Pigment Production by Pseudofusicoccum sp.: Extract Production, Cytotoxicity Activity, and Diketopiperazines Identified
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungus Cultivation
2.2. Fungal Identification
2.3. Submerged Fermentation and Pigment Extract Production
2.4. Effect of Light on Pigment Production
2.5. Biomass Estimation
2.6. Cell Cultures
2.7. Cytotoxicity Activity
2.8. Chromatography Procedures
2.9. Statistical Analysis
3. Results
3.1. Fungal Molecular Identification
3.2. Effect of Light in Pigment Yield
3.3. Effect of Light on Growth
3.4. Cytotoxicity Assay
3.5. Compound Identification Using NMR
3.6. NMR Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rapoport, A.; Guzhova, I.; Bernetti, L.; Buzzini, P.; Kieliszek, M.; Kot, A.M. Metabolites H OH OH Carotenoids and Some Other Pigments from Fungi and Yeasts. Metabolites 2021, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Bacon, C.W.; White, J.F. Microbial Endophytes; Marcel Dekker, Ed.; Marcel Dekker Inc.: New York, NY, USA, 2000. [Google Scholar]
- Rathod, D.; Dar, M.; Gade, A.; Shrivastava, R.B.; Rai, M.; Varma, A. Microbial Endophytes: Progress and Challenges. In Biotechnology for Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2013; pp. 101–121. [Google Scholar]
- Fadiji, A.E.; Babalola, O.O. Elucidating Mechanisms of Endophytes Used in Plant Protection and Other Bioactivities With Multifunctional Prospects. Front. Bioeng. Biotechnol. 2020, 8, 467. [Google Scholar] [CrossRef] [PubMed]
- Gurgel, R.S.; de Melo Pereira, D.Í.; Garcia, A.V.F.; Fernandes de Souza, A.T.; Mendes da Silva, T.; de Andrade, C.P.; Lima da Silva, W.; Nunez, C.V.; Fantin, C.; de Lima Procópio, R.E.; et al. Antimicrobial and Antioxidant Activities of Endophytic Fungi Associated with Arrabidaea chica (Bignoniaceae). J. Fungi 2023, 9, 864. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, B.R.P.; Machado, B.A.S.; Hanna, S.A.; Umsza-Guez, M.A. Prospective Study of Microbial Colorants under the Focus of Patent Documents. Recent Pat. Biotechnol. 2020, 14, 184–193. [Google Scholar] [CrossRef]
- de Souza, T.L.S.; de Souza, C.O.; Umsza-Guez, M.A. Technological and Scientific Prospection on Pigments Produced by Microorganisms. Recent Pat. Biotechnol. 2022, 17, 364–375. [Google Scholar] [CrossRef]
- Atalla, M.M.; El-khrisy, E.A.M.; Youssef, Y.A.; Mohamed, A.A. Production of Textile Reddish Brown Dyes by Fungi. Malays. J. Microbiol. 2011, 7, 33–40. [Google Scholar] [CrossRef]
- de Melo Pereira, D.Í.; Gurgel, R.S.; de Souza, A.T.F.; Matias, R.R.; de Souza Falcão, L.; Chaves, F.C.M.; da Silva, G.F.; Martínez, J.G.; de Lima Procópio, R.E.; Fantin, C.; et al. Isolation and Identification of Pigment-Producing Endophytic Fungi from the Amazonian Species Fridericia chica. J. Fungi 2024, 10, 77. [Google Scholar] [CrossRef]
- Babula, P.; Adam, V.; Havel, L.; Kizek, R. Noteworthy Secondary Metabolites Naphthoquinones—Their Occurrence, Pharmacological Properties and Analysis. Curr. Pharm. Anal. 2009, 5, 47–68. [Google Scholar] [CrossRef]
- Dufossé, L. Red Colourants from Filamentous Fungi: Are They Ready for the Food Industry? J. Food Compos. Anal. 2018, 69, 156–161. [Google Scholar] [CrossRef]
- Moharram, A.M.; Mostafa, E.; Ismail, M.A. Chemical Profile of Monascus Ruber Strains. Food Technol. Biotechnol. 2012, 50, 490–499. [Google Scholar]
- Gessler, N.N.; Egorova, A.S.; Belozerskaya, T.A. Fungal Anthraquinones. Appl. Biochem. Microbiol. 2013, 49, 85–99. [Google Scholar] [CrossRef]
- Nigam, P.S.; Luke, J.S. Food Additives: Production of Microbial Pigments and Their Antioxidant Properties. Curr. Opin. Food Sci. 2016, 7, 93–100. [Google Scholar] [CrossRef]
- Dufossé, L.; Fouillaud, M.; Caro, Y.; Mapari, S.A.S.; Sutthiwong, N. Filamentous Fungi Are Large-Scale Producers of Pigments and Colorants for the Food Industry. Curr. Opin. Biotechnol. 2014, 26, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Gautschi, M.; Schmid, J.P.; Peppard, T.L.; Ryan, T.P.; Tuorto, R.M.; Yang, X. Chemical Characterization of Diketopiperazines in Beer. J. Agric. Food Chem. 1997, 45, 3183–3189. [Google Scholar] [CrossRef]
- Song, Z.; Hou, Y.; Yang, Q.; Li, X.; Wu, S. Structures and Biological Activities of Diketopiperazines from Marine Organisms: A Review. Mar. Drugs 2021, 19, 403. [Google Scholar] [CrossRef] [PubMed]
- Grand View Research. Food Color Market Analysis Research Report [2023–2030]; Grand View Research: San Francisco, CA, USA, 2030. [Google Scholar]
- FDAbasics. FDA Registration Services for Food, Drug, Medical Device and Cosmetics. Available online: https://www.fdabasics.com/our-service/fda-registration-services/?https://www.fdabasics.com/our-service/fda-registration-services/&gclid=Cj0KCQjw18WKBhCUARIsAFiW7JxQoRnvned7vSDki6fX6kkKoLR2W2JdeZYpPeIt89G2DOfM2p6HbRYaApc8EALw_wcB (accessed on 26 September 2021).
- Sigurdson, G.T.; Tang, P.; Giusti, M.M. Natural Colorants: Food Colorants from Natural Sources. Annu. Rev. Food Sci. Technol. 2017, 8, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Molelekoa, T.B.J.; Augustyn, W.; Regnier, T.; da Silva, L.S. Chemical Characterization and Toxicity Evaluation of Fungal Pigments for Potential Application in Food, Phamarceutical and Agricultural Industries. Saudi J. Biol. Sci. 2023, 30, 103630. [Google Scholar] [CrossRef]
- Narsing Rao, M.P.; Xiao, M.; Li, W.-J. Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications. Front Microbiol 2017, 8, 1113. [Google Scholar] [CrossRef]
- Dufossé, L.; Galaup, P.; Yaron, A.; Arad, S.M.; Blanc, P.; Chidambara Murthy, K.N.; Ravishankar, G.A. Microorganisms and Microalgae as Sources of Pigments for Food Use: A Scientific Oddity or an Industrial Reality? Trends Food Sci. Technol. 2005, 16, 389–406. [Google Scholar] [CrossRef]
- Hernández, V.A.; Machuca, Á.; Saavedra, I.; Chavez, D.; Astuya, A.; Barriga, C. Talaromyces Australis and Penicillium Murcianum Pigment Production in Optimized Liquid Cultures and Evaluation of Their Cytotoxicity in Textile Applications. World J. Microbiol. Biotechnol. 2019, 35, 160. [Google Scholar] [CrossRef]
