Characteristics of Soil Microbial Community Structure in Different Land Use Types of the Huanghe Alluvial Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site and Sample Collection
2.2. Metagenomic Sequencing
2.3. Statistical Analyses
3. Results
3.1. Analysis of the Soil Bacteria Community Structure in Different Land Use Types
3.2. Analysis of the Soil Eukaryota Community Structure in Different Land Use Types
3.3. Analysis of the Soil Archaea Community Structure in Different Land Use Types
3.4. Analysis of the Soil Virus Community Structure in Different Land Use Types
4. Discussion
4.1. Characteristics of the Soil Bacteria Community Structure in Different Land Use Types
4.2. Characteristics of the Soil Eukaryota Community Structure in Different Land Use Types
4.3. Characteristics of the Soil Archaea Community Structure in Different Land Use Types
4.4. Characteristics of the Soil Virus Community Structure in Different Land Use Types
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, B.-h.; Hong, J.-p.; Zhang, Q.; Jin, D.-s.; Gao, C.-h. Contrast in soil microbial metabolic functional diversity to fertilization and crop rotation under rhizosphere and non-rhizosphere in the coal gangue landfill reclamation area of Loess Hills. PLoS ONE 2020, 15, e0229341. [Google Scholar] [CrossRef] [PubMed]
- Bahram, M.; Hildebrand, F.; Forslund, S.K.; Anderson, J.L.; Soudzilovskaia, N.A.; Bodegom, P.M.; Bengtsson-Palme, J.; Anslan, S.; Coelho, L.P.; Harend, H. Structure and function of the global topsoil microbiome. Nature 2018, 560, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Buee, M.; De Boer, W.; Martin, F.; Van Overbeek, L.; Jurkevitch, E. The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 2009, 321, 189–212. [Google Scholar] [CrossRef]
- Williamson, K.E.; Fuhrmann, J.J.; Wommack, K.E.; Radosevich, M. Viruses in soil ecosystems: An unknown quantity within an unexplored territory. Annu. Rev. Virol. 2017, 4, 201–219. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P.; López-Mondéjar, R.; Kohout, P. Forest microbiome and global change. Nat. Rev. Microbiol. 2023, 21, 487–501. [Google Scholar] [CrossRef]
- Sura, S.; Waiser, M.J.; Tumber, V.; Raina-Fulton, R.; Cessna, A.J. Effects of a herbicide mixture on primary and bacterial productivity in four prairie wetlands with varying salinities: An enclosure approach. Sci. Total Environ. 2015, 512, 526–539. [Google Scholar] [CrossRef]
- Wagg, C.; Schlaeppi, K.; Banerjee, S.; Kuramae, E.E.; van der Heijden, M.G. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 2019, 10, 4841. [Google Scholar] [CrossRef]
- Jetten, M.S. The microbial nitrogen cycle. Environ. Microbiol. 2008, 10, 2903–2909. [Google Scholar] [CrossRef]
- Wang, G.-h.; Liu, J.-j.; Yu, Z.-h.; Wang, X.-z.; Jin, J.; Liu, X.-b. Research progress of Acidobacteria ecology in soils. Biotechnol. Bull. 2016, 32, 14. [Google Scholar]
- Šovljanski, O.; Pezo, L.; Grahovac, J.; Tomić, A.; Ranitović, A.; Cvetković, D.; Markov, S. Best-performing Bacillus strains for microbiologically induced CaCO3 precipitation: Screening of relative influence of operational and environmental factors. J. Biotechnol. 2022, 350, 31–41. [Google Scholar] [CrossRef]
- Paver, S.F.; Hayek, K.R.; Gano, K.A.; Fagen, J.R.; Brown, C.T.; Davis-Richardson, A.G.; Crabb, D.B.; Rosario-Passapera, R.; Giongo, A.; Triplett, E.W. Interactions between specific phytoplankton and bacteria affect lake bacterial community succession. Environ. Microbiol. 2013, 15, 2489–2504. [Google Scholar] [CrossRef]
- Knelman, J.E.; Schmidt, S.K.; Lynch, R.C.; Darcy, J.L.; Castle, S.C.; Cleveland, C.C.; Nemergut, D.R. Nutrient addition dramatically accelerates microbial community succession. PLoS ONE 2014, 9, e102609. [Google Scholar] [CrossRef]
- Labouyrie, M.; Ballabio, C.; Romero, F.; Panagos, P.; Jones, A.; Schmid, M.W.; Mikryukov, V.; Dulya, O.; Tedersoo, L.; Bahram, M. Patterns in soil microbial diversity across Europe. Nat. Commun. 2023, 14, 3311. [Google Scholar] [CrossRef]
- Price, G.; Langille, M.G.; Yurgel, S.N. Microbial co-occurrence network analysis of soils receiving short-and long-term applications of alkaline treated biosolids. Sci. Total Environ. 2021, 751, 141687. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Li, C.; Ren, Q. Effects of different land use patterns on soil bacterial and fungal biodiversity in the hydro-fluctuation zone of the Three Gorges Reservoir region. Acta Ecol. Sin. 2017, 37, 3494–3504. [Google Scholar]
- Gardi, C.; Jeffery, S.; Saltelli, A. An estimate of potential threats levels to soil biodiversity in EU. Glob. Change Biol. 2013, 19, 1538–1548. [Google Scholar] [CrossRef]
- Ji, L.; Guo, X.; Sun, Q.; Wang, R. Soil microbial biomass and activity in different land use types in Ningxia irrigation area. Ecol. Environ. 2020, 29, 516. [Google Scholar]
- Unger, I.M.; Goyne, K.W.; Kremer, R.J.; Kennedy, A.C. Microbial community diversity in agroforestry and grass vegetative filter strips. Agrofor. Syst. 2013, 87, 395–402. [Google Scholar] [CrossRef]
- Lienhard, P.; Terrat, S.; Mathieu, O.; Levêque, J.; Chemidlin Prévost-Bouré, N.; Nowak, V.; Régnier, T.; Faivre, C.; Sayphoummie, S.; Panyasiri, K. Soil microbial diversity and C turnover modified by tillage and cropping in Laos tropical grassland. Environ. Chem. Lett. 2013, 11, 391–398. [Google Scholar] [CrossRef]
- Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; De Ruiter, P.C.; Van Der Putten, W.H.; Birkhofer, K.; Hemerik, L.; De Vries, F.T.; Bardgett, R.D.; Brady, M.V. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 2015, 21, 973–985. [Google Scholar] [CrossRef]
- Zhou, J.; Fong, J.J. Strong agricultural management effects on soil microbial community in a non-experimental agroecosystem. Appl. Soil Ecol. 2021, 165, 103970. [Google Scholar] [CrossRef]
- Cui, B.; Yang, Q.; Yang, Z.; Zhang, K. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecol. Eng. 2009, 35, 1090–1103. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, K.; Wang, S.; Wu, T.; Li, X.; Wang, J.; Wang, D.; Zhu, H.; Tan, C.; Ji, Y. Spatiotemporal evolution of ecological vulnerability in the Yellow River Basin under ecological restoration initiatives. Ecol. Indic. 2022, 135, 108586. [Google Scholar] [CrossRef]
- Sharpton, T.J. An introduction to the analysis of shotgun metagenomic data. Front. Plant Sci. 2014, 5, 209. [Google Scholar] [CrossRef]
- Sun, S.; Badgley, B.D. Changes in microbial functional genes within the soil metagenome during forest ecosystem restoration. Soil Biol. Biochem. 2019, 135, 163–172. [Google Scholar] [CrossRef]
- Lahlali, R.; Ibrahim, D.S.; Belabess, Z.; Roni, M.Z.K.; Radouane, N.; Vicente, C.S.; Menéndez, E.; Mokrini, F.; Barka, E.A.; e Mota, M.G.d.M. High-throughput molecular technologies for unraveling the mystery of soil microbial community: Challenges and future prospects. Heliyon 2021, 7, e08142. [Google Scholar] [CrossRef]
- Das, A.J.; Ravinath, R.; Shilpa, B.R.; Rohith, B.S.; Goyal, A.K.; Ramesh, N.; Prasannakumar, M.K.; Ekambaram, H.; Usha, T.; Middha, S.K. Microbiomics and cloud-based analytics advance sustainable soil management. Front. Biosci. Landmark 2020, 26, 478–495. [Google Scholar] [CrossRef]
- Zhan, J.; Li, Z.; Yu, X.; Zhao, G.; Yuan, Q. Pedo-transfer functions of the soil water characteristic curves of the vadose zone in a typical alluvial plain area in the lower reaches of the Yellow River using machine learning methods. Environ. Monit. Assess. 2022, 194, 850. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J.; Zhu, L.; Tian, H.; Shi, J.; Ren, X. Spatial variation and driving mechanism of soil organic carbon components in the alluvial/sedimentary zone of the Yellow River. J. Geogr. Sci. 2021, 31, 535–550. [Google Scholar] [CrossRef]
- Nan, Z.-W.; Liu, Z.; Meng, W.-W.; Dai, H.-C.; Xu, J.; Wang, N.; Liu, L.-Y.; Wang, X.-Q.; Liu, K.-C. Structure and Function of Soil Fungal Community in Rotation Fallow Farmland in Alluvial Plain of Lower Yellow River. Huan Jing Ke Xue Huanjing Kexue 2023, 44, 482–493. [Google Scholar]
- He, H.; Miao, Y.; Gan, Y.; Wei, S.; Tan, S.; Rask, K.A.; Wang, L.; Dai, J.; Chen, W.; Ekelund, F. Soil bacterial community response to long-term land use conversion in Yellow River Delta. Appl. Soil Ecol. 2020, 156, 103709. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Zhang, Z.; Li, Z.; Zhang, Z.; Zhao, D.; Wang, L.; Lu, F.; Li, Y.-z. Shifts in the bacterial population and ecosystem functions in response to vegetation in the yellow river delta wetlands. Msystems 2020, 5, e00412-20. [Google Scholar] [CrossRef]
- Karlsson, F.H.; Tremaroli, V.; Nookaew, I.; Bergström, G.; Behre, C.J.; Fagerberg, B.; Nielsen, J.; Bäckhed, F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013, 498, 99–103. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Almeida, M.; Juncker, A.S.; Rasmussen, S.; Li, J.; Sunagawa, S.; Plichta, D.R.; Gautier, L.; Pedersen, A.G.; Le Chatelier, E. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 2014, 32, 822–828. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Whitman, W.B.; Gundale, M.J.; Chien, C.C.; Chiu, C.Y. Functional response of the soil microbial community to biochar applications. Gcb Bioenergy 2021, 13, 269–281. [Google Scholar] [CrossRef]
- Guo, X.; Chen, H.Y.; Meng, M.; Biswas, S.R.; Ye, L.; Zhang, J. Effects of land use change on the composition of soil microbial communities in a managed subtropical forest. For. Ecol. Manag. 2016, 373, 93–99. [Google Scholar] [CrossRef]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Burton, J.; Chen, C.; Xu, Z.; Ghadiri, H. Soil microbial biomass, activity and community composition in adjacent native and plantation forests of subtropical Australia. J. Soils Sediments 2010, 10, 1267–1277. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, F.; Huai, B.-D.; Yang, X.; Sui, W.-Z. Effects of land use changes on soil bacterial community diversity in the riparian wetland along the downstream of Songhua River. Huan Jing Ke Xue Huanjing Kexue 2020, 41, 4273–4283. [Google Scholar]
- Chen, M.-L.; Zeng, Q.-C.; Huang, Y.-M.; Ni, Y.-X. Effects of the farmland-to-forest/grassland conversion program on the soil bacterial community in the loess hilly region. Huan Jing Ke Xue Huanjing Kexue 2018, 39, 1824–1832. [Google Scholar]
- Liu, Q.; Xie, S.; Zhao, X.; Liu, Y.; Xing, Y.; Dao, J.; Wei, B.; Peng, Y.; Duan, W.; Wang, Z. Drought sensitivity of sugarcane cultivars shapes rhizosphere bacterial community patterns in response to water stress. Front. Microbiol. 2021, 12, 732989. [Google Scholar] [CrossRef]
- Li, Z.; Xia, C.; Wang, Y.; Li, X.; Qiao, Y.; Li, C.; Zhou, J.; Zhang, L.; Ye, X.; Huang, Y. Identification of an endo-chitinase from Corallococcus sp. EGB and evaluation of its antifungal properties. Int. J. Biol. Macromol. 2019, 132, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sutil, M.a.C.; Gómez-Santos, N.; Moraleda-Munoz, A.; Martins, L.g.O.; Pérez, J.; Munoz-Dorado, J. Differential expression of the three multicopper oxidases from Myxococcus xanthus. J. Bacteriol. 2007, 189, 4887–4898. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, S.; Jogler, M.; Jogler, C. On the maverick Planctomycetes. FEMS Microbiol. Rev. 2018, 42, 739–760. [Google Scholar] [CrossRef] [PubMed]
- Du, S.-Y.; Chen, J.; Liu, J.-W.; Guo, X.-W.; Min, W. Revealing the Effect of Saline Water Drip Irrigation on Soil Microorganisms in Cotton Fields Based on Metagenomics. Huan Jing Ke Xue Huanjing Kexue 2023, 44, 1104–1119. [Google Scholar]
- Tebo, B.M.; Davis, R.E.; Anitori, R.P.; Connell, L.B.; Schiffman, P.; Staudigel, H. Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Front. Microbiol. 2015, 6, 109324. [Google Scholar] [CrossRef] [PubMed]
- Yabuuchi, E.; Yano, I.; Oyaizu, H.; Hashimoto, Y.; Ezaki, T.; Yamamoto, H. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol. 1990, 34, 99–119. [Google Scholar] [CrossRef]
- Cheng, M.; Yan, X.; He, J.; Qiu, J.; Chen, Q. Comparative genome analysis reveals the evolution of chloroacetanilide herbicide mineralization in Sphingomonas wittichii DC-6. Arch. Microbiol. 2019, 201, 907–918. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Xu, T.-L.; Veresoglou, S.D.; Hu, H.-W.; Hao, Z.-P.; Hu, Y.-J.; Liu, L.; Deng, Y.; Rillig, M.C.; Chen, B.-D. Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biol. Biochem. 2017, 110, 12–21. [Google Scholar] [CrossRef]
- Egidi, E.; Delgado-Baquerizo, M.; Plett, J.M.; Wang, J.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 2019, 10, 2369. [Google Scholar] [CrossRef] [PubMed]
- Challacombe, J.F.; Hesse, C.N.; Bramer, L.M.; McCue, L.A.; Lipton, M.; Purvine, S.; Nicora, C.; Gallegos-Graves, L.V.; Porras-Alfaro, A.; Kuske, C.R. Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis. BMC Genom. 2019, 20, 976. [Google Scholar] [CrossRef]
- Gomez, E.; Pioli, R.; Conti, M. Fungal abundance and distribution as influenced by clearing and land use in a vertic soil of Argentina. Biol. Fertil. Soils 2007, 43, 373–377. [Google Scholar] [CrossRef]
- Powell, J.R.; Rillig, M.C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol. 2018, 220, 1059–1075. [Google Scholar] [CrossRef] [PubMed]
- Tate, K.R. Soil methane oxidation and land-use change—From process to mitigation. Soil Biol. Biochem. 2015, 80, 260–272. [Google Scholar] [CrossRef]
- Tian, Q.; Taniguchi, T.; Shi, W.-Y.; Li, G.; Yamanaka, N.; Du, S. Land-use types and soil chemical properties influence soil microbial communities in the semiarid Loess Plateau region in China. Sci. Rep. 2017, 7, 45289. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-L.; Tsai, C.-C.; Zheng, N.-Y. Improving the organic and biological fouling resistance and removal of pharmaceutical and personal care products through nanofiltration by using in situ radical graft polymerization. Sci. Total Environ. 2018, 635, 543–550. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, A.; Jin, T.; Sun, D.; Guo, F.; Lei, H.; Lin, L.; Shu, W.; Yu, P.; Li, X. A panoramic view of the virosphere in three wastewater treatment plants by integrating viral-like particle-concentrated and traditional non-concentrated metagenomic approaches. iMeta 2024, 3, e188. [Google Scholar] [CrossRef] [PubMed]
- Meunier, A.; Jacquet, S. Do phages impact microbial dynamics, prokaryotic community structure and nutrient dynamics in Lake Bourget? Biol. Open 2015, 4, 1528–1537. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Li, H.; Duan, C.-S.; Zhou, X.-Y.; Luo, Q.-P.; An, X.-L.; Zhu, Y.-G.; Su, J.-Q. Response of soil viral communities to land use changes. Nat. Commun. 2022, 13, 6027. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Ashoka, P.; Ahlawat, U.; Changdeo, W.B.; Rehsawla, R.; Naruka, A.; Sharma, D. Mechanisms and Applications of Microbial Biotechnology in Soil Health and Agricultural Productivity: A Review. J. Adv. Biol. Biotechnol. 2024, 27, 1420–1438. [Google Scholar] [CrossRef]
TCF | FCF | FL | WL | GL | |
---|---|---|---|---|---|
Bacteria | 90.64% | 90.94% | 92.45% | 91.50% | 91.90% |
Eukaryota | 0.75% | 0.58% | 1.01% | 0.78% | 0.98% |
Archaea | 0.01% | 0.01% | 0.01% | 0.01% | 0.01% |
Virus | 0.04% | 0.02% | 0.07% | 0.06% | 0.09% |
Microbial Taxa | Land Use Types | F-Value | R2 | p-Value | Adjust p-Value |
---|---|---|---|---|---|
Bacteria | TCF vs. FCF | 1.65 | 0.17 | 0.103 | 0.103 |
TCF vs. FL | 6.64 | 0.45 | 0.005 | 0.015 | |
TCF vs. WL | 4.89 | 0.38 | 0.02 | 0.022 | |
TCF vs. GL | 11.74 | 0.59 | 0.008 | 0.015 | |
FCF vs. FL | 9.58 | 0.54 | 0.012 | 0.015 | |
FCF vs. WL | 5.85 | 0.42 | 0.01 | 0.015 | |
FCF vs. GL | 17.71 | 0.69 | 0.007 | 0.015 | |
NT vs. WL | 6.68 | 0.45 | 0.007 | 0.015 | |
NT vs. GL | 11.53 | 0.59 | 0.011 | 0.015 | |
WL vs. GL | 5.52 | 0.41 | 0.012 | 0.015 | |
Eukaryota | TCF vs. FCF | 2.02 | 0.2 | 0.009 | 0.014 |
TCF vs. FL | 3.1 | 0.28 | 0.008 | 0.014 | |
TCF vs. WL | 3.56 | 0.31 | 0.011 | 0.014 | |
TCF vs. GL | 6.97 | 0.47 | 0.012 | 0.014 | |
FCF vs. FL | 4.77 | 0.37 | 0.015 | 0.015 | |
FCF vs. WL | 5.56 | 0.41 | 0.013 | 0.014 | |
FCF vs. GL | 12.05 | 0.6 | 0.007 | 0.014 | |
NT vs. WL | 2.77 | 0.26 | 0.010 | 0.014 | |
NT vs. GL | 4.43 | 0.36 | 0.010 | 0.014 | |
WL vs. GL | 3.53 | 0.31 | 0.004 | 0.014 | |
Archaea | TCF vs. FCF | 3.04 | 0.28 | 0.097 | 0.097 |
TCF vs. FL | 6.76 | 0.46 | 0.008 | 0.013 | |
TCF vs. WL | 3.84 | 0.32 | 0.008 | 0.013 | |
TCF vs. GL | 24.6 | 0.75 | 0.008 | 0.013 | |
FCF vs. FL | 14.41 | 0.64 | 0.009 | 0.013 | |
FCF vs. WL | 3.00 | 0.27 | 0.045 | 0.050 | |
FCF vs. GL | 23.86 | 0.75 | 0.011 | 0.014 | |
NT vs. WL | 6.07 | 0.43 | 0.009 | 0.013 | |
NT vs. GL | 29.06 | 0.78 | 0.008 | 0.013 | |
WL vs. GL | 4.26 | 0.35 | 0.007 | 0.013 | |
Virus | TCF vs. FCF | 1.29 | 0.14 | 0.286 | 0.318 |
TCF vs. FL | 1.86 | 0.19 | 0.132 | 0.165 | |
TCF vs. WL | 2.03 | 0.20 | 0.106 | 0.151 | |
TCF vs. GL | 11.21 | 0.58 | 0.010 | 0.035 | |
FCF vs. FL | 2.48 | 0.24 | 0.060 | 0.100 | |
FCF vs. WL | 3.03 | 0.27 | 0.027 | 0.054 | |
FCF vs. GL | 14.84 | 0.65 | 0.012 | 0.035 | |
NT vs. WL | 0.84 | 0.09 | 0.507 | 0.507 | |
NT vs. GL | 3.45 | 0.30 | 0.008 | 0.035 | |
WL vs. GL | 3.50 | 0.30 | 0.014 | 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Cui, Q.; Li, D.; Liu, Y.; Liu, K.; Li, Z. Characteristics of Soil Microbial Community Structure in Different Land Use Types of the Huanghe Alluvial Plain. Microorganisms 2025, 13, 273. https://doi.org/10.3390/microorganisms13020273
Cao X, Cui Q, Li D, Liu Y, Liu K, Li Z. Characteristics of Soil Microbial Community Structure in Different Land Use Types of the Huanghe Alluvial Plain. Microorganisms. 2025; 13(2):273. https://doi.org/10.3390/microorganisms13020273
Chicago/Turabian StyleCao, Xintong, Qinghua Cui, Daiqing Li, Yu Liu, Kun Liu, and Zhuoqing Li. 2025. "Characteristics of Soil Microbial Community Structure in Different Land Use Types of the Huanghe Alluvial Plain" Microorganisms 13, no. 2: 273. https://doi.org/10.3390/microorganisms13020273
APA StyleCao, X., Cui, Q., Li, D., Liu, Y., Liu, K., & Li, Z. (2025). Characteristics of Soil Microbial Community Structure in Different Land Use Types of the Huanghe Alluvial Plain. Microorganisms, 13(2), 273. https://doi.org/10.3390/microorganisms13020273