]
- van Best, N.; Trepels-Kottek, S.; Savelkoul, P.; Orlikowsky, T.; Hornef, M.W.; Penders, J. Influence of probiotic supplementation on the developing microbiota in human preterm neonates. Gut Microbes 2020, 12, 1826747. [Google Scholar] [CrossRef]
- Li, Y.; Shimizu, T.; Hosaka, A.; Kaneko, N.; Ohtsuka, Y.; Yamashiro, Y. Effects of bifidobacterium breve supplementation on intestinal flora of low birth weight infants. Pediatr. Int. 2004, 46, 509–515. [Google Scholar] [CrossRef]
- Szajewska, H.; Kolodziej, M. Systematic review with meta-analysis: Lactobacillus rhamnosus GG in the prevention of antibiotic-associated diarrhoea in children and adults. Aliment Pharmacol. Ther. 2015, 42, 1149–1157. [Google Scholar] [CrossRef]
- Wu, B.B.; Yang, Y.; Xu, X.; Wang, W.P. Effects of Bifidobacterium supplementation on intestinal microbiota composition and the immune response in healthy infants. World J. Pediatr. 2016, 12, 177–182. [Google Scholar] [CrossRef]
- Savino, F.; Fornasero, S.; Ceratto, S.; De Marco, A.; Mandras, N.; Roana, J.; Tullio, V.; Amisano, G. Probiotics and gut health in infants: A preliminary case-control observational study about early treatment with Lactobacillus reuteri DSM 17938. Clin. Chim. Acta 2015, 451, 82–87. [Google Scholar] [CrossRef]
- Baldassarre, M.E.; Di Mauro, A.; Tafuri, S.; Rizzo, V.; Gallone, M.S.; Mastromarino, P.; Capobianco, D.; Laghi, L.; Zhu, C.; Capozza, M.; et al. Effectiveness and Safety of a Probiotic-Mixture for the Treatment of Infantile Colic: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial with Fecal Real-Time PCR and NMR-Based Metabolomics Analysis. Nutrients 2018, 10, 195. [Google Scholar] [CrossRef] [PubMed]
- Indrio, F.; Riezzo, G.; Raimondi, F.; Bisceglia, M.; Filannino, A.; Cavallo, L.; Francavilla, R. Lactobacillus reuteri accelerates gastric emptying and improves regurgitation in infants. Eur. J. Clin. Investig. 2011, 41, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Francavilla, R.; Lionetti, E.; Castellaneta, S.; Ciruzzi, F.; Indrio, F.; Masciale, A.; Fontana, C.; La Rosa, M.M.; Cavallo, L.; Francavilla, A. Randomised clinical trial: Lactobacillus reuteri DSM 17938 vs. placebo in children with acute diarrhoea—A double-blind study. Aliment. Pharmacol. Ther. 2012, 36, 363–369. [Google Scholar] [CrossRef]
- Niers, L.E.; Hoekstra, M.O.; Timmerman, H.M.; van Uden, N.O.; de Graaf, P.M.; Smits, H.H.; Kimpen, J.L.; Rijkers, G.T. Selection of probiotic bacteria for prevention of allergic diseases: Immunomodulation of neonatal dendritic cells. Clin. Exp. Immunol. 2007, 149, 344–352. [Google Scholar] [CrossRef]
- Plaza-Diaz, J.; Gomez-Llorente, C.; Campana-Martin, L.; Matencio, E.; Ortuno, I.; Martinez-Silla, R.; Gomez-Gallego, C.; Periago, M.J.; Ros, G.; Chenoll, E.; et al. Safety and immunomodulatory effects of three probiotic strains isolated from the feces of breast-fed infants in healthy adults: SETOPROB study. PLoS ONE 2013, 8, e78111. [Google Scholar] [CrossRef]
- Rautava, S.; Kalliomaki, M.; Isolauri, E. Probiotics during pregnancy and breast-feeding might confer immunomodulatory protection against atopic disease in the infant. J. Allergy Clin. Immunol. 2002, 109, 119–121. [Google Scholar] [CrossRef]
- Diaz-Ropero, M.P.; Martin, R.; Sierra, S.; Lara-Villoslada, F.; Rodriguez, J.M.; Xaus, J.; Olivares, M. Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response. J. Appl. Microbiol. 2007, 102, 337–343. [Google Scholar] [CrossRef]
- Shu, Q.; Gill, H.S. Immune protection mediated by the probiotic Lactobacillus rhamnosus HN001 (DR20) against Escherichia coli O157:H7 infection in mice. FEMS Immunol. Med. Microbiol. 2002, 34, 59–64. [Google Scholar] [CrossRef]
