Wolbachia Infection Alters the Microbiota of the Invasive Leaf-Miner Liriomyza huidobrensis (Diptera: Agromyzidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Leaf-Miner Lines
2.2. DNA Extraction and PCR Amplification
2.3. Library Construction and Sequencing
2.4. Bioinformatic Processing
2.5. Microbial Community Analysis
3. Results
3.1. Overview of Sequencing Results
3.2. Effect of Wolbachia Infection on Microbial Community Diversity
3.3. Impact of Wolbachia Infection on Microbiota Composition
3.4. Microbial Correlation Analysis
4. Discussion
4.1. Core Microbe in the Leaf-Miner
4.2. Pervasive Effects of Wolbachia on the Host Microbiota
4.3. Underlying Mechanisms of Wolbachia’s Impact on the Host Microbiota
4.4. Limitations of the Study and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Douglas, A.E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 2015, 60, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Serrato-Salas, J.; Gendrin, M. Involvement of microbiota in insect physiology: Focus on B Vitamins. mBio 2023, 14, e02225-22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Qian, Z.; He, J.; Shen, X.; Lei, X.; Sun, C.; Fan, J.; Felton, G.W.; Shao, Y. Gut bacteria of lepidopteran herbivores facilitate digestion of plant toxins. Proc. Natl. Acad. Sci. USA 2024, 121, e2412165121. [Google Scholar] [CrossRef]
- Adair, K.L.; Douglas, A.E. Making a microbiome: The many determinants of host-associated microbial community composition. Curr. Opin. Microbiol. 2017, 35, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.T.; Li, T.P.; Wang, M.K.; Hong, X.Y. Wolbachia-based strategies for control of agricultural pests. Curr. Opin. Insect Sci. 2023, 57, 101039. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.T.; Li, Y.; Li, T.P.; Liang, Y.; Hu, L.; Zhang, D.; Zhou, C.Y.; Yang, C.; Zhang, X.; Zha, S.S.; et al. Stable introduction of plant-virus-inhibiting Wolbachia into planthoppers for rice protection. Curr. Biol. 2020, 30, 4837–4845. [Google Scholar] [CrossRef]
- Hedges, L.M.; Brownlie, J.C.; O’Neill, S.L.; Johnson, K.N. Wolbachia and virus protection in insects. Science 2008, 322, 702. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ning, D. Stochastic community assembly: Does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 2017, 81, e00002-17. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Yang, T.Y.; Deng, J.H.; Yin, Y.; Song, Z.R.; Du, Y.Z. Stochastic processes drive divergence of bacterial and fungal communities in sympatric wild insect species despite sharing a common diet. mSphere 2024, 9, e00386-24. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.X.; Huo, Q.B.; Wen, T.; Wang, X.Y.; Zhao, M.Y.; Du, Y.Z. Mechanisms of fungal community assembly in wild stoneflies moderated by host characteristics and local environment. npj Biofilms Microbi. 2022, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.X.; Yang, R.; Wang, X.Y.; Wen, T.; Gong, M.H.; Shen, Y.; Xu, J.Y.; Zhao, D.S.; Du, Y.Z. Gut microbiota composition in the sympatric and diet-sharing Drosophila simulans and Dicranocephalus wallichii bowringi shaped largely by community assembly processes rather than regional species pool. iMeta 2022, 1, e57. [Google Scholar] [CrossRef] [PubMed]
- Adair, K.L.; Bost, A.; Bueno, E.; Kaunisto, S.; Kortet, R.; Peters-Schulze, G.; Martinson, V.G.; Douglas, A.E. Host determinants of among-species variation in microbiome composition in drosophilid flies. ISME J. 2020, 14, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Malacrinò, A. Host species identity shapes the diversity and structure of insect microbiota. Mol. Ecol. 2022, 31, 723–735. [Google Scholar] [CrossRef] [PubMed]
- Li, D.D.; Li, J.Y.; Hu, Z.Q.; Liu, T.X.; Zhang, S.Z. Fall armyworm gut bacterial diversity associated with different developmental stages, environmental habitats, and diets. Insects 2022, 13, 762. [Google Scholar] [CrossRef] [PubMed]
- Shu, R.; Hahn, D.A.; Jurkevitch, E.; Liburd, O.E.; Yuval, B.; Wong, A.C.N. Sex-dependent effects of the microbiome on foraging and locomotion in Drosophila suzukii. Front. Microbiol. 2021, 12, 656406. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, M.P.; Hull, K.L.; Brink-Hull, M.; Lloyd, M.; Rhode, C. Feed and host genetics drive microbiome diversity with resultant consequences for production traits in mass-reared black soldier fly (Hermetia illucens) larvae. Insects 2021, 12, 1082. [Google Scholar] [CrossRef]
- Santos-Garcia, D.; Mestre-Rincon, N.; Zchori-Fein, E.; Morin, S. Inside out: Microbiota dynamics during host-plant adaptation of whiteflies. ISME J. 2020, 14, 847–856. [Google Scholar] [CrossRef]
- Hague, M.T.; Shropshire, J.D.; Caldwell, C.N.; Statz, J.P.; Stanek, K.A.; Conner, W.R.; Cooper, B.S. Temperature effects on cellular host-microbe interactions explain continent-wide endosymbiont prevalence. Curr. Biol. 2022, 32, 878–888. [Google Scholar] [CrossRef]
- Jiang, R.X.; Shang, F.; Jiang, H.B.; Dou, W.; Cernava, T.; Wang, J.J. The Influence of temperature and host gender on bacterial communities in the Asian citrus psyllid. Insects 2021, 12, 1054. [Google Scholar] [CrossRef]
- Yang, Z.W.; Luo, J.Y.; Men, Y.; Liu, Z.H.; Zheng, Z.K.; Wang, Y.H.; Xie, Q. Different roles of host and habitat in determining the microbial communities of plant-feeding true bugs. Microbiome 2023, 11, 244. [Google Scholar] [CrossRef]
- Itoh, H.; Jang, S.; Takeshita, K.; Ohbayashi, T.; Ohnishi, N.; Meng, X.Y.; Mitani, Y.; Kikuchi, Y. Host–symbiont specificity determined by microbe–microbe competition in an insect gut. Proc. Natl. Acad. Sci. USA 2019, 116, 22673–22682. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.; Vega, N.M.; Ratzke, C.; Gore, J. Interspecies bacterial competition regulates community assembly in the C. elegans intestine. ISME J. 2021, 15, 2131–2145. [Google Scholar] [CrossRef] [PubMed]
- Li, T.P.; Zha, S.S.; Zhou, C.Y.; Gong, J.T.; Zhu, Y.X.; Zhang, X.; Xi, Z.; Hong, X.Y. Newly introduced Cardinium endosymbiont reduces microbial diversity in the rice brown planthopper Nilaparvata lugens. FEMS Microbiol. Ecol. 2020, 96, fiaa194. [Google Scholar] [CrossRef]
- Li, T.P.; Zhou, C.Y.; Wang, M.K.; Zha, S.S.; Chen, J.; Bing, X.L.; Hoffmann, A.A.; Hong, X.Y. Endosymbionts reduce microbiome diversity and modify host metabolism and fecundity in the planthopper Sogatella furcifera. mSystems 2022, 7, e01516-21. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Qin, P.H.; Yuan, M.Y.; Chen, L.; Zhang, Y.J.; Chu, D. Infection density pattern of Cardinium affects the responses of bacterial communities in an invasive whitefly under heat conditions. Insect Sci. 2023, 30, 1149–1164. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Chen, H.; Bing, X.L.; Xia, X.; Zhu, Y.X.; Hong, X.Y. Wolbachia and Spiroplasma could influence bacterial communities of the spider mite Tetranychus truncatus. Exp. Appl. Acarol. 2021, 83, 197–210. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Song, Z.R.; Huo, S.M.; Yang, K.; Hong, X.Y. Variation in the microbiome of the spider mite Tetranychus truncatus with sex, instar and endosymbiont infection. FEMS Microbiol. Ecol. 2020, 96, fiaa004. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Shropshire, J.D.; Cross, K.L.; Leigh, B.; Mansueto, A.J.; Stewart, V.; Bordenstein, S.R.; Bordenstein, S.R. Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host Microbe 2021, 29, 879–893. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.; Sullivan, W. The cellular lives of Wolbachia. Nat. Rev. Microbiol. 2023, 21, 750–766. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.X.; Song, Y.L.; Zhang, Y.K.; Hoffmann, A.A.; Zhou, J.C.; Sun, J.T.; Hong, X.Y. Incidence of facultative bacterial endosymbionts in spider mites associated with local environments and host plants. Appl. Environ. Microb. 2018, 84, e02546-17. [Google Scholar] [CrossRef] [PubMed]
- Werren, J.H.; Baldo, L.; Clark, M.E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008, 6, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.L.; Abernathy, D.G.; Willett, B.C.; Selland, E.K.; Itoe, M.A.; Catteruccia, F. Wolbachia cifB induces cytoplasmic incompatibility in the malaria mosquito vector. Nat. Microbiol. 2021, 6, 1575–1582. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, T.; Koga, R.; Kikuchi, Y.; Meng, X.Y.; Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. USA 2010, 107, 769–774. [Google Scholar] [CrossRef]
- Ferguson, L.F.; Ross, P.A.; van Heerwaarden, B. Wolbachia infection negatively impacts Drosophila simulans heat tolerance in a strain-and trait-specific manner. Environ. Microbiol. 2024, 26, e16609. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, T.; Ren, Z.; Liu, Y.; Yuan, M.; Cai, Y.; Yu, C.; Shu, R.; He, S.; Li, J.; et al. Decline in symbiont-dependent host detoxification metabolism contributes to increased insecticide susceptibility of insects under high temperature. ISME J. 2021, 15, 3693–3703. [Google Scholar] [CrossRef] [PubMed]
- Luan, J.B. Insect bacteriocytes: Adaptation, development, and evolution. Annu. Rev. Entomol. 2024, 69, 81–98. [Google Scholar] [CrossRef]
- Duan, X.Z.; Sun, J.T.; Wang, L.T.; Shu, X.H.; Guo, Y.; Keiichiro, M.; Zhu, Y.X.; Bing, X.L.; Hoffmann, A.A.; Hong, X.Y. Recent infection by Wolbachia alters microbial communities in wild Laodelphax striatellus populations. Microbiome 2020, 8, 104. [Google Scholar] [CrossRef]
- Li, T.P.; Zhou, C.Y.; Gong, J.T.; Xi, Z.; Hong, X.Y. Recently introduced Wolbachia reduces bacterial species richness and reshapes bacterial community structure in Nilaparvata lugens. Pest Manag. Sci. 2022, 78, 1881–1894. [Google Scholar] [CrossRef] [PubMed]
- Balaji, S.; Deepthi, K.N.G.; Prabagaran, S.R. Native Wolbachia influence bacterial composition in the major vector mosquito Aedes aegypti. Arch. Microbiol. 2021, 203, 5225–5240. [Google Scholar] [CrossRef]
- Simhadri, R.K.; Fast, E.M.; Guo, R.; Schultz, M.J.; Vaisman, N.; Ortiz, L.; Bybee, J.; Slatko, B.E.; Frydman, H.M. The gut commensal microbiome of Drosophila melanogaster is modified by the endosymbiont Wolbachia. mSphere 2017, 2, e00287-17. [Google Scholar] [CrossRef] [PubMed]
- Detcharoen, M.; Jiggins, F.M.; Schlick-Steiner, B.C.; Steiner, F.M. Wolbachia endosymbiotic bacteria alter the gut microbiome in the fly Drosophila nigrosparsa. J. Invertebr. Pathol. 2023, 198, 107915. [Google Scholar] [CrossRef] [PubMed]
- Ourry, M.; Crosland, A.; Lopez, V.; Derocles, S.A.; Mougel, C.; Cortesero, A.M.; Poinsot, D. Influential insider: Wolbachia, an intracellular symbiont, manipulates bacterial diversity in its insect host. Microorganisms 2021, 9, 1313. [Google Scholar] [CrossRef] [PubMed]
- Dittmer, J.; Bouchon, D. Feminizing Wolbachia influence microbiota composition in the terrestrial isopod Armadillidium vulgare. Sci. Rep. 2018, 8, 6998. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhao, J.; Joshi, D.; Xi, Z.; Norman, B.; Walker, E.D. Persistent infection by Wolbachia wAlbB has no effect on composition of the gut microbiota in adult female Anopheles stephensi. Front. Microbiol. 2016, 7, 1485. [Google Scholar] [CrossRef] [PubMed]
- Adair, K.L.; Wilson, M.; Bost, A.; Douglas, A.E. Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster. ISME J. 2018, 12, 959–972. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, P.G.; Scheffer, S.J.; Visser, D.; Valladares, G.; Soares Correa, A.; Shepard, B.M.; Rauf, A.; Murphy, S.T.; Mujica, N.; MacVean, C.; et al. The invasive Liriomyza huidobrensis (Diptera: Agromyzidae): Understanding its pest status and management globally. J. Insect Sci. 2017, 17, 28. [Google Scholar] [CrossRef]
- Chen, B.; Kang, L. Variation in cold hardiness of Liriomyza huidobrensis (Diptera: Agromyzidae) along latitudinal gradients. Environ. Entomol. 2004, 33, 155–164. [Google Scholar] [CrossRef]
- Gao, Y.L.; Reitz, S.R.; Xing, Z.L.; Ferguson, S.; Lei, Z.R. A decade of a leafminer invasion in China: Lessons learned. Pest Manag. Sci. 2017, 73, 1775–1779. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Hulcr, J.; Sun, J. The role of symbiotic microbes in insect invasions. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 487–505. [Google Scholar] [CrossRef]
- Lemoine, M.M.; Engl, T.; Kaltenpoth, M. Microbial symbionts expanding or constraining abiotic niche space in insects. Curr. Opin. Insect Sci. 2020, 39, 14–20. [Google Scholar] [CrossRef]
- Hague, M.T.J.; Caldwell, C.N.; Cooper, B.S. Pervasive effects of Wolbachia on host temperature preference. mBio 2020, 11, e01768-20. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Chang, Y.W.; Wen, T.; Yang, R.; Wang, Y.C.; Wang, X.Y.; Lu, M.M.; Du, Y.Z. Species identity dominates over environment in driving bacterial community assembly in wild invasive leaf miners. Microbiol. Spectr. 2022, 10, e00266-22. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ridland, P.M.; Umina, P.A.; Gill, A.; Ross, P.A.; Pirtle, E.; Hoffmann, A.A. High incidence of related Wolbachia across unrelated leaf-mining Diptera. Insects 2021, 12, 788. [Google Scholar] [CrossRef] [PubMed]
- Tagami, Y.; Doi, M.; Sugiyama, K.; Tatara, A.; Saito, T. Survey of leafminers and their parasitoids to find endosymbionts for improvement of biological control. Biol. Control 2006, 38, 210–216. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Wang, X.Y.; Yang, T.Y.; Zhang, H.H.; Li, T.P.; Du, Y.Z. Mechanisms of bacterial and fungal community assembly in leaf miners during transition from natural to laboratory environments. Front. Microbiol. 2024, 15, 1424568. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.X.; Zhang, Y.Y.; Wang, X.Y.; Yin, Y.; Du, Y.Z. Wolbachia modify host cell metabolite profiles in response to short-term temperature stress. Env. Microbiol. Rep. 2024, 16, e70013. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhou, G.; Ewald, J.; Pang, Z.; Shiri, T.; Xia, J. MicrobiomeAnalyst 2.0: Comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res. 2023, 51, W310–W318. [Google Scholar] [CrossRef]
- Lu, Q.C.; Yu, J.M.; Liu, H.L.; Wu, X.L.; Wei, S.J.; Lei, M.; Cai, P.; He, H.G.; Pu, D.Q. Stable composition of gut microbiome in the Asian ladybeetle Coccinella septempunctata reared on natural and artificial diets. Sci. Rep. 2024, 14, 71. [Google Scholar] [CrossRef]
- Mayhood, P.; Mirza, B.S. Soybean root nodule and rhizosphere microbiome: Distribution of rhizobial and nonrhizobial endophytes. Appl. Environ. Microb. 2021, 87, e02884-20. [Google Scholar] [CrossRef]
- Debray, R.; Herbert, R.A.; Jaffe, A.L.; Crits-Christoph, A.; Power, M.E.; Koskella, B. Priority effects in microbiome assembly. Nat. Rev. Microbiol. 2022, 20, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Audsley, M.D.; Seleznev, A.; Joubert, D.A.; Woolfit, M.; O’Neill, S.L.; McGraw, E.A. Wolbachia infection alters the relative abundance of resident bacteria in adult Aedes aegypti mosquitoes, but not larvae. Mol. Ecol. 2018, 27, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Henry, L.P.; Fernandez, M.; Wolf, S.; Abhyankar, V.; Ayroles, J.F. Wolbachia impacts microbiome diversity and fitness-associated traits for Drosophila melanogaster in a seasonally fluctuating environment. Ecol. Evol. 2024, 14, e70004. [Google Scholar] [CrossRef]
- Ju, J.F.; Bing, X.L.; Zhao, D.S.; Guo, Y.; Xi, Z.; Hoffmann, A.A.; Zhang, K.J.; Huang, H.J.; Gong, J.T.; Zhang, X.; et al. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J. 2020, 14, 676–687. [Google Scholar] [CrossRef]
- Pan, X.; Pike, A.; Joshi, D.; Bian, G.; McFadden, M.J.; Lu, P.; Liang, X.; Zhang, F.; Raikhel, A.S.; Xi, Z. The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti. ISME J. 2018, 12, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Zug, R.; Hammerstein, P. Wolbachia and the insect immune system: What reactive oxygen species can tell us about the mechanisms of Wolbachia–host interactions. Front. Microbiol. 2015, 6, 1201. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, D.; Vinayagam, S.; Sekar, K.; Bhowmick, I.P.; Sattu, K. Symbiotic Bacteria: Wolbachia, Midgut Microbiota in Mosquitoes and Their Importance for Vector Prevention Strategies. Microb. Ecol. 2024, 87, 154. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Floate, K.D.; Fields, P.G.; Pang, B.P. Review of treatment methods to remove Wolbachia bacteria from arthropods. Symbiosis 2014, 62, 1–15. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, X.; Wang, S.; Song, Z.; Du, Y. No Evidence for Wolbachia Effects on the Thermal Preference of the Invasive Pest Liriomyza huidobrensis. Insects 2024, 15, 784. [Google Scholar] [CrossRef]
- Odendaal, M.L.; de Steenhuijsen Piters, W.A.; Franz, E.; Chu, M.L.J.; Groot, J.A.; van Logchem, E.M.; Hasrat, R.; Kuiling, S.; Pijnacker, R.; Mariman, R.; et al. Host and environmental factors shape upper airway microbiota and respiratory health across the human lifespan. Cell 2024, 187, 4571–4585. [Google Scholar] [CrossRef] [PubMed]
- Brinker, P.; Fontaine, M.C.; Beukeboom, L.W.; Salles, J.F. Host, symbionts, and the microbiome: The missing tripartite interaction. Trends Microbiol. 2019, 27, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Stouthamer, R.; Breeuwer, J.A.; Hurst, G.D. Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 1999, 53, 71–102. [Google Scholar] [CrossRef] [PubMed]
- Ross, P.A.; Turelli, M.; Hoffmann, A.A. Evolutionary ecology of Wolbachia releases for disease control. Annu. Rev. Genet. 2019, 53, 93–116. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.-X.; Zhuang, Y.-H.; Wu, Y.-X.; Huang, T.-W.; Song, Z.-R.; Du, Y.-Z.; Zhu, Y.-X. Wolbachia Infection Alters the Microbiota of the Invasive Leaf-Miner Liriomyza huidobrensis (Diptera: Agromyzidae). Microorganisms 2025, 13, 302. https://doi.org/10.3390/microorganisms13020302
Duan Y-X, Zhuang Y-H, Wu Y-X, Huang T-W, Song Z-R, Du Y-Z, Zhu Y-X. Wolbachia Infection Alters the Microbiota of the Invasive Leaf-Miner Liriomyza huidobrensis (Diptera: Agromyzidae). Microorganisms. 2025; 13(2):302. https://doi.org/10.3390/microorganisms13020302
Chicago/Turabian StyleDuan, Ya-Xin, Ying-Hua Zhuang, Yu-Xin Wu, Tian-Wei Huang, Zhang-Rong Song, Yu-Zhou Du, and Yu-Xi Zhu. 2025. "Wolbachia Infection Alters the Microbiota of the Invasive Leaf-Miner Liriomyza huidobrensis (Diptera: Agromyzidae)" Microorganisms 13, no. 2: 302. https://doi.org/10.3390/microorganisms13020302
APA StyleDuan, Y.-X., Zhuang, Y.-H., Wu, Y.-X., Huang, T.-W., Song, Z.-R., Du, Y.-Z., & Zhu, Y.-X. (2025). Wolbachia Infection Alters the Microbiota of the Invasive Leaf-Miner Liriomyza huidobrensis (Diptera: Agromyzidae). Microorganisms, 13(2), 302. https://doi.org/10.3390/microorganisms13020302