- Sharma, V.; Singamaneni, V.; Sharma, N.; Kumar, A.; Arora, D.; Kushwaha, M.; Bhushan, S.; Jaglan, S.; Gupta, P. Valproic Acid Induces Three Novel Cytotoxic Secondary Metabolites in Diaporthe Sp., an Endophytic Fungus from Datura inoxia Mill. Bioorg. Med. Chem. Lett. 2018, 28, 2217–2221. [Google Scholar] [CrossRef]
- Xin, X.Q.; Chen, Y.; Zhang, H.; Li, Y.; Yang, M.H.; Kong, L.Y. Cytotoxic Seco-Cytochalasins from an Endophytic Aspergillus Sp. Harbored in Pinellia Ternata Tubers. Fitoterapia 2019, 132, 53–59. [Google Scholar] [CrossRef]
- Babitha, S.; Carvahlo, J.C.; Soccol, C.R.; Pandey, A. Effect of Light on Growth, Pigment Production and Culture Morphology of Monascus Purpureus in Solid-State Fermentation. World J. Microbiol. Biotechnol. 2008, 24, 2671–2675. [Google Scholar] [CrossRef]
- Mondal, S.K.; Samantaray, D.P.; Mishra, B.B. Optimization of Pigment Production by a Novel Bacillus Sp. BBMRH Isolated from Cow Dung. J. Pure Appl. Microbiol. 2015, 9, 2321–2326. [Google Scholar]
- Zheng, W.; Zhang, M.; Zhao, Y.; Miao, K.; Jiang, H. NMR-Based Metabonomic Analysis on Effect of Light on Production of Antioxidant Phenolic Compounds in Submerged Cultures of Inonotus Obliquus. Bioresour. Technol. 2009, 100, 4481–4487. [Google Scholar] [CrossRef]
- Miyake, T.; Mori, A.; Kii, T.; Okuno, T.; Usui, Y.; Sato, F.; Sammoto, H.; Watanabe, A.; Kariyama, M. Light Effects on Cell Development and Secondary Metabolism in Monascus. J. Ind. Microbiol. Biotechnol. 2005, 32, 103–108. [Google Scholar] [CrossRef]
- Velmurugan, P.; Lee, Y.H.; Venil, C.K.; Lakshmanaperumalsamy, P.; Chae, J.C.; Oh, B.T. Effect of Light on Growth, Intracellular and Extracellular Pigment Production by Five Pigment-Producing Filamentous Fungi in Synthetic Medium. J. Biosci. Bioeng. 2010, 109, 346–350. [Google Scholar] [CrossRef]
- Bayram, Ö.; Braus, G.H.; Fischer, R.; Rodriguez-Romero, J. Spotlight on Aspergillus Nidulans Photosensory Systems. Fungal Genet. Biol. 2010, 47, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Petrini, O.; Sieber, T.N.; Toti, L.; Viret, O. Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat. Toxins 1992, 1, 185–196. [Google Scholar] [CrossRef]
- Fonseca, M.S.; Deegan, K.R.; Tomé, L.M.; Mendonça, M.A.; Sokolonski, A.R.; Gondim, L.Q.; Azevedo, V.; Meyer, R.; Tasic, L.; Góes-Neto, A.; et al. First Description of Candida Haemulonii Infecting a Snake Boa Constrictor: Molecular, Pathological and Antifungal Sensitivity Characteristics. Microb. Pathog. 2023, 180, 106164. [Google Scholar] [CrossRef]
- Abiala, M.A.; Ogunjobi, A.A.; Odebode, A.C.; Ayodele, M.A. Microbial Control of Mycosphaerella Fijiensis Morelet A Notable Pathogen of Bananas and Plantains. Nat. Sci. 2010, 8, 299–305. [Google Scholar] [CrossRef]
- Chiu, S.-W.; Poon, Y.-K. Submerged Production of Monascus Pigments. Mycologia 1993, 85, 214. [Google Scholar] [CrossRef]
- Johns, M.R.; Stuart, D.M. Production of Pigments ByMonascus Purpureus in Solid Culture. J. Ind. Microbiol. 1991, 8, 23–28. [Google Scholar] [CrossRef]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (Resazurin) Fluorescent Dye for the Assessment of Mammalian Cell Cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.; Gogal, R.M.; Walsh, J.E. A New Rapid and Simple Non-Radioactive Assay to Monitor and Determine the Proliferation of Lymphocytes: An Alternative to [3H]Thymidine Incorporation Assay. J. Immunol. Methods 1994, 170, 211–224. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Wang, B.; Wakimoto, T.; Wang, M.; Zhu, L.; Abe, I. Cyclodipeptides from Metagenomic Library of a Japanese Marine Sponge. J. Braz. Chem. Soc. 2013, 24, 1926–1932. [Google Scholar] [CrossRef]
- Campbell, J.; Lin, Q.; Geske, G.D.; Blackwell, H.E. New and Unexpected Insights into the Modulation of LuxR-Type Quorum Sensing by Cyclic Dipeptides. ACS Chem. Biol. 2009, 4, 1051–1059. [Google Scholar] [CrossRef]
- Ashfaq, M.; Ali, Q.; Haleem, A.; Ullah, A.; Umar, A.; Ullah, I.; Ahmed, S. Orange-Brown Pigment Production from an Endophytic Fungus Aspergillus Sp. N11 and Its Potential Pharmaceutical Applications. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Mohamed Khalil Bagy, M.; Allam Nafady, N.; Ahmed Hassan, E.; Saber Reyad, M. Isolation and Characterization of Pigment Producing Fungi. J. Multidiscip. Sci. Res. 2023, 52, 152–176. [Google Scholar]
- El-Sayed, E.-S.R.; Gach, J.; Olejniczak, T.; Boratyński, F. A New Endophyte Monascus Ruber SRZ112 as an Efficient Production Platform of Natural Pigments Using Agro-Industrial Wastes. Sci. Rep. 2022, 12, 12611. [Google Scholar] [CrossRef] [PubMed]
- Amaral De Faria Silva, L.; Ferreira Alves, M.; Florêncio Filho, D.; Aparecida Takahashi, J.; Soares Santos, L.; Almeida De Carvalho, S. Pigment Produced from Arcopilus Aureus Isolated from Grapevines: Promising Natural Yellow Colorants for the Food Industry. Food Chem. 2022, 389, 132967. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, Y.; Fang, X.; Wu, L.; Zhang, Y. Isolation and Identification of Pigment-Producing Filamentous Fungus DBFL05 and Its Pigment Characteristics and Chemical Structure. CyTA-J. Food 2023, 21, 374–385. [Google Scholar] [CrossRef]
- Crous, P.W.; Slippers, B.; Wingfield, M.J.; Rheeder, J.; Marasas, W.F.O.; Philips, A.J.L.; Alves, A.; Burgess, T.; Barber, P.; Groenewald, J.Z. Phylogenetic Lineages in the Botryosphaeriaceae. Stud. Mycol. 2006, 55, 235–253. [Google Scholar] [CrossRef] [PubMed]
- Pavlic, D.; Wingfield, M.J.; Barber, P.; Slippers, B.; Hardy, G.E.S.J.; Burgess, T.I. Seven New Species of the Botryosphaeriaceae from Baobab and Other Native Trees in Western Australia. Mycologia 2008, 100, 851–866. [Google Scholar] [CrossRef]
- Iantas, J.; Savi, D.C.; Schibelbein, R.d.S.; Noriler, S.A.; Assad, B.M.; Dilarri, G.; Ferreira, H.; Rohr, J.; Thorson, J.S.; Shaaban, K.A.; et al. Endophytes of Brazilian Medicinal Plants With Activity Against Phytopathogens. Front Microbiol. 2021, 12, 714750. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Romero, J.; Hedtke, M.; Kastner, C.; Müller, S.; Fischer, R. Fungi, Hidden in Soil or Up in the Air: Light Makes a Difference. Annu. Rev. Microbiol. 2010, 64, 585–610. [Google Scholar] [CrossRef]
- Kalra, R.; Conlan, X.A.; Goel, M. Fungi as a Potential Source of Pigments: Harnessing Filamentous Fungi. Front Chem. 2020, 8, 369. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Xu, J. Production of Fungal Pigments: Molecular Processes and Their Applications. J. Fungi 2022, 9, 44. [Google Scholar] [CrossRef]
- Issac, S. Many Fungi Are Brightly Coloured; Does Pigmentation Provide Any Advantage to Those Species? Mycol. Answ. 1994, 8, 178–179. [Google Scholar]
- Avalos, J.; Carmen Limón, M. Biological Roles of Fungal Carotenoids. Curr. Genet. 2015, 61, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Celestino, J.D.R.; Carvalho, L.E.D.; Lima, M.D.P.; Lima, A.M.; Ogusku, M.M.; Souza, J.V.B. De Bioprospecting of Amazon Soil Fungi with the Potential for Pigment Production. Process Biochem. 2014, 49, 569–575. [Google Scholar] [CrossRef]
- Corrochano, L.M. Annual Review of Genetics Light in the Fungal World: From Photoreception to Gene Transcription and Beyond. Annu. Rev. Genet. 2019, 53, 149–170. [Google Scholar] [CrossRef]
- Skellam, E. Biosynthesis of Fungal Polyketides by Collaborating and Trans-Acting Enzymes. Nat. Prod. Rep. 2022, 39, 754–783. [Google Scholar] [CrossRef]
- Simpson, T.J. Fungal Polyketide Biosynthesis—A Personal Perspective. Nat. Prod. Rep. 2014, 31, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Brakhage, A.A. Regulation of Fungal Secondary Metabolism. Nat. Rev. Microbiol. 2013, 11, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Boik, J. Natural Compounds in Cancer Therapy; Oregon Medical Press: Portland, OR, USA, 2001. [Google Scholar]
- Matthew, I.; Suffness, J.M. Pezzuto Assays Related to Cancer Drug Discovery; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Rustamova, N.; Gao, Y.; Zhang, Y.; Yili, A. Biological Activity of Endophytic Fungi from the Roots of the Medicinal Plant Vernonia Anthelmintica. Microorganisms 2020, 8, 586. [Google Scholar] [CrossRef]
- Soumya, K.; Narasimha Murthy, K.; Sreelatha, G.L.; Tirumale, S. Characterization of a Red Pigment from Fusarium Chlamydosporum Exhibiting Selective Cytotoxicity against Human Breast Cancer MCF-7 Cell Lines. J. Appl. Microbiol. 2018, 125, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Santos-Ebinuma, V.C.; Roberto, I.C.; Simas Teixeira, M.F.; Pessoa, A. Improving of Red Colorants Production by a New Penicillium purpurogenum Strain in Submerged Culture and the Effect of Different Parameters in Their Stability. Biotechnol. Prog. 2013, 29, 778–785. [Google Scholar] [CrossRef]
- Adamczeski, M.; Reed, A.R.; Crews, P. New and Known Diketopiperazines from the Caribbean Sponge, Calyx Cf. Podatypa. J. Nat. Prod. 1995, 58, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Jayatilake, G.S.; Thornton, M.P.; Leonard, A.C.; Grimwade, J.E.; Baker, B.J. Metabolites from an Antarctic Sponge-Associated Bacterium, Pseudomonas aeruginosa. J. Nat. Prod. 1996, 59, 293–296. [Google Scholar] [CrossRef]
- Chen, M.Z.; Dewis, M.L.; Kraut, K.; Merritt, D.; Reiber, L.; Trinnaman, L.; Da Costa, N.C. 2, 5-Diketopiperazines (Cyclic Dipeptides) in Beef: Identification, Synthesis, and Sensory Evaluation. J. Food Sci. 2009, 74, C100–C105. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Liou, S.-E.; Chen, C.-C. Two-Step Mass Spectrometric Approach for the Identification of Diketopiperazines in Chicken Essence. Eur. Food Res. Technol. 2004, 218, 589–597. [Google Scholar] [CrossRef]
- Ginz, M.; Engelhardt, U.H. Identification of Proline-Based Diketopiperazines in Roasted Coffee. J. Agric. Food Chem. 2000, 48, 3528–3532. [Google Scholar] [CrossRef]
- Sakamura, S.; Furukawa, K.; Kasai, T. Bitter Diketopiperazines in Roasted Malts for Beer Brewing. Agric. Biol. Chem. 1978, 42, 607–612. [Google Scholar] [CrossRef]
- Stark, T.; Hofmann, T. Structures, Sensory Activity, and Dose/Response Functions of 2,5-Diketopiperazines in Roasted Cocoa Nibs (Theobroma cacao). J. Agric. Food Chem. 2005, 53, 7222–7231. [Google Scholar] [CrossRef] [PubMed]
- Alshaibani, M.M.; Zin, N.M.; Jalil, J.; Sidik, N.M.; Ahmad, S.J.; Kamal, N.; Edrada-Ebel, R. Isolation, Purification, and Characterization of Five Active Diketopiperazine Derivatives from Endophytic Streptomyces SUK 25 with Antimicrobial and Cytotoxic Activities. J. Microbiol. Biotechnol. 2017, 27, 1249–1256. [Google Scholar] [CrossRef]
- Rhee, K.-H. Isolation and Characterization of Streptomyces Sp. KH-614 Producing Anti-VRE (Vancomycin-Resistant Enterococci) Antibiotics. J. Gen. Appl. Microbiol. 2002, 48, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Kwak, M.-K.; Liu, R.; Kim, M.-K.; Moon, D.; Kim, A.H.; Song, S.-H.; Kang, S.-O. Cyclic Dipeptides from Lactic Acid Bacteria Inhibit the Proliferation of Pathogenic Fungi. J. Microbiol. 2014, 52, 64–70. [Google Scholar] [CrossRef]
- Rhee, K.-H. Purification and Identification of an Antifungal Agent from Streptomyces Sp. KH-614 Antagonistic to Rice Blast Fungus, Pyricularia Oryzae. J. Microbiol. Biotechnol. 2003, 13, 984–988. [Google Scholar]
- Wang, J.-H.; Quan, C.-S.; Qi, X.-H.; Li, X.; Fan, S.-D. Determination of Diketopiperazines of Burkholderia Cepacia CF-66 by Gas Chromatography–Mass Spectrometry. Anal. Bioanal. Chem. 2010, 396, 1773–1779. [Google Scholar] [CrossRef] [PubMed]
- Degrassi, G.; Aguilar, C.; Bosco, M.; Zahariev, S.; Pongor, S.; Venturi, V. Plant Growth-Promoting Pseudomonas Putida WCS358 Produces and Secretes Four Cyclic Dipeptides: Cross-Talk with Quorum Sensing Bacterial Sensors. Curr. Microbiol. 2002, 45, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.-S.; Song, Y.; Sakuno, E.; Nakajima, H.; Nakagawa, H.; Yabe, K. Cyclo L-Leucyl-L-Prolyl) Produced by Achromobacter xylosoxidans Inhibits Aflatoxin Production by Aspergillus parasiticus. Appl. Environ. Microbiol. 2004, 70, 7466–7473. [Google Scholar] [CrossRef]
- Jermnak, U.; Chinaphuti, A.; Poapolathep, A.; Kawai, R.; Nagasawa, H.; Sakuda, S. Prevention of Aflatoxin Contamination by a Soil Bacterium of Stenotrophomonas Sp. That Produces Aflatoxin Production Inhibitors. Microbiology 2013, 159, 902–912. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dobretsov, S.; Xu, Y.; Xiao, X.; Hung, O.S.; Qian, P. Antifouling Diketopiperazines Produced by a Deep-Sea Bacterium, Streptomyces fungicidicus. Biofouling 2006, 22, 187–194. [Google Scholar] [CrossRef]
- Qi, S.-H.; Xu, Y.; Gao, J.; Qian, P.-Y.; Zhang, S. Antibacterial and Antilarval Compounds from Marine Bacterium Pseudomonas rhizosphaerae. Ann. Microbiol. 2009, 59, 229–233. [Google Scholar] [CrossRef]
- Guo, Q.; Guo, D.; Zhao, B.; Xu, J.; Li, R. Two Cyclic Dipeptides from Pseudomonas Fluorescens GcM5-1A Carried by the Pine Wood Nematode and Their Toxicities to Japanese Black Pine Suspension Cells and Seedlings in Vitro. J. Nematol. 2007, 39, 243. [Google Scholar]
- Kwon, O.S.; Park, S.H.; Yun, B.-S.; Pyun, Y.R.; Kim, C.-J. Cyclo (D-Pro-L-Val), a Specific. BETA.-Glucosidase Inhibitor Produced by Aspergillus Sp. F70609. J Antibiot. 2001, 54, 179–181. [Google Scholar] [CrossRef]
- Munekata, M.; Tamura, G. Selective Inhibition of SV40-Transformed Cell Growth by Diketopiperazines. Agric. Biol. Chem. 1981, 45, 2613–2618. [Google Scholar] [CrossRef]
Samples | IC50 (μg mL−1) | |||
---|---|---|---|---|
HepG2 | SCC4 | BJ | MRC-5 | |
Pseudofusicoccum sp. crude pigment extract | >50 | >50 | >50 | >50 |
Doxorubicin | 0.05 | 0.13 | 4.84 | 2.16 |
0.03–0.11 | 0.10–0.18 | 2.94–0.86 | 0.75–6.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, B.V.B.; Borges, L.J.; Hanna, S.A.; Soares, M.B.P.; Bezerra, D.P.; Moreira, L.L.P.F.; Borges, W.d.S.; Portela, R.W.D.; Fernandez, C.C.; Umsza-Guez, M.A. Pigment Production by Pseudofusicoccum sp.: Extract Production, Cytotoxicity Activity, and Diketopiperazines Identified. Microorganisms 2025, 13, 277. https://doi.org/10.3390/microorganisms13020277
Alves BVB, Borges LJ, Hanna SA, Soares MBP, Bezerra DP, Moreira LLPF, Borges WdS, Portela RWD, Fernandez CC, Umsza-Guez MA. Pigment Production by Pseudofusicoccum sp.: Extract Production, Cytotoxicity Activity, and Diketopiperazines Identified. Microorganisms. 2025; 13(2):277. https://doi.org/10.3390/microorganisms13020277
Chicago/Turabian StyleAlves, Bianca Vilas Boas, Letícia Jambeiro Borges, Samira Abdallah Hanna, Milena Botelho Pereira Soares, Daniel Pereira Bezerra, Laysa Lanes Pereira Ferreira Moreira, Warley de Souza Borges, Ricardo Wagner Dias Portela, Clara Couto Fernandez, and Marcelo Andrés Umsza-Guez. 2025. "Pigment Production by Pseudofusicoccum sp.: Extract Production, Cytotoxicity Activity, and Diketopiperazines Identified" Microorganisms 13, no. 2: 277. https://doi.org/10.3390/microorganisms13020277
APA StyleAlves, B. V. B., Borges, L. J., Hanna, S. A., Soares, M. B. P., Bezerra, D. P., Moreira, L. L. P. F., Borges, W. d. S., Portela, R. W. D., Fernandez, C. C., & Umsza-Guez, M. A. (2025). Pigment Production by Pseudofusicoccum sp.: Extract Production, Cytotoxicity Activity, and Diketopiperazines Identified. Microorganisms, 13(2), 277. https://doi.org/10.3390/microorganisms13020277