- Caplan, M.S.; Miller-Catchpole, M.; Kaup, S.; Russell, T.; Clickerman, M.; Amer, M.; Xiao, Y.; Thomson, R.J. Bifidobacterial Supplementation Reduces the Incidence of Necrotizing Enterocolitis in a Neonatal Rat Model. Gastroenterology 1999, 117, 577–583. [Google Scholar] [CrossRef]
- de Vrese, M.; Rautenberg, P.; Laue, C.; Koopmans, M.; Herremans, T.; Schrezenmeir, J. Probiotic bacteria stimulate virus-specific neutralizing antibodies following a booster polio vaccination. Eur. J. Nutr. 2005, 44, 406–413. [Google Scholar] [CrossRef]
- Xiao, L.; Gong, C.; Ding, Y.; Ding, G.; Xu, X.; Deng, C.; Ze, X.; Malard, P.; Ben, X. Probiotics maintain intestinal secretory immunoglobulin A levels in healthy formula-fed infants: A randomised, double-blind, placebo-controlled study. Benef. Microbes 2019, 10, 729–739. [Google Scholar] [CrossRef]
- Xin, J.; Zeng, D.; Wang, H.; Sun, N.; Zhao, Y.; Dan, Y.; Pan, K.; Jing, B.; Ni, X. Probiotic Lactobacillus johnsonii BS15 Promotes Growth Performance, Intestinal Immunity, and Gut Microbiota in Piglets. Probiotics Antimicrob. Proteins 2020, 12, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, Y.; Xia, Y.; Song, X.; Ai, L. Characteristics of Probiotic Preparations and Their Applications. Foods 2022, 11, 2472. [Google Scholar] [CrossRef] [PubMed]
- Fanning, S.; Hall, L.J.; Cronin, M.; Zomer, A.; MacSharry, J.; Goulding, D.; Motherway, M.O.; Shanahan, F.; Nally, K.; Dougan, G.; et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc. Natl. Acad. Sci. USA 2012, 109, 2108–2113. [Google Scholar] [CrossRef] [PubMed]
- Terraf, M.C.; Juarez Tomas, M.S.; Nader-Macias, M.E.; Silva, C. Screening of biofilm formation by beneficial vaginal lactobacilli and influence of culture media components. J. Appl. Microbiol. 2012, 113, 1517–1529. [Google Scholar] [CrossRef]
- Raz, C.; Paramonov, M.M.; Shemesh, M.; Argov-Argaman, N. The milk fat globule size governs a physiological switch for biofilm formation by Bacillus subtilis. Front. Nutr. 2022, 9, 844587. [Google Scholar] [CrossRef]
- Gallier, S.; Shaw, E.; Laubscher, A.; Gragson, D.; Singh, H.; Jimenez-Flores, R. Adsorption of bile salts to milk phospholipid and phospholipid-protein monolayers. J. Agric. Food Chem. 2014, 62, 1363–1372. [Google Scholar] [CrossRef]
- Zhang, G.; He, M.; Xiao, L.; Jiao, Y.; Han, J.; Li, C.; Miller, M.J.; Zhang, L. Milk fat globule membrane protects Bifidobacterium longum ssp. infantis ATCC 15697 against bile stress by modifying global transcriptional responses. J. Dairy Sci. 2023, 107, 91–104. [Google Scholar] [CrossRef]
- Moe, K.M.; Porcellato, D.; Skeie, S. Metabolism of milk fat globule membrane components by nonstarter lactic acid bacteria isolated from cheese. J. Dairy Sci. 2013, 96, 727–739. [Google Scholar] [CrossRef]
- Yadav, M.; Mallappa, R.H.; Ambatipudi, K. Human milk fat globule delivers entrapped probiotics to the infant’s gut and acts synergistically to ameliorate oxidative and pathogenic stress. Food Chem. 2025, 462, 141030. [Google Scholar] [CrossRef]
- Laloy, E.; Vuillemard, J.C.; Soda, M.E.; Simard, R.E. Influence of the Fat Content of Cheddar Cheese on Retention and Localization of Starters. Int. Dairy J. 1996, 6, 729–740. [Google Scholar] [CrossRef]
