The Characterization of Lactic Acid Bacteria Strains as Components of a Biopreparation for Chickens for Slaughter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Preparation of Cell-Free Supernatants (CFSs) After LAB Culture in MRS or Whey Medium
2.3. Characterization of the Cell Wall Surface
2.3.1. Adhesion of LAB Strains to Biotic and Abiotic Surfaces
To Polystyrene
To Mucus
To Collagen
To Intestinal Epithelial Cell Line Caco-2
2.3.2. Hydrophobicity Testing
- A0—initial absorbance;
- At—absorbance after 60 min.
2.3.3. Autoaggregation
- A0—initial absorbance;
- At—absorbance after 24 h.
2.3.4. Coaggregation of Selected LAB with E. coli ATCC 10536
- Ax—initial absorbance of LAB;
- Ay—initial absorbance of the pathogen;
- A(x+y)—absorbance after 24 h of the pathogen/LAB suspension.
2.4. Survival of LAB in the Presence of Bile Salts and Low pH
2.5. Quantification of the Profile of Lactic Acid in CFSs
2.6. Statistical Methods
- Simple classification, Tukey’s test: autoaggregation of LAB strains; differences between pairs of “LAB strain and E. coli ATCC 10536”; and LAB hydrophobicity (xylene);
- Dunn’s test: LAB hydrophobicity (chloroform and n-hexadecane); and the differences between the concentrations of lactic acid;
- Kruskal–Wallis test: adhesive properties of LAB to biotic and abiotic surfaces;
- Two sample t-tests: adhesion to Caco-2 cells; coaggregation of LAB strains and E. coli ATCC 10536; differences between the concentration of lactic acid obtained in post-fermentations after LAB cultivation on the MRS medium and whey medium; and the effect of bile salts and low pH on LAB viability.
3. Results
3.1. Adhesive Properties of LAB Strains to Biotic and Abiotic Surfaces
3.2. LAB Cell Wall Properties: Autoaggregation, Coaggregation, and Hydrophobicity
3.3. Survival of LAB Strains in Unfavorable Gastrointestinal Conditions—In Vitro Test
3.4. The Content of Lactic Acid in Cell-Free Supernatants After LAB Cultivation in MRS Medium and Pasteurized Whey Medium
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teillant, A.; Brower, C.H.; Laxminarayan, R. Economics of Antibiotic Growth Promoters in Livestock. Annu. Rev. Resour. Econ. Vol. 2015, 7, 349–374. [Google Scholar] [CrossRef]
- Broom, L.J. The sub-inhibitory theory for antibiotic growth promoters. Poult. Sci. 2017, 96, 3104–3108. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Hunkapiller, A.A.; Layton, A.C.; Chang, Y.J.; Robbins, K.R. Response of intestinal microbiota to antibiotic growth promoters in chickens. Foodborne Pathog. Dis. 2013, 10, 331–337. [Google Scholar] [CrossRef]
- Shah, S.H.; Sheikh, I.S.; Kakar, N.; Sumaira, A.S.; Mehmood, K.; Rehman, H.U. In vivo analysis the effect of antibiotic growth promoters (AGPs), Oxytetracycline di-hydrate and Tylosin phosphate on the intestinal microflora in broiler chicken. Braz. J. Biol. 2022, 84, e258114. [Google Scholar] [CrossRef]
- Banerjee, S.; Sar, A.; Misra, A.; Pal, S.; Chakraborty, A.; Dam, B. Increased productivity in poultry birds by sub-lethal dose of antibiotics is arbitrated by selective enrichment of gut microbiota, particularly short-chain fatty acid producers. Microbiology 2018, 164, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Basit, M.A.; Kadir, A.A.; Loh, T.C.; Abdul Aziz, S.; Salleh, A.; Zakaria, Z.A.; Banke Idris, S. Comparative Efficacy of Selected Phytobiotics with Halquinol and Tetracycline on Gut Morphology, Ileal Digestibility, Cecal Microbiota Composition and Growth Performance in Broiler Chickens. Animals 2020, 10, 2150. [Google Scholar] [CrossRef]
- Ferdous, M.F.; Arefin, M.S.; Rahman, M.M.; Ripon, M.M.R.; Rashid, M.H.; Sultana, M.R.; Hossain, M.T.; Ahammad, M.U.; Rafiq, K. Beneficial effects of probiotic and phytobiotic as growth promoter alternative to antibiotic for safe broiler production. J. Adv. Vet. Anim. Res 2019, 6, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Ghany, W.A.; Babazadeh, D. Betaine: A Potential Nutritional Metabolite in the Poultry Industry. Animals 2022, 12, 2624. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, K.; Tofazzal Hossain, M.; Ahmed, R.; Hasan, M.M.; Islam, R.; Hossen, M.I.; Shaha, S.N.; Islam, M.R. Role of different growth enhancers as alternative to in-feed antibiotics in poultry industry. Front. Vet. Sci. 2022, 8, 794588. [Google Scholar] [CrossRef]
- Key Figures on the European Food Chain 2024 Edition. Available online: https://ec.europa.eu/eurostat/documents/15216629/20555393/KS-01-24-000-EN-N.pdf/937addab-5089-aa08-3b95-bf0fa0beee3d?version=4.0&t=1736326611195 (accessed on 27 January 2025).
