Engineering Inorganic Pyrophosphate Metabolism as a Strategy to Generate a Fluoride-Resistant Saccharomyces cerevisiae Strain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria and Yeast Strains
2.2. Plasmids Construction and Yeast Transformation
2.3. Phenotype Complementation Tests
2.4. Growth Curves in Liquid Medium
2.5. Preparations of Soluble Protein Extracts from Yeast
2.6. Enzymatic Assay, Protein Determinations and Western Blotting
2.7. Determination of Internal PPi Levels in Yeast Cells
Plasmid | Description | References |
---|---|---|
pRS699b 1 | S.cerevisiae/E. coli shuttle plasmid bearing the constitutive promoter and terminator of yeast gene PMA1 and selection marker URA3. It has a 2-micron (2 m) origin of replication, which yields a high number of plasmid copies (14–34) per cell. | [31] |
pIPP1-699 1,2 | Plasmid derived from pRS699b bearing the promoter and coding sequence of gene IPP1 from S. cerevisiae inserted upstream of the PMA1 terminator. | [40] |
pIPP1-416 1 | Plasmid derived from pRS416 bearing the promoter and coding sequence of gene IPP1 from S. cerevisiae. Its main difference from pIPP1-699 is that it has a yeast centromeric sequence (CEN) and an autonomously replicating sequence (ARS) that results in a low number of plasmid copies (2–5) per yeast cell. | This study |
pSPP2-699 1 | Plasmid derived from pIPP1-699 bearing gene SPP2 from S. mutans. | This study |
pSPP2-416 1 | Plasmid derived from pIPP1-416 bearing gene SPP2 from S. mutans. | This study |
pPPA1-426 1 | Plasmid derived from high-copy plasmid pRS426 that bears the cDNA coding for the cytosolic sPPase from Homo sapiens (PPA1). | Donated by Dr. Hernández |
piGMVP-416 1,2 | Plasmid derived from pIPP1-416 bearing the sequence that codes for the putative N-terminal signal peptide of yeast Suc2p followed by those of yEGFP and the Na+-translocating mPPase from M. mazei (MVP). | This study and [28] |
pIPP1GFP-699 2 | Plasmid derived from pIPP1-699 bearing the coding sequence of gene IPP1 from S. cerevisiae followed in-frame by that of yEGFP. | [24] |
2.8. Spontaneous Generation of Fluoride-Resistant Cells
2.9. Transformation of YPC3 Cells and Selection of Transformants in YPD
2.10. Fluorescence Microscopy
3. Results
4. Discussion
5. Conclusions
- The sensitivity to fluoride of the nucleocytosolic PPase from yeast (IPP1) has implications in vivo.
- Fluoride resistance in yeast requires a minimal threshold of PPase activity. This can be accomplished with different types of PPases.
- The results presented here may have implications for other systems such as human cells and bacteria involved in tooth decay.
- A cheap, rapid, and easy method for the selection of YPC3 transformants in YPD optionally supplemented with fluoride is described.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IPP1 | nucleocytosolic inorganic pyrophosphatase from S. cerevisiae |
PPi | inorganic pyrophosphate |
PPase | inorganic pyrophosphatase |
m-PPase | membrane-bound ion-translocating inorganic pyrophosphatase |
MVP | Na+-translocating m-PPase from the archaea Methanosarcina mazei |
OD660 | optical density at 660 nm |
PPA1 | cytosolic inorganic pyrophosphatase from Homo sapiens |
sPPase | soluble inorganic pyrophosphatases |
SPP2 | inorganic pyrophosphatase from S. mutans |
yEGFP | yeast-enhanced green fluorescent protein |
References
- Barbier, O.; Arreola-Mendoza, L.; Del Razo, L.M. Molecular Mechanisms of Fluoride Toxicity. Chem. Biol. Interact. 2010, 188, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Smith, F.A.; Hodge, H.C.; Dinman, B.D. Airborne Fluorides and Man: Part I. Crit. Rev. Environ. Sci. Technol. 1977, 8, 293–371. [Google Scholar] [CrossRef]
- Fewtrell, L.; Smith, S.; Kay, D.; Bartram, J. An Attempt to Estimate the Global Burden of Disease Due to Fluoride in Drinking Water. J. Water Health 2006, 4, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Breaker, R.R. New Insight on the Response of Bacteria to Fluoride. Caries Res. 2012, 46, 78–81. [Google Scholar] [CrossRef]
- Baker, J.L.; Sudarsan, N.; Weinberg, Z.; Roth, A.; Stockbridge, R.B.; Breaker, R.R. Widespread Genetic Switches and Toxicity Resistance Proteins for Fluoride. Science 2012, 335, 233–235. [Google Scholar] [CrossRef]
- Stockbridge, R.B.; Wackett, L.P. The Link between Ancient Microbial Fluoride Resistance Mechanisms and Bioengineering Organofluorine Degradation or Synthesis. Nat. Commun. 2024, 15, 4593. [Google Scholar] [CrossRef]
- McIlwain, B.C.; Ruprecht, M.T.; Stockbridge, R.B. Membrane Exporters of Fluoride Ion. Annu. Rev. Biochem. 2021, 90, 559–579. [Google Scholar] [CrossRef]
- Johnston, N.R.; Cline, G.; Strobel, S.A. Cells Adapt to Resist Fluoride through Metabolic Deactivation and Intracellular Acidification. Chem. Res. Toxicol. 2022, 35, 2085–2096. [Google Scholar] [CrossRef]
- Qin, J.; Chai, G.; Brewer, J.M.; Lovelace, L.L.; Lebioda, L. Fluoride Inhibition of Enolase: Crystal Structure and Thermodynamics. Biochemistry 2006, 45, 793–800. [Google Scholar] [CrossRef]
- Li, L. The Biochemistry and Physiology of Metallic Fluoride: Action, Mechanism, and Implications. Crit. Rev. Oral Biol. Med. 2003, 14, 100–114. [Google Scholar] [CrossRef]
- Heikinheimo, P.; Lehtonen, J.; Baykov, A.; Lahti, R.; Cooperman, B.S.; Goldman, A. The Structural Basis for Pyrophosphatase Catalysis. Struct. Lond. Engl. 1993 1996, 4, 1491–1508. [Google Scholar] [CrossRef] [PubMed]
- Lahti, R. Microbial Inorganic Pyrophosphatases. Microbiol. Rev. 1983, 47, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Baykov, A.A.; Malinen, A.M.; Luoto, H.H.; Lahti, R. Pyrophosphate-Fueled Na+ and H+ Transport in Prokaryotes. Microbiol. Mol. Biol. Rev. MMBR 2013, 77, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Serrano, A.; Pérez-Castiñeira, J.R.; Baltscheffsky, M.; Baltscheffsky, H. H+-PPases: Yesterday, Today and Tomorrow. IUBMB Life 2007, 59, 76–83. [Google Scholar] [CrossRef]
- Cooperman, B.S.; Baykov, A.A.; Lahti, R. Evolutionary Conservation of the Active Site of Soluble Inorganic Pyrophosphatase. Trends Biochem. Sci. 1992, 17, 262–266. [Google Scholar] [CrossRef]
- Shintani, T.; Uchiumi, T.; Yonezawa, T.; Salminen, A.; Baykov, A.A.; Lahti, R.; Hachimori, A. Cloning and Expression of a Unique Inorganic Pyrophosphatase from Bacillus Subtilis: Evidence for a New Family of Enzymes. FEBS Lett. 1998, 439, 263–266. [Google Scholar] [CrossRef]
- Young, T.W.; Kuhn, N.J.; Wadeson, A.; Ward, S.; Burges, D.; Cooke, G.D. Bacillus Subtilis ORF yybQ Encodes a Manganese-Dependent Inorganic Pyrophosphatase with Distinctive Properties: The First of a New Class of Soluble Pyrophosphatase? Microbiology 1998, 144, 2563–2571. [Google Scholar] [CrossRef]
- Gómez-García, M.R.; Losada, M.; Serrano, A. Comparative Biochemical and Functional Studies of Family I Soluble Inorganic Pyrophosphatases from Photosynthetic Bacteria. FEBS J. 2007, 274, 3948–3959. [Google Scholar] [CrossRef]
- Kim, E.J.; Zhen, R.G.; Rea, P.A. Heterologous Expression of Plant Vacuolar Pyrophosphatase in Yeast Demonstrates Sufficiency of the Substrate-Binding Subunit for Proton Transport. Proc. Natl. Acad. Sci. USA 1994, 91, 6128–6132. [Google Scholar] [CrossRef]
- Baykov, A.A.; Fabrichniy, I.P.; Pohjanjoki, P.; Zyryanov, A.B.; Lahti, R. Fluoride Effects along the Reaction Pathway of Pyrophosphatase: Evidence for a Second Enzyme.Pyrophosphate Intermediate. Biochemistry 2000, 39, 11939–11947. [Google Scholar] [CrossRef]
- Baykov, A.A.; Anashkin, V.A.; Salminen, A.; Lahti, R. Inorganic Pyrophosphatases of Family II—Two Decades after Their Discovery. FEBS Lett. 2017, 591, 3225–3234. [Google Scholar] [CrossRef] [PubMed]
- Kolakowski, L.F.; Schloesser, M.; Cooperman, B.S. Cloning, Molecular Characterization and Chromosome Localization of the Inorganic Pyrophosphatase (PPA) Gene from S. Cerevisiae. Nucleic Acids Res. 1988, 16, 10441–10452. [Google Scholar] [CrossRef] [PubMed]
- Lundin, M.; Baltscheffsky, H.; Ronne, H. Yeast PPA2 Gene Encodes a Mitochondrial Inorganic Pyrophosphatase That Is Essential for Mitochondrial Function. J. Biol. Chem. 1991, 266, 12168–12172. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Bueno, G.; Madroñal, J.M.; Manzano-López, J.; Muñiz, M.; Pérez-Castiñeira, J.R.; Hernández, A.; Serrano, A. Nuclear Proteasomal Degradation of Saccharomyces Cerevisiae Inorganic Pyrophosphatase Ipp1p, a Nucleocytoplasmic Protein Whose Stability Depends on Its Subcellular Localization. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 1019–1033. [Google Scholar] [CrossRef]
- Serrano-Bueno, G.; Hernández, A.; López-Lluch, G.; Pérez-Castiñeira, J.R.; Navas, P.; Serrano, A. Inorganic Pyrophosphatase Defects Lead to Cell Cycle Arrest and Autophagic Cell Death through NAD+ Depletion in Fermenting Yeast. J. Biol. Chem. 2013, 288, 13082–13092. [Google Scholar] [CrossRef]
- Drake, R.; Serrano, A.; Pérez-Castiñeira, J.R. N-Terminal Chimaeras with Signal Sequences Enhance the Functional Expression and Alter the Subcellular Localization of Heterologous Membrane-Bound Inorganic Pyrophosphatases in Yeast. Biochem. J. 2010, 426, 147–157. [Google Scholar] [CrossRef]
- Pérez-Castiñeira, J.R.; Hernández, A.; Drake, R.; Serrano, A. A Plant Proton-Pumping Inorganic Pyrophosphatase Functionally Complements the Vacuolar ATPase Transport Activity and Confers Bafilomycin Resistance in Yeast. Biochem. J. 2011, 437, 269–278. [Google Scholar] [CrossRef]
- Pérez-Castiñeira, J.R.; Serrano, A. The H+-Translocating Inorganic Pyrophosphatase From Arabidopsis Thaliana Is More Sensitive to Sodium Than Its Na+-Translocating Counterpart From Methanosarcina Mazei. Front. Plant Sci. 2020, 11, 1240. [Google Scholar] [CrossRef]
- Hanahan, D. Studies on Transformation of Escherichia Coli with Plasmids. J. Mol. Biol. 1983, 166, 557–580. [Google Scholar] [CrossRef]
- Thomas, B.J.; Rothstein, R. Elevated Recombination Rates in Transcriptionally Active DNA. Cell 1989, 56, 619–630. [Google Scholar] [CrossRef]
- Serrano, R.; Villalba, J.-M. Chapter 35 Expression and Localization of Plant Membrane Proteins in Saccharomyces. In Methods in Cell Biology; Galbraith, D.W., Bourque, D.P., Bohnert, H.J., Eds.; Academic Press: Cambridge, MA, USA, 1995; Volume 50, pp. 481–496. ISBN 0091-679X. [Google Scholar]
- Sikorski, R.S.; Hieter, P. A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in Saccharomyces Cerevisiae. Genetics 1989, 122, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Madroñal de Sancha, J.M. Estudios Funcionales de las Pirofosfatasas Inorgánicas de Saccharomyces Cerevisiae y Organismos Fotosintéticos. Ph.D. Thesis, Universidad de Sevilla, Sevilla, Spain, 2017. [Google Scholar]
- Christianson, T.W.; Sikorski, R.S.; Dante, M.; Shero, J.H.; Hieter, P. Multifunctional Yeast High-Copy-Number Shuttle Vectors. Gene 1992, 110, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Schiestl, R.H.; Gietz, R.D. High Efficiency Transformation of Intact Yeast Cells Using Single Stranded Nucleic Acids as a Carrier. Curr. Genet. 1989, 16, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Treco, D.A.; Lundblad, V. Preparation of Yeast Media. Curr. Protoc. Mol. Biol. 2001, 23, 13.1.1–13.1.7. [Google Scholar] [CrossRef]
- Rathbun, W.B.; Betlach, M.V. Estimation of Enzymically Produced Orthophosphate in the Presence of Cysteine and Adenosine Triphosphate. Anal. Biochem. 1969, 28, 436–445. [Google Scholar] [CrossRef]
- Valverde, F.; Losada, M.; Serrano, A. Functional Complementation of an Escherichia Coli Gap Mutant Supports an Amphibolic Role for NAD(P)-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase of Synechocystis Sp. Strain PCC 6803. J. Bacteriol. 1997, 179, 4513–4522. [Google Scholar] [CrossRef]
- Heinonen, J.K.; Honkasalo, S.H.; Kukko, E.I. A Method for the Concentration and for the Colorimetric Determination of Nanomoles of Inorganic Pyrophosphate. Anal. Biochem. 1981, 117, 293–300. [Google Scholar] [CrossRef]
- López-Marqués, R.L. Fisiología Molecular y Bioquímica de Pirofosfatasas Translocadoras de Protons. Doctoral Dissertation, Universidad de Sevilla, Sevilla, Spain, 2004. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=23243 (accessed on 10 January 2025).
- Aßkamp, M.R.; Klein, M.; Nevoigt, E. Saccharomyces Cerevisiae Exhibiting a Modified Route for Uptake and Catabolism of Glycerol Forms Significant Amounts of Ethanol from This Carbon Source Considered as ‘Non-Fermentable’. Biotechnol. Biofuels 2019, 12, 257. [Google Scholar] [CrossRef]
- García-Contreras, R.; De La Mora, J.; Mora-Montes, H.M.; Martínez-Álvarez, J.A.; Vicente-Gómez, M.; Padilla-Vaca, F.; Vargas-Maya, N.I.; Franco, B. The Inorganic Pyrophosphatases of Microorganisms: A Structural and Functional Review. PeerJ 2024, 12, e17496. [Google Scholar] [CrossRef]
- Johnston, N.R.; Strobel, S.A. Nitrate and Phosphate Transporters Rescue Fluoride Toxicity in Yeast. Chem. Res. Toxicol. 2019, 32, 2305–2319. [Google Scholar] [CrossRef]
- Marquis, R.E.; Clock, S.A.; Mota-Meira, M. Fluoride and Organic Weak Acids as Modulators of Microbial Physiology. FEMS Microbiol. Rev. 2003, 26, 493–510. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.S.; Curran, K.A.; Alper, H.S. Characterization of Plasmid Burden and Copy Number in Saccharomyces Cerevisiae for Optimization of Metabolic Engineering Applications. FEMS Yeast Res. 2013, 13, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Zhu, J.; Qu, Q.; Zhou, X.; Huang, X.; Du, Z. Crystallographic and Modeling Study of the Human Inorganic Pyrophosphatase 1: A Potential Anti-cancer Drug Target. Proteins Struct. Funct. Bioinforma. 2021, 89, 853–865. [Google Scholar] [CrossRef]
- Diakov, T.T.; Tarsio, M.; Kane, P.M. Measurement of Vacuolar and Cytosolic pH In Vivo in Yeast Cell Suspensions. J. Vis. Exp. 2013, 50261. [Google Scholar] [CrossRef]
- Orriss, I.R.; Arnett, T.R.; Russell, R.G.G. Pyrophosphate: A Key Inhibitor of Mineralisation. Curr. Opin. Pharmacol. 2016, 28, 57–68. [Google Scholar] [CrossRef]
- Addison, W.N.; Azari, F.; Sørensen, E.S.; Kaartinen, M.T.; McKee, M.D. Pyrophosphate Inhibits Mineralization of Osteoblast Cultures by Binding to Mineral, Up-Regulating Osteopontin, and Inhibiting Alkaline Phosphatase Activity. J. Biol. Chem. 2007, 282, 15872–15883. [Google Scholar] [CrossRef]
- Fang, S.; Fang, X. Advances in Glucose Metabolism Research in Colorectal Cancer. Biomed. Rep. 2016, 5, 289–295. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, Y.; Mei, Q.; Zhao, J.; Huang, L.; Fu, Q. PPA1 Regulates Tumor Malignant Potential and Clinical Outcome of Colon Adenocarcinoma through JNK Pathways. Oncotarget 2017, 8, 58611–58624. [Google Scholar] [CrossRef]
- Mishra, D.R.; Chaudhary, S.; Krishna, B.M.; Mishra, S.K. Identification of Critical Elements for Regulation of Inorganic Pyrophosphatase (PPA1) in MCF7 Breast Cancer Cells. PLoS ONE 2015, 10, e0124864. [Google Scholar] [CrossRef]
- Wimmer, J.L.E.; Kleinermanns, K.; Martin, W.F. Pyrophosphate and Irreversibility in Evolution, or Why PPi Is Not an Energy Currency and Why Nature Chose Triphosphates. Front. Microbiol. 2021, 12, 759359. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez-Castiñeira, J.R.; Ávila-Oliva, F.J.; Serrano, A. Engineering Inorganic Pyrophosphate Metabolism as a Strategy to Generate a Fluoride-Resistant Saccharomyces cerevisiae Strain. Microorganisms 2025, 13, 226. https://doi.org/10.3390/microorganisms13020226
Perez-Castiñeira JR, Ávila-Oliva FJ, Serrano A. Engineering Inorganic Pyrophosphate Metabolism as a Strategy to Generate a Fluoride-Resistant Saccharomyces cerevisiae Strain. Microorganisms. 2025; 13(2):226. https://doi.org/10.3390/microorganisms13020226
Chicago/Turabian StylePerez-Castiñeira, José R., Francisco J. Ávila-Oliva, and Aurelio Serrano. 2025. "Engineering Inorganic Pyrophosphate Metabolism as a Strategy to Generate a Fluoride-Resistant Saccharomyces cerevisiae Strain" Microorganisms 13, no. 2: 226. https://doi.org/10.3390/microorganisms13020226
APA StylePerez-Castiñeira, J. R., Ávila-Oliva, F. J., & Serrano, A. (2025). Engineering Inorganic Pyrophosphate Metabolism as a Strategy to Generate a Fluoride-Resistant Saccharomyces cerevisiae Strain. Microorganisms, 13(2), 226. https://doi.org/10.3390/microorganisms13020226