- Auty, M.A.; Gardiner, G.E.; McBrearty, S.J.; O’Sullivan, E.O.; Mulvihill, D.M.; Collins, J.K.; Fitzgerald, G.F.; Stanton, C.; Ross, R.P. Direct in situ viability assessment of bacteria in probiotic dairy products using viability staining in conjunction with confocal scanning laser microscopy. Appl. Environ. Microbiol. 2001, 67, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.; Maillard, M.B.; Briard-Bion, V.; Camier, B.; Hannon, J.A. Lipolysis during Ripening of Emmental Cheese Considering Organization of Fat and Preferential Localization of Bacteria. J. Agric. Food Chem. 2006, 54, 5855–5867. [Google Scholar] [CrossRef]
- Ly, M.H.; Vo, N.H.; Le, T.M.; Belin, J.M.; Wache, Y. Diversity of the surface properties of Lactococci and consequences on adhesion to food components. Colloids Surf. B Biointerfaces 2006, 52, 149–153. [Google Scholar] [CrossRef]
- Ly-Chatain, M.H.; Le, M.L.; Thanh, M.L.; Belin, J.-M.; Waché, Y. Cell surface properties affect colonisation of raw milk by lactic acid bacteria at the microstructure level. Food Res. Int. 2010, 43, 1594–1602. [Google Scholar] [CrossRef]
- Bachiero, D.; Uson, S.; Jiménez-Flores, R. Lipid Binding Characterization of Lactic Acid Bacteria in Dairy P products. J. Dairy Sci. 2007, 90, 490. [Google Scholar]
- Ortega-Anaya, J.; Marciniak, A.; Jimenez-Flores, R. Milk fat globule membrane phospholipids modify adhesion of Lactobacillus to mucus-producing Caco-2/Goblet cells by altering the cell envelope. Food Res. Int. 2021, 146, 110471. [Google Scholar] [CrossRef]
- Rocha-Mendoza, D.; Kosmerl, E.; Miyagusuku-Cruzado, G.; Giusti, M.M.; Jimenez-Flores, R.; Garcia-Cano, I. Growth of lactic acid bacteria in milk phospholipids enhances their adhesion to Caco-2 cells. J. Dairy Sci. 2020, 103, 7707–7718. [Google Scholar] [CrossRef]
- Morifuji, M.; Kitade, M.; Oba, C.; Fukasawa, T.; Kawahata, K.; Yamaji, T.; Manabe, Y.; Sugawara, T. Milk Fermented by Lactic Acid Bacteria Enhances the Absorption of Dietary Sphingomyelin in Rats. Lipids 2017, 52, 423–431. [Google Scholar] [CrossRef]
- Favre, L.; Bosco, N.; Segura Roggero, I.; Corthésy, B.; Benyacoub, J. Combination of milk fat globule membranes and probiotics to potentiate neonatal immune maturity. Pediatr. Res. 2011, 70, 439. [Google Scholar] [CrossRef]
- Guerin, J.; Soligot, C.; Burgain, J.; Huguet, M.; Francius, G.; El-Kirat-Chatel, S.; Gomand, F.; Lebeer, S.; Le Roux, Y.; Borges, F.; et al. Adhesive interactions between milk fat globule membrane and Lactobacillus rhamnosus GG inhibit bacterial attachment to Caco-2 TC7 intestinal cell. Colloids Surf. B Biointerfaces 2018, 167, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Katsikogianni, M.; Missirlis, Y.F. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur. Cells Mater. 2004, 8, 37–57. [Google Scholar] [CrossRef] [PubMed]
- Zobell, C.E. The Effect of Solid Surfaces Upon Bacterial Activity. J. Bacteriol. 1943, 46, 39–56. [Google Scholar] [CrossRef]
- An, Y.H.; Friedman, R.J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. 1998, 43, 338–348. [Google Scholar] [CrossRef]
- Alam, F.; Kumar, S.; Varadarajan, K.M. Quantification of Adhesion Force of Bacteria on the Surface of Biomaterials: Techniques and Assays. ACS Biomater. Sci. Eng. 2019, 5, 2093–2110. [Google Scholar] [CrossRef]
- Kreve, S.; Reis, A.C.D. Bacterial adhesion to biomaterials: What regulates this attachment? A review. Jpn. Dent. Sci. Rev. 2021, 57, 85–96. [Google Scholar] [CrossRef]
- Hermansson, M. The DLVO theory in microbial adhesion. Colloids Surf. B Biointerfaces 1999, 14, 105–119. [Google Scholar] [CrossRef]
- Bostrom, M.; Deniz, V.; Franks, G.V.; Ninham, B.W. Extended DLVO theory: Electrostatic and non-electrostatic forces in oxide suspensions. Adv. Colloid Interface Sci. 2006, 123–126, 5–15. [Google Scholar] [CrossRef]