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- FAO Animal Production and Health Paper FAO. Available online: https://www.fao.org/3/i5933e/i5933e.pdf (accessed on 7 May 2023).
- Benbara, T.; Lalouche, S.; Drider, D.; Bendali, F. Lactobacillus plantarum S27 from chicken faeces as a potential probiotic to replace antibiotics: In vivo evidence. Benef. Microbes 2020, 11, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Mandal, R.K.; Yang, Y.; Khatri, B.; Kong, B.W.; Kwon, Y.M. In vitro characterization of chicken gut bacterial isolates for probiotic potentials. Poult. Sci. 2021, 100, 1083–1092. [Google Scholar] [CrossRef]
- Rozman, V.; Mohar Lorbeg, P.; Treven, P.; Accetto, T.; Janežič, S.; Rupnik, M.; Bogovič Matijašić, B. Genomic insights into antibiotic resistance and mobilome of lactic acid bacteria and bifidobacteria. Life Sci. Alliance 2023, 6, e202201637. [Google Scholar] [CrossRef] [PubMed]
- Xing, T.L.; Bian, X.; Ma, C.M.; Yang, Y.; Liu, X.F.; Wang, Y.; Fan, J.; Zhang, N. In vitro evaluation of probiotic properties of Lactobacillus acidophilus AD125 and antagonism against Escherichia coli O157:H7 adhesion to Caco-2 cell. Food Funct. 2023, 14, 2472–2480. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Reviews. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Vinderola, G.; Sanders, M.E.; Salminen, S. The Concept of Postbiotics. Foods 2022, 11, 1077. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, L.T.; Rodríguez, M.L.; Alzueta, C.; Rebolé, A.; Treviño, J. Effect of inulin on growth performance, intestinal tract sizes, mineral retention and tibial bone mineralisation in broiler chickens. Br. Poult. Sci. 2009, 50, 325–332. [Google Scholar] [CrossRef]
- Al-Baadani, H.H.; Alhotan, R.A.; Al-Abdullatif, A.A.; Alhidary, I.A.; Alharthi, A.S.; Al-Mufarrej, S.I.; Al-Garadi, M.A.; Qaid, M.M.; Al-Sagan, A.A.; Ibrahim, K.E.; et al. The Effect of Gum Arabic Supplementation on Growth Performance, Blood Indicators, Immune Response, Cecal Microbiota, and the Duodenal Morphology of Broiler Chickens. Animals 2022, 12, 2809. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.; Shukla, V.; Kolba, N.; Agarwal, N.; Padilla-Zakour, O.I.; Tako, E. Empire Apple (Malus domestica) Juice, Pomace, and Pulp Modulate Intestinal Functionality, Morphology, and Bacterial Populations In Vivo (Gallus gallus). Nutrients 2022, 14, 4955. [Google Scholar] [CrossRef] [PubMed]
- Such, N.; Farkas, V.; Csitári, G.; Pál, L.; Márton, A.; Menyhárt, L.; Dublecz, K. Relative Effects of Dietary Administration of a Competitive Exclusion Culture and a Synbiotic Product, Age and Sampling Site on Intestinal Microbiota Maturation in Broiler Chickens. Vet. Sci. 2021, 8, 187. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Abramov, V.M.; Kosarev, I.V.; Machulin, A.V.; Deryusheva, E.I.; Priputnevich, T.V.; Panin, A.N.; Chikileva, I.O.; Abashina, T.N.; Manoyan, A.M.; Ivanova, O.E.; et al. Consortium of Lactobacillus crispatus 2029 and Ligilactobacillus salivarius 7247 Strains Shows In Vitro Bactericidal Effect on Campylobacter jejuni and, in Combination with Prebiotic, Protects Against Intestinal Barrier Dysfunction. Antibiotics 2024, 13, 1143. [Google Scholar] [CrossRef]
- Shafipour Yordshahi, A.; Moradi, M.; Tajik, H.; Molaei, R. Design and preparation of antimicrobial meat wrapping nanopaper with bacterial cellulose and postbiotics of lactic acid bacteria. Int. J. Food Microbiol. 2020, 321, 108561. [Google Scholar] [CrossRef] [PubMed]
- İncili, G.K.; Karatepe, P.; Akgöl, M.; Güngören, A.; Koluman, A.; İlhak, O.İ.; Kanmaz, H.; Kaya, B.; Hayaloğlu, A.A. Characterization of lactic acid bacteria postbiotics, evaluation in-vitro antibacterial effect, microbial and chemical quality on chicken drumsticks. Food Microbiol. 2022, 104, 104001. [Google Scholar] [CrossRef]
