Combined Analysis of Transcriptomes and Metabolomes Reveals Key Genes and Substances That Affect the Formation of a Multi-Species Biofilm by Nine Gut Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biofilm Formation
2.2. RNA Extraction and Sequencing
2.3. Transcriptome Analysis
2.4. Metabolite Extraction and Determination
2.5. Untargeted Metabolome Data Analysis
2.6. RT-qPCR
2.7. Statistical Analysis
3. Results
3.1. Global Transcription Levels of Mono-Species and M9 Biofilms
3.2. The DEGs and Function Analysis of Mono-Species and M9 Biofilms
3.3. Common DEG Analysis and Validation
3.4. Untargeted Metabolome Analysis of Mono-Species and M9 Biofilms
3.5. Combined Analysis of Metabolomes and Transcriptomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
M9 biofilm | nine-gut-bacteria-formed multi-species biofilm on wheat fibers |
DEGs | differentially expressed genes |
DAMs | differentially accumulated metabolites |
AI-2 | autoinducer 2 |
YCFA | yeast extract, casitone, and fatty acid |
NCBI | National Center for Biotechnology Information |
STAR | Spliced Transcripts Alignment to a Reference |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
UHPLC-MS | ultra-performance liquid chromatography–mass spectrometry |
ABC transporter | ATP-binding cassette transporter |
cAMP | cyclic adenosine 3′5′ monophosphate |
CRP | cyclic adenosine 3′5′ monophosphate receptor protein |
Csr | carbon storage regulator |
PNP | purine nucleoside phosphorylase |
GMP | guanosine 5′-monophosphate |
HGPRT | hypoxanthine-guanine phosphoribosyl transferase |
IMP | inosine monophosphate |
AMP | adenosine monophosphate |
References
- Sauer, K.; Stoodley, P.; Goeres, D.M.; Hall-Stoodley, L.; Burmølle, M.; Stewart, P.S.; Bjarnsholt, T. The Biofilm Life Cycle: Expanding the Conceptual Model of Biofilm Formation. Nat. Rev. Microbiol. 2022, 20, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Xiao, Y.; Wang, H.; Zhu, J.; Lu, W.; Chen, W. Multiomics Reveals the Mechanism of B. longum in Promoting the Formation of Mixed-Species Biofilms. Food Funct. 2023, 14, 8276–8290. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An Emergent form of Bacterial Life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.V.; Gunawan, C.; Mann, R. We are one: Multispecies Metabolism of a Biofilm Consortium and Their Treatment Strategies. Front. Microbiol. 2021, 12, 635432. [Google Scholar] [CrossRef] [PubMed]
- Zengler, K.; Palsson, B.O. A Road Map for the Development of Community Systems (CoSy) Biology. Nat. Rev. Microbiol. 2012, 10, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liu, Z.; Wang, H.; Zhang, H.; Li, H.; Lu, W.; Zhu, J. Multi-omics Analysis Reveals Genes and Metabolites Involved in Bifidobacterium pseudocatenulatum Biofilm Formation. Front. Microbiol. 2023, 14, 1287680. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Lu, W.; Zhao, J.; Zhang, H.; Chen, W. Multi-Omics Reveals the Inhibition of Lactiplantibacillus plantarum CCFM8724 in Streptococcus mutans-Candida albicans Mixed-Species Biofilms. Microorganisms 2021, 9, 2368. [Google Scholar] [CrossRef] [PubMed]
- Vila, T.; Kong, E.F.; Montelongo-Jauregui, D.; Van Dijck, P.; Shetty, A.C.; McCracken, C.; Bruno, V.M.; Jabra-Rizk, M.A. Therapeutic Implications of C. albicans-S. aureus Mixed Biofilm in a Murine Subcutaneous Catheter Model of Polymicrobial Infection. Virulence 2021, 12, 835–851. [Google Scholar] [CrossRef]
- Béchon, N.; Ghigo, J.-M. Gut biofilms: Bacteroides as Model Symbionts to Study Biofilm Formation by Intestinal Anaerobes. FEMS Microbiol. Rev. 2022, 46, fuab054. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, S.; Macfarlane, G.T. Composition and Metabolic Activities of Bacterial Biofilms Colonizing Food Residues in the Human Gut. Appl. Environ. Microbiol. 2006, 72, 6204–6211. [Google Scholar] [CrossRef]
- Ushakova, N.A.; Abramov, V.M.; Khlebnikov, V.S.; Semenov, A.M.; Kuznetsov, B.B.; Kozlova, A.A.; Nifatov, A.V.; Sakulin, V.K.; Kosarev, I.V.; Vasilenko, R.N.; et al. Generation of Uncultivable Forms of Lactobacillus plantarum 8R-A3 under Solid-State Cultivation on Wheat Bran. Biol. Bull. 2012, 39, 525–533. [Google Scholar] [CrossRef]
- Liu, Z.; Li, L.; Fang, Z.; Lee, Y.; Zhao, J.; Zhang, H.; Chen, W.; Li, H.; Lu, W. The Biofilm-Forming Ability of Six Bifidobacterium Strains on Grape Seed Flour. LWT 2021, 144, 111205. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Z.; Zhao, J.; Zhang, H.; Chen, W.; Li, H.; Lu, W.; Xiao, Y.; Zhou, X. Multi-omics Analysis of the Biofilm Forming Mechanism of Bifidobacterium longum. LWT 2023, 188, 115415. [Google Scholar] [CrossRef]
- Liu, Z.; Li, L.; Wang, Q.; Sadiq, F.A.; Lee, Y.; Zhao, J.; Zhang, H.; Chen, W.; Li, H.; Lu, W. Transcriptome Analysis Reveals the Genes Involved in Bifidobacterium longum FGSZY16M3 Biofilm Formation. Microorganisms 2021, 9, 385. [Google Scholar] [CrossRef]
- Zhang, T.; Xiao, Y.; Wang, H.; Zhu, J.; Lu, W.; Zhang, H.; Chen, W. Construction and Characterization of Stable Multi-Species Biofilms Formed by Nine Core Gut Bacteria on Wheat Fiber. Food Funct. 2024, 15, 8674–8688. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Shi, X.; Zhang, J.; Li, L.; Di, F.; Li, M.; Wang, C.; An, Q.; Zhao, D. Role of PI3K-AKT Pathway in Ultraviolet Ray and Hydrogen Peroxide-Induced Oxidative Damage and Its Repair by Grain Ferments. Foods 2023, 12, 806. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast Universal RNA-seq Aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Dóra, F.; Renner, É.; Keller, D.; Palkovits, M.; Dobolyi, Á. Transcriptome Profiling of the Dorsomedial Prefrontal Cortex in Suicide Victims. Int. J. Mol. Sci. 2022, 23, 7067. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R Package for Comparing Biological Themes among Gene Custers. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Chatman, C.C.; Olson, E.G.; Freedman, A.J.; Dittoe, D.K.; Ricke, S.C.; Majumder, E.L.-W. Co-Exposure to Polyethylene Fiber and Salmonella enterica Serovar Typhimurium Alters Microbiome and Metabolome of in vitro chicken Cecal Mesocosms. Appl. Environ. Microbiol. 2024, 90, e00915–e00924. [Google Scholar] [CrossRef]
- Choo, S.W.; Mohammed, W.K.; Mutha, N.V.R.; Rostami, N.; Ahmed, H.; Krasnogor, N.; Tan, G.Y.A.; Jakubovics, N.S.; McBain, A.J. Transcriptomic Responses to Coaggregation between Streptococcus gordonii and Streptococcus oralis. Appl. Environ. Microbiol. 2021, 87, e01558-21. [Google Scholar] [CrossRef]
- Burmolle, M.; Ren, D.; Bjarnsholt, T.; Sorensen, S.J. Interactions in multispecies biofilms: Do they actually matter? Trends Microbiol. 2014, 22, 84–91. [Google Scholar] [CrossRef]
- Sadiq, F.A.; Wenwei, L.; Wei, C.; Jianxin, Z.; Zhang, H. Transcriptional changes in Bifidobacterium bifidum involved in synergistic multispecies biofilms. Microb. Ecol. 2021, 84, 922–934. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Minamino, T. Structure and Dynamics of the Bacterial Flagellar Motor Complex. Biomolecules 2024, 14, 1488. [Google Scholar] [CrossRef]
- Zheng, S.; Bawazir, M.; Dhall, A.; Kim, H.-E.; He, L.; Heo, J.; Hwang, G. Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Front. Bioeng. Biotechnol. 2021, 9, 643722. [Google Scholar] [CrossRef]
- Houdt, R.; Aertsen, A.; Moons, P.; Vanoirbeek, K.; Michiels, C.W. N-acyl-l-homoserine Lactone Signal Interception by Escherichia coli. FEMS Microbiol. Lett. 2006, 256, 83–89. [Google Scholar] [CrossRef]
- Pennacchietti, E.; D’Alonzo, C.; Freddi, L.; Occhialini, A.; De Biase, D. The Glutaminase-Dependent Acid Resistance System: Qualitative and Quantitative Assays and Analysis of Its Distribution in Enteric Bacteria. Front. Microbiol. 2018, 9, 2869. [Google Scholar] [CrossRef] [PubMed]
- Yunes, R.A.; Poluektova, E.U.; Dyachkova, M.S.; Klimina, K.M.; Kovtun, A.S.; Averina, O.V.; Orlova, V.S.; Danilenko, V.N. GABA Production and Structure of gadB/gadC Genes in Lactobacillus and Bifidobacterium Strains from Human Microbiota. Anaerobe 2016, 42, 197–204. [Google Scholar] [CrossRef]
- Yang, X.; Ma, Q.; Wood, T.K. The R1 Conjugative Plasmid Increases Escherichia coli Biofilm Formation through an Envelope Stress Response. Appl. Environ. Microbiol. 2008, 74, 2690–2699. [Google Scholar] [CrossRef]
- Robic, K.; Munier, E.; Effantin, G.; Lachat, J.; Naquin, D.; Gueguen, E.; Faure, D. Dissimilar Gene Repertoires of Dickeya solani Involved in the Colonization of Lesions and Roots of Solanum tuberosum. Front. Plant Sci. 2023, 14, 1154110. [Google Scholar] [CrossRef]
- Yin, F.; Hu, Y.; Bu, Z.; Liu, Y.; Zhang, H.; Hu, Y.; Xue, Y.; Li, S.; Tan, C.; Chen, X.; et al. Genome-Wide Identification of Genes Critical for in vivo Fitness of Multi-Drug Resistant Porcine Extraintestinal Pathogenic Escherichia coli by Transposon-Directed Insertion Site Sequencing Using a Mouse Infection Model. Virulence 2023, 14, 2158708. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Sun, D.; Zhu, J.; Liu, J.; Liu, W. The Regulation of Bacterial Biofilm Formation by cAMP-CRP: A Mini-Review. Front. Microbiol. 2020, 11, 802. [Google Scholar] [CrossRef]
- Alvarez, A.F.; Rodríguez, C.; González-Chávez, R.; Georgellis, D. The Escherichia coli Two-Component Signal Sensor BarA BindsProtonated Acetate via a Conserved Hydrophobic-Binding Pocket. J. Biol. Chem. 2021, 297, 101383. [Google Scholar] [CrossRef]
- Liu, C.; Sun, D.; Zhu, J.; Liu, W. Two-Component Signal Transduction Systems: A Major Strategy for Connecting Input Stimuli to Biofilm Formation. Front. Microbiol. 2019, 9, 3279. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, L.; Fang, Z.; Lee, Y.; Zhao, J.; Zhang, H.; Chen, W.; Li, H.; Lu, W. Integration of Transcriptome and Metabolome Reveals the Genes and Metabolites Involved in Bifidobacterium bifidum Biofilm Formation. Int. J. Mol. Sci. 2021, 22, 7596. [Google Scholar] [CrossRef]
- Malviya, J.; Alameri, A.A.; Al-Janabi, S.S.; Fawzi, O.F.; Azzawi, A.L.; Obaid, R.F.; Alsudani, A.A.; Alkhayyat, A.S.; Gupta, J.; Mustafa, Y.F.; et al. Metabolomic Profiling of Bacterial Biofilm: Trends, Challenges, and an Emerging Antibiofilm Target. World J. Microbiol. Biotechnol. 2023, 39, 212. [Google Scholar] [CrossRef]
- He, J.; Hwang, G.; Liu, Y.; Gao, L.; Kilpatrick-Liverman, L.; Santarpia, P.; Zhou, X.; Koo, H.; O’Toole, G.A. l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms. J. Bacteriol. 2016, 198, 2651–2661. [Google Scholar] [CrossRef]
- Sakanaka, A.; Kuboniwa, M.; Takeuchi, H.; Hashino, E.; Amano, A. Arginine-Ornithine Antiporter ArcD Controls Arginine Metabolism and Interspecies Biofilm Development of Streptococcus gordonii. J. Biol. Chem. 2015, 290, 21185–21198. [Google Scholar] [CrossRef] [PubMed]
- Ghesquière, J.; Simoens, K.; Koos, E.; Boon, N.; Teughels, W.; Bernaerts, K. Spatiotemporal Monitoring of a Periodontal Multispecies Biofilm Model: Demonstration of Prebiotic Treatment Responses. Appl. Environ. Microbiol. 2023, 89, e01081-23. [Google Scholar] [CrossRef] [PubMed]
- Vaziriamjad, S.; Solgi, M.; Kamarehei, F.; Nouri, F.; Taheri, M. Evaluation of L-Arginine Supplement on the Growth Rate, Biofilm Formation, and Antibiotic Susceptibility in Streptococcus mutans. Eur. J. Med. Res. 2022, 27, 108. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, G.V.; Stewart, V. Regulation of Serine, Glycine, and One-Carbon Biosynthesis. EcoSal Plus 2004, 1, ecosalplus.3.6.1.2. [Google Scholar] [CrossRef]
- Greenwich, J.; Reverdy, A.; Gozzi, K.; Di Cecco, G.; Tashjian, T.; Godoy-Carter, V.; Chai, Y.; Henkin, T.M. A Decrease in Serine Levels during Growth Transition Triggers Biofilm Formation in Bacillus subtili. J. Bacteriol. 2019, 201, e00155-19. [Google Scholar] [CrossRef]
- Zhang, X.; Newman, E. Deficiency in L-Serine Deaminase Results in Abnormal Growth and Cell Division of Escherichia coli K-12. Mol. Microbiol. 2008, 69, 870–881. [Google Scholar] [CrossRef]
- Hegde, M.; Englert, D.L.; Schrock, S.; Cohn, W.B.; Vogt, C.; Wood, T.K.; Manson, M.D.; Jayaraman, A. Chemotaxis to the Quorum-Sensing Signal AI-2 Requires the Tsr Chemoreceptor and the Periplasmic LsrB AI-2-Binding Protein. J. Bacteriol. 2011, 193, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Mullen, N.J.; Singh, P.K. Nucleotide Metabolism: A Pan-Cancer Metabolic Dependency. Nat. Rev. Cancer 2023, 23, 275–294. [Google Scholar] [CrossRef] [PubMed]
- Cancino-Diaz, M.E.; Guerrero-Barajas, C.; Betanzos-Cabrera, G.; Cancino-Diaz, J.C. Nucleotides as Bacterial Second Messengers. Molecules 2023, 28, 7996. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.-C.; Ochetto, A.; Chen, C.; Sun, D.; Allcock, H.R.; Siedlecki, C.A. Surfaces Modified with Small Molecules that Interfere with Nucleotide Signaling Reduce Staphylococcus epidermidis Biofilm and Increase the Efficacy of Ciprofloxacin. Colloids Surf. B 2023, 227, 113345. [Google Scholar] [CrossRef] [PubMed]
Gene | Forword Primer | Reverse Primer |
---|---|---|
gadC | CGGAAATCGCCTCCTGGATT | GCGAAATGACCAGCGTTACC |
pdeR | GTCATTGGGCAAAGCGTGTT | TTGCGAAACAGAAACAGCCG |
qseC | ACCCAACGTCTTAGTCTGCG | TTAACCGCTTGGCAAACAGC |
baeR | TCGTCTGCTGAAAACGCTCT | ATGGTGCGGTCGGTTACTAC |
csrA | CCGTGACAGTTTTAGGGGTA | AACTGGACTGCTGGGATTTT |
rcsB | TATGAACAACAACCCGGCGA | CCGTAACCACCAGCACTGAT |
barA | ACCTGAAACTTATCGGCGCA | GTTTGTTGCTGATGCGGGAG |
etk | ACAGAATATCGCTCGCCAGG | CAAGAACGGCTTTGGCTTCC |
gfcE | CAGAACAAACTGCTGCACCC | GGTCCATTTTCAGCGTGCTC |
cheW | GTAACACGGATTGCGAACAC | ACATCCACCTGGCTGAACTT |
flgJ | GGAAGGGATGTTCGTGCAGA | CTGGCAATGGTTGTTCTGGC |
fliR | TATGCCCGTTTTAGCGCGTA | CAGCATCAGCCCGTTAAGGA |
bcsA | AGGACAGCTACCCGGAAGAT | ACCAGAGAAGTCAGCACACG |
rbsB | TGCTGATTAACCCGACCGAC | AGAAGCAATGTGGCTCACCA |
16S | GACTACCAGGGTATCTAATC | GTATTACCGCGGCTGCTGGCA |
Sample | Clean Data | Effective | Q20 | Q30 |
---|---|---|---|---|
B. ovatus | 2.81 G | 98.67% | 98.12% | 94.34% |
P. distasonis | 2.15 G | 96.06% | 96.61% | 91.25% |
B. uniformis | 2.03 G | 98.74% | 98.01% | 94.44% |
B. cellulosilyticus | 2.00 G | 99.17% | 98.39% | 94.90% |
E. coli | 2.06 G | 98.02% | 98.42% | 95.40% |
B. fragilis | 2.32 G | 93.33% | 97.21% | 93.17% |
P. dorie | 2.68 G | 95.42% | 98.10% | 94.30% |
B. stercoris | 2.72 G | 98.54% | 98.07% | 94.23% |
B. longum | 2.20 G | 99.21% | 97.97% | 94.42% |
M9 | 18.45 G | 98.95% | 98.12% | 94.48% |
Total | 39.42 G |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Pei, Z.; Wang, H.; Zhao, J.; Chen, W.; Lu, W. Combined Analysis of Transcriptomes and Metabolomes Reveals Key Genes and Substances That Affect the Formation of a Multi-Species Biofilm by Nine Gut Bacteria. Microorganisms 2025, 13, 234. https://doi.org/10.3390/microorganisms13020234
Zhang T, Pei Z, Wang H, Zhao J, Chen W, Lu W. Combined Analysis of Transcriptomes and Metabolomes Reveals Key Genes and Substances That Affect the Formation of a Multi-Species Biofilm by Nine Gut Bacteria. Microorganisms. 2025; 13(2):234. https://doi.org/10.3390/microorganisms13020234
Chicago/Turabian StyleZhang, Ting, Zhangming Pei, Hongchao Wang, Jianxin Zhao, Wei Chen, and Wenwei Lu. 2025. "Combined Analysis of Transcriptomes and Metabolomes Reveals Key Genes and Substances That Affect the Formation of a Multi-Species Biofilm by Nine Gut Bacteria" Microorganisms 13, no. 2: 234. https://doi.org/10.3390/microorganisms13020234
APA StyleZhang, T., Pei, Z., Wang, H., Zhao, J., Chen, W., & Lu, W. (2025). Combined Analysis of Transcriptomes and Metabolomes Reveals Key Genes and Substances That Affect the Formation of a Multi-Species Biofilm by Nine Gut Bacteria. Microorganisms, 13(2), 234. https://doi.org/10.3390/microorganisms13020234