- Burgain, J.; Scher, J.; Francius, G.; Borges, F.; Corgneau, M.; Revol-Junelles, A.M.; Cailliez-Grimal, C.; Gaiani, C. Lactic acid bacteria in dairy food: Surface characterization and interactions with food matrix components. Adv. Colloid Interface Sci. 2014, 213, 21–35. [Google Scholar] [CrossRef]
- Roosjen, A.; Busscher, H.J.; Norde, W.; van der Mei, H.C. Bacterial factors influencing adhesion of Pseudomonas aeruginosa strains to a poly(ethylene oxide) brush. Microbiology 2006, 152, 2673–2682. [Google Scholar] [CrossRef]
- Loosdrecht, M.C.M.V.; Lyklema, J.; Norde, W.; Schraa, G.; Zehnder, A.J.B. The Role of Bacterial Cell Wall Hydrophobicity in Adhesion. Appl. Environ. Microbiol. 1987, 53, 1893–1897. [Google Scholar] [CrossRef] [PubMed]
- Busscher, H.J.; Weerkamp, A.H.; Mei, H.C.V.D.; Pelt, A.W.J.V.; Jong, H.P.D.; Arends, J. Measurement of the Surface Free Energy of Bacterial Cell Surfaces and Its Relevance for Adhesion. Appl. Environ. Microbiol. 1984, 48, 980–983. [Google Scholar] [CrossRef] [PubMed]
- Gerson, D.F.; Scheer, D. Cell surface energy, contact angles and phase partition III. Adhesion of bacterial cells to hydrophobic surfaces. Biochim. Biophys. Acta (BBA)-Biomembr. 1980, 602, 506–510. [Google Scholar] [CrossRef]
- Mozes, N.; Rouxhet, P. Methods for measuring hydrophobicity of microorganisms. J. Microbiol. Methods 1987, 6, 99–112. [Google Scholar] [CrossRef]
- Brisson, G.; Payken, H.F.; Sharpe, J.P.; Jimenez-Flores, R. Characterization of Lactobacillus reuteri interaction with milk fat globule membrane components in dairy products. J. Agric. Food Chem. 2010, 58, 5612–5619. [Google Scholar] [CrossRef]
- Pascual, A.; Fleer, A.; Westerdaal, N.; Verhoef, J. Modulation of Adherence of Coagulase-Negative Staphylococci to Teflon Catheters In Vitro. Eur. J. Clin. Microbiol. Infect. Dis. 1986, 5, 518–522. [Google Scholar] [CrossRef]
- Solyanikova, I.P.; Golovleva, L.A. Hexadecane and Hexadecane-Degrading Bacteria: Mechanisms of Interaction. Microbiology 2019, 88, 15–26. [Google Scholar] [CrossRef]
- García-Cayuela, T.; Korany, A.M.; Bustos, I.; de Cadiñanos, L.P.G.; Requena, T.; Peláez, C.; Martínez-Cuesta, M.C. Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res. Int. 2014, 57, 44–50. [Google Scholar] [CrossRef]
- Hogt, A.H.; Dankert, J.; Vries, J.A.D.; Feijen, J. Adhesion of Coagulase-negative Staphylococci to Biomaterials. J. Gen. Microbiol. 1983, 129, 2959–2968. [Google Scholar] [CrossRef]
- Satou, N.; Satou, J.; Shintani, H.; Okuda, K. Adherence of Streptococci to Surface-modified Glass. J. Gen. Microbiol. 1988, 134, 1299–1305. [Google Scholar] [CrossRef]
- Liu, Z.; Qin, L. Research on Turbidity and Surface Hydrophobicity of Milk Protein at Different Conditions. J. Phys. Conf. Ser. 2021, 1893, 012009. [Google Scholar] [CrossRef]
- Brown, D.G.; Hong, Y. Impact of the Charge-Regulated Nature of the Bacterial Cell Surface on the Activity of Adhered Cells. J. Adhes. Sci. Technol. 2012, 25, 2199–2218. [Google Scholar] [CrossRef]
- Lopez, C.; Briard-Bion, V.; Ménard, O.; Beaucher, E.; Rousseau, F.; Fauquant, J.; Leconte, N.; Robert, B. Fat globules selected from whole milk according to their size: Different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chem. 2011, 125, 355–368. [Google Scholar] [CrossRef]
- Obeid, S.; Guyomarc’h, F.; Francius, G.; Guillemin, H.; Wu, X.; Pezennec, S.; Famelart, M.H.; Cauty, C.; Gaucheron, F.; Lopez, C. The surface properties of milk fat globules govern their interactions with the caseins: Role of homogenization and pH probed by AFM force spectroscopy. Colloids Surf. B Biointerfaces 2019, 182, 110363. [Google Scholar] [CrossRef]
- Wilson, W.; Wade, M.; Holman, S.; Champlin, F. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbiol. Methods 2001, 43, 153–164. [Google Scholar] [CrossRef]
- Dickson, J.S.; Koohmaraie, M. Cell Surface Charge Characteristics and Their Relationship to Bacterial Attachment to Meat Surfaces. Appl. Environ. Microbiol. 1989, 55, 832–836. [Google Scholar] [CrossRef]
- Watanabe, K.; Takesue, S. Colloid Titration for Determining the Surface Charge of Bacterial Spores. J. Gen. Microbiol. 1976, 96, 221–223. [Google Scholar] [CrossRef]
- Whitehead, K.A.; Verran, J. The Effect of Surface Topography on the Retention of Microorganisms. Food Bioprod. Process. 2006, 84, 253–259. [Google Scholar] [CrossRef]
- Quirynen, M.; Mei, H.C.V.D.; Bollen, C.M.L.; Schotte, A.; Marechal, M.; Doornbusch, G.I.; Naert, I.; Busscher, H.J.; Steenberghe, D.V. An In Vivo Study of the Influence of the Surface Roughness of Implants on the Microbiology of Supra- and Subgingival Plaque. J. Dent. Res. 1993, 72, 1304–1309. [Google Scholar] [CrossRef]
- Subramani, K.; Jung, R.E.; Molenberg, A.; Hämmerle, C.H.F. Biofilm on Dental Implants: A Review of the Literature. Int. J. Oral Maxillofac. Implant. 2009, 24, 616. [Google Scholar]
- James, G.A.; Boegli, L.; Hancock, J.; Bowersock, L.; Parker, A.; Kinney, B.M. Bacterial Adhesion and Biofilm Formation on Textured Breast Implant Shell Materials. Aesthetic Plast. Surg. 2019, 43, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Ghosh, T.; Bhushan, B.; Packirisamy, G.; Navani, N.K.; Sarangi, P.P.; Ambatipudi, K. Characterization of difference in structure and function of fresh and mastitic bovine milk fat globules. PLoS ONE 2019, 14, e0221830. [Google Scholar] [CrossRef] [PubMed]
- Patton, S. The epithelial mucin, MUC 1, of milk, mammary gland. Biochim. Biophys. Acta. 1995, 1241, 407–423. [Google Scholar] [CrossRef]
- Jakava-Viljanen, M.; Palva, A. Isolation of surface (S) layer protein carrying Lactobacillus species from porcine intestine and faeces and characterization of their adhesion properties to different host tissues. Vet. Microbiol. 2007, 124, 264–273. [Google Scholar] [CrossRef]
- Meng, J.; Zhu, X.; Gao, S.M.; Zhang, Q.X.; Sun, Z.; Lu, R.R. Characterization of surface layer proteins and its role in probiotic properties of three Lactobacillus strains. Int. J. Biol. Macromol. 2014, 65, 110–114. [Google Scholar] [CrossRef]
- Garrote, G.L.; Delfederico, L.; Bibiloni, R.; Abraham, A.G.; Perez, P.F.; Semorile, L.; De Antoni, G.L. Lactobacilli isolated from kefir grains: Evidence of the presence of S-layer proteins. J. Dairy Res. 2004, 71, 222–230. [Google Scholar] [CrossRef]
- Frece, J.; Kos, B.; Svetec, I.K.; Zgaga, Z.; Mrsa, V.; Suskovic, J. Importance of S-layer proteins in probiotic activity of Lactobacillus acidophilus M92. J. Appl. Microbiol. 2005, 98, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Brisson, G.; Jimenez-Flores, R. Binding characterization between lactic acid bacteria and milk fat globule membrane in different dairy products. J. Anim. Sci. 2008, 86, 220–221. [Google Scholar]
- Achinas, S.; Charalampogiannis, N.; Euverink, G.J.W. A Brief Recap of Microbial Adhesion and Biofilms. Appl. Sci. 2019, 9, 2801. [Google Scholar] [CrossRef]
- Schär-Zammarett, P.; Ubbink, J. The Cell Wall of Lactic Acid Bacteria: Surface Constituents and Macromolecular Conformations. Biophys. J. 2003, 85, 4076–4092. [Google Scholar] [CrossRef]
- Arciola, C.R.; Campocciaa, D.; Montanaroa, L. Effects on antibiotic resistance of Staphylococcus epidermidis following adhesion to polymethylmethacrylate and to silicone surfaces. Biomaterials 2002, 23, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Herald, P.J.; Zottola, E.A. Attachment of Listeria monocytogenes to Stainless Steel Surfaces at Various Temperatures and pH Values. J. Food Sci. 2006, 53, 1549–1562. [Google Scholar] [CrossRef]
- Nguyen, H.D.N.; Yang, Y.S.; Yuk, H.G. Biofilm formation of Salmonella Typhimurium on stainless steel and acrylic surfaces as affected by temperature and pH level. LWT Food Sci. Technol. 2014, 55, 383–388. [Google Scholar] [CrossRef]
Growth, Development, and Metabolic Health | Gut Barrier Integrity and Gut Microbiota | Immunity | Cognitive Function (Mental Development) |
---|---|---|---|
Reduces susceptibility to obesity in adult life by preventing adipocyte hypertropia [47]. MFGM-enriched formulas meet the primary safety endpoint of non-inferiority in weight gain compared to the control formula [48]. Adequate growth throughout the first year of life [49]. Increases DHA availability which could be of importance for newborn growth and brain development [50]. Modifies the serum metabolome and reduces metabolic divergence [51]. In comparison to the breast-feeding group, the MFGM-enriched formula feeding group had similar development rates in terms of body weight, recumbent length, head circumference, and BMI [52]. Improves micronutrient status, energy metabolism, and growth [15]. | Decreases episodes of fever, diarrhea, and constipation [53]. Fewer diarrheal episodes in infants of 6 to 11 months old who consumed complementary food with MFGM-enriched protein [54]. Higher probiotic colonization and lower pathogen colonization after treatment with MFGM [55]. Protects host against L. monocytogenes infection [56]. Similar intestinal development to when consuming mother’s milk, and promotes the development of intestinal microbiome and protects against inflammation [57]. | Accelerates neurodevelopmental profile of infants [58]. Reduces the risk of AOM in infants and has immunomodulatory effects on humoral response against pneumococcus vaccine [59]. Cytokine profile of the MFGM group approaches that of breastfed infants [60]. Significantly fewer episodes of infection-related bloody diarrhea and improving metabolic regulation which may lead to enhanced immunity [15]. | Improves neurocognitive development scores—cognitive, motor, and verbal scores [61]. Improves emotional and behavioral regulation in preschool children [53]. Accelerates neurodevelopment and attention scores in infants [58]. Reduces the gap in cognitive development between breastfed and formula-fed infants [61]. Improves social, emotional, short-term memory, and general adaptive behavior scores [62]. |
Gut Health and Gut Microbiota | Immune Modulation |
---|---|
Restores normal microbiota composition and function in antibiotic-treated and cesarean-born infants [79]. Induces colonization resistance and alleviates harmful effects of antibiotics on the gut microbiota and antibiotic resistome [80]. Early supplementation colonizes the preterm gut and affects potential pathogen colonization [81]. Allows targeted manipulation of the enteric microbiota and reduced abundance of bacterial taxa associated with the development of necrotizing enterocolitis [82]. Early administration to low-birth-weight infants is useful in promoting normal intestinal flora [83]. Effective in preventing antibiotic-associated diarrhea in children [84]. Helps to establish a healthy intestinal microbiota and improves intestinal barrier function [85]. Early administration improves infant gut health by reducing pathogen colonization [86]. Administration of a probiotic mixture reduces inconsolable crying in exclusively breastfed infants [87]. Reduces gastric distension, accelerates gastric emptying, and diminishes the frequency of regurgitation [88]. Efficacious in the treatment of acute diarrhea, reducing the frequency, duration, and recrudescence rate of the disease [89]. | Used in the primary prevention of allergic diseases in neonates [90]. Exerts immunomodulatory effects, including enhanced production of intestinal secretory IgA [91]. Offers a safe and effective mode of promoting the immune protective potential of breast-feeding, and provides protection against atopic eczema during the first two years of life [92]. Maturation of the immune system in neonates by induction of Th1/Th2/Th3 response [93]. Reduces the severity of E. coli O157:H7 infection by enhanced humoral and cellular immune responses [94]. Reduction in the incidence of neonatal necrotizing enterocolitis by activation of the inflammatory cascade [95]. Induces an immunologic response by increasing the production of virus-neutralizing antibodies against poliomyelitis viruses [96]. Balances the Th1/Th2 immune response and antibody generation in healthy term infants after vaccination [85]. Helps to maintain fecal SIgA levels and stimulates the development of a mucosal immune response [97]. Enhances immunity by improved levels of fecal SIgA and T-cell subsets in peripheral blood [98]. |
Supplementation | Method | Effect | References |
---|---|---|---|
MFGM-derived MPL + P. acidilactici OSU-PECh-L, P. acidilactici OSU-PECh-3A, L. plantarum OSU-PECh-BB, L. reuteri OSUPECh-48, L. casei OSU-PECh-C, L. paracasei OSU-PECh-BA, or L. paracasei OSU-PECh-3B | Bacteria grown in media supplemented with 0.5% milk MPL for 8 to 9 h at 37 °C. Bacteria were added to a Caco-2 monolayer and incubated for 3 h at 37 °C. Caco-2 cells were washed, bacterial adherence measured. | MPL supplementation showed three out of seven strains with increased adhesion to intestinal cells compared to the control without MPL. | [114] |
Whey-derived MFGM-10 + LGG | Six-week-old BALB/c male mice were gavaged with MFGM-10 (5 g/L) and LGG for three days, and cecum and fecal LGG cell counts in mice were analyzed. | LGG viability was increased after GI passage in the treatments combining LGG and MFGM-10 compared to the MFGM-10 or probiotic treatments alone. | [16] |
MFGM-derived MPL + L. casei, L. delbrueckii | Bacteria were cultured in a defined liquid medium enriched with 0.5% MPL for 17 h at 37 °C, added to Caco-2 and HT-29 goblet cells, and incubated for 2 h at 37 °C. | MPL-supplemented media increased the adhesion of L. casei and L. delbrueckii to Caco-2/goblet cells with increased surface of shear ζ-potential compared to the control without MPL. | [113] |
MFGM-derived MPL concentrate + Lactobacillus delbrueckii subsp. bulgaricus 2038, Streptococcus thermophilus 1131 | Male Sprague–Dawley rats were orally administrated with sphingomyelin/MPL concentrate alone or sphingomyelin/MPL with fermented milk containing Lactobacillus delbrueckii subsp. bulgaricus 2038, Streptococcus thermophilus 113. | Co-ingestion of sphingomyelin/MPL and fermented milk increased the absorption of dietary sphingomyelin approximately two-fold compared to sphingomyelin/MPL concentrate alone. | [115] |
MFGM fractions + Bifidobacterium lactis NCC2818 | NF-ĸB Reporter assay was carried out using an HT29C134 cell line and treated with an MFGM–probiotic combination, or MFGM or probiotic alone. B- and T-cell stimulation assays were carried out using 6–8-week-old C57BL/6 mice lymphocyte cells. IgA-secreting cell numbers in Peyer’s patches cell suspensions were evaluated after treatment with an MFGM–probiotic combination, or with MFGM or probiotic treatments alone. | MFGM and probiotic combination decreased NF-ĸB activation compared to these treatments separately. A significant increase in the number of intestinal IgA-secreting cells in the MFGM and probiotic treatment groups was observed. | [12] |
MFG fraction + Lactobacillus delbrueckii ATCC 11842, Bifidobacterium infantis ATCC 15697, Bifidobacterium longum CGMCC 1.3006, Lactobacillus acidophilus CICC 6081, Salmonella enterica ATCC 13076, Cronobacter sakazakii ATCC 29544, and Escherichia coli CTCC 10665 | Bacteria were co-cultured for 3 h at 37 °C in HT 29 cells which were pre-treated with human/caprine/bovine MFGs for 3 h at 37 °C. The lysate was collected and cultured in MRS media, and colony-forming units were counted in MRS after 18 h of incubation at 37 °C. | All types of MFGs significantly enhanced probiotic adhesion compared to the control group. Pathogen colonization ability was significantly reduced in MFG treatment groups compared to the control without the MFG fraction. | [55] |
MFGM + B. lactis CNCM I-3446 | For four weeks, freshly weaned mice received a daily dosage of MFGM and/or a probiotic, or a placebo. ELISPOT was used to count the number of mucosal IgA-secreting cells at the end of the supplementation period and 12 weeks later. | Combined probiotics and MFGM had the highest mucosal B- and T-cell proliferative response, showing a greater impact than either probiotic or MFGM treatments alone. | [116] |
MFGM + L. rhamnosus (LGG) | LGG wild type and surface mutants (pili-depleted and EPS-deficient LGG) were exposed to 5 mg/mL MFGM extract for 1 h at 37 °C, applied to Caco-2 TC7 cells, and incubated for 2 h at 37 °C. | The presence of MFGM decreased the adhesion to host intestinal epithelial cells by blocking the pili adhesive sites of LGG. | [117] |
MFGM-derived MPL + Lactiplantibacillus plantarum | Bacteria were cultured in a defined liquid medium enriched with 0.5% of MPL for 17 h at 37 °C and added to Caco-2 and HT-29 goblet cells and incubated for 2 h at 37 °C. | MPL-treated L. plantarum showed lower adhesion compared to a control without MPL. | [113] |
MPL-rich milk protein, whey-derived MFGM-10, buttermilk + Bifidobacterium longum subsp. infantis ATCC 15697 | Bifidobacteria were exposed to milk-derived powder for 1 h at 37 °C, and the bacteria were applied to HT-29 cells and incubated for 2 h at 37 °C. | MPL-rich milk protein and buttermilk decreased the adhesion of Bifidobacteria, whereas MFGM-10 did not alter the adhesion of ATCC 15697. | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasana, W.P.; Waterland, M.; Everett, D.W.; Thum, C. Functional Significance of Probiotic Bacterial Interactions with Milk Fat Globules in a Human Host. Microorganisms 2025, 13, 223. https://doi.org/10.3390/microorganisms13020223
Wasana WP, Waterland M, Everett DW, Thum C. Functional Significance of Probiotic Bacterial Interactions with Milk Fat Globules in a Human Host. Microorganisms. 2025; 13(2):223. https://doi.org/10.3390/microorganisms13020223
Chicago/Turabian StyleWasana, Withanage Prasadini, Mark Waterland, David W. Everett, and Caroline Thum. 2025. "Functional Significance of Probiotic Bacterial Interactions with Milk Fat Globules in a Human Host" Microorganisms 13, no. 2: 223. https://doi.org/10.3390/microorganisms13020223
APA StyleWasana, W. P., Waterland, M., Everett, D. W., & Thum, C. (2025). Functional Significance of Probiotic Bacterial Interactions with Milk Fat Globules in a Human Host. Microorganisms, 13(2), 223. https://doi.org/10.3390/microorganisms13020223