- Moradi, M.; Mardani, K.; Tajik, H. Characterization and application of postbiotics of Lactobacillus spp. on Listeria monocytogenes in vitro and in food models. LWT 2019, 111, 457–464. [Google Scholar] [CrossRef]
- Neal-McKinney, J.M.; Lu, X.; Duong, T.; Larson, C.L.; Call, D.R.; Shah, D.H.; Konkel, M.E. Production of organic acids by probiotic lactobacilli can be used to reduce pathogen load in poultry. PLoS ONE 2012, 7, e43928. [Google Scholar] [CrossRef] [PubMed]
- Lo Verso, L.; Lessard, M.; Talbot, G.; Fernandez, B.; Fliss, I. Isolation and Selection of Potential Probiotic Bacteria from the Pig Gastrointestinal Tract. Probiotics Antimicrob. Proteins 2018, 10, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Śliżewska, K.; Markowiak-Kopeć, P.; Żbikowski, A.; Szeleszczuk, P. The effect of synbiotic preparations on the intestinal microbiota and her metabolism in broiler chickens. Sci. Rep. 2020, 10, 4281. [Google Scholar] [CrossRef]
- Ma, J.; Wang, J.; Mahfuz, S.; Long, S.; Wu, D.; Gao, J.; Piao, X. Supplementation of Mixed Organic Acids Improves Growth Performance, Meat Quality, Gut Morphology and Volatile Fatty Acids of Broiler Chicken. Animals 2021, 11, 3020. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.; Bai, S.; Zeng, Q.; Ding, X.; Wang, J.; Xuan, Y.; Su, Z.; Zhang, K. Effect of organic acids on growth performance, intestinal morphology, and immunity of broiler chickens with and without coccidial challenge. AMB Express 2021, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.H.; Chou, C.H.; Chiang, Y.J.; Lin, C.G.; Lee, C.H. Regulatory effects of Lactobacillus plantarum-GMNL6 on human skin health by improving skin microbiome. Int. J. Med. Sci. 2021, 18, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Leccese, G.; Bibi, A.; Mazza, S.; Facciotti, F.; Caprioli, F.; Landini, P.; Paroni, M. Probiotic Lactobacillus and Bifidobacterium Strains Counteract Adherent-Invasive Escherichia coli (AIEC) Virulence and Hamper IL-23/Th17 Axis in Ulcerative Colitis, but Not in Crohn’s Disease. Cells 2020, 9, 1824. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Da, R.; Tuo, X.; Cheng, Y.; Wei, J.; Jiang, K.; Lv, J.; Adediji, O.M.; Han, B. Probiotic and Safety Properties Screening of Enterococcus faecalis from Healthy Chinese Infants. Probiotics Antimicrob. Proteins 2020, 12, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Leska, A.; Nowak, A.; Czarnecka-Chrebelska, K.H. Adhesion and Anti-Adhesion Abilities of Potentially Probiotic Lactic Acid Bacteria and Biofilm Eradication of Honeybee (Apis mellifera L.) Pathogens. Molecules 2022, 27, 8945. [Google Scholar] [CrossRef] [PubMed]
- Styková, E.; Nemcová, R.; Valocký, I.; Novotný, F.; Guba, P. Adherence of bacteria to mucus collected from different parts of the reproductive tract of heifers and cows. Can. J. Microbiol. 2013, 59, 720–725. [Google Scholar] [CrossRef]
- Enríquez-Verdugo, I.; Guerrero, A.L.; Serrano, J.J.; Godínez, D.; Rosales, J.L.; Tenorio, V.; de la Garza, M. Adherence of Actinobacillus pleuropneumoniae to swine-lung collagen. Microbiology 2004, 150 Pt 7, 2391–2400. [Google Scholar] [CrossRef]
- Maddocks, S.E.; Jenkins, R.E.; Rowlands, R.S.; Purdy, K.J.; Cooper, R.A. Manuka honey inhibits adhesion and invasion of medically important wound bacteria in vitro. Future Microbiol. 2013, 8, 1523–1536. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Zakłos-Szyda, M.; Rosicka-Kaczmarek, J.; Motyl, I. Anticancer Potential of Post-Fermentation Media and Cell Extracts of Probiotic Strains: An In Vitro Study. Cancers 2022, 14, 1853. [Google Scholar] [CrossRef]
- Rocha-Mendoza, D.; Kosmerl, E.; Miyagusuku-Cruzado, G.; Giusti, M.M.; Jiménez-Flores, R.; García-Cano, I. Growth of lactic acid bacteria in milk phospholipids enhances their adhesion to Caco-2 cells. J. Dairy Sci. 2020, 103, 7707–7718. [Google Scholar] [CrossRef] [PubMed]
- Jena, P.K.; Trivedi, D.; Thakore, K.; Chaudhary, H.; Giri, S.S.; Seshadri, S. Isolation and characterization of probiotic properties of Lactobacilli isolated from rat fecal microbiota. Microbiol. Immunol. 2013, 57, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Barzegar, H.; Alizadeh Behbahani, B.; Falah, F. Safety, probiotic properties, antimicrobial activity, and technological performance of Lactobacillus strains isolated from Iranian raw milk cheeses. Food Sci. Nutr. 2021, 9, 4094–4107. [Google Scholar] [CrossRef] [PubMed]
- Chlebicz-Wójcik, A.; Śliżewska, K.; Nowak, A. Probiotic properties of Saccharomyces cerevisiae ŁOCK 0119 yeast. Żywność. Nauka. Technologia. Jakość 2020, 3, 196–209. [Google Scholar] [CrossRef]
- Cizeikiene, D.; Jagelaviciute, J. Investigation of Antibacterial Activity and Probiotic Properties of Strains Belonging to Lactobacillus and Bifidobacterium Genera for Their Potential Application in Functional Food and Feed Products. Probiotics Antimicrob. Proteins 2021, 13, 1387–1403. [Google Scholar] [CrossRef] [PubMed]
- Candido, M.G.; Tinoco, I.F.F.; Albino, L.F.T.; Freitas, L.C.S.; Santos, T.C.; Cecon, P.R.; Gates, R.S. Effects of heat stress on pullet cloacal and body temperature. Poult. Sci. 2020, 99, 2469–2477. [Google Scholar] [CrossRef]
- Nemska, V.; Logar, P.; Rasheva, T.; Sholeva, Z.; Georgieva, N.; Danova, S. Functional characteristics of lactobacilli from traditional Bulgarian fermented milk products. Turk. J. Biol. 2019, 43, 148–153. [Google Scholar] [CrossRef]
- Chen, P.; You, Q.; Li, X.; Chang, Q.; Zhang, Y.; Zheng, B.; Hu, X.; Zeng, H. Polysaccharide fractions from Fortunell margarita affect proliferation of Bifidobacterium adolescentis ATCC 15703 and undergo structural changes following fermentation. Int. J. Biol. Macromol. 2019, 123, 1070–1078. [Google Scholar] [CrossRef]
- Statistics Kingdom. Available online: https://www.statskingdom.com/index.html (accessed on 18 December 2024).
- Gong, L.; Wang, B.; Zhou, Y.; Tang, L.; Zeng, Z.; Zhang, H.; Li, W. Protective Effects of Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 Against Clostridium perfringens Infection in Broilers. Front. Immunol. 2021, 11, 628374. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhou, Y.; Mao, Y.; Gong, L.; Li, X.; Xu, S.; Wang, F.; Guo, Q.; Zhang, H.; Li, W. Dietary Supplementation With Lactobacillus plantarum Ameliorates Compromise of Growth Performance by Modulating Short-Chain Fatty Acids and Intestinal Dysbiosis in Broilers Under Clostridium perfringens Challenge. Front. Nutr. 2021, 8, 706148. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, X.; Dong, Y.; Lei, J.; Ito, K.; Zhang, B. Enterococcus faecium PNC01 isolated from the intestinal mucosa of chicken as an alternative for antibiotics to reduce feed conversion rate in broiler chickens. Microb. Cell Factories 2021, 20, 122. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.; Li, P.; Gu, Q. Complete genome sequence analysis of a strain Lactobacillus pentosus ZFM94 and its probiotic characteristics. Genomics 2020, 112, 3142–3149. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Du, M.; Jiang, W.; Zhang, J.; Shen, W.; Ma, X.; Liang, Z.; Shen, J.; Wu, X.; Ding, X. In Vitro Probiotic Characteristics and Whole Genome Sequence Analysis of Lactobacillus Strains Isolated from Cattle-Yak Milk. Biology 2021, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Mcwan, S.R.; Dabhi, B.K.; Parmar, S.C.; Aparnathi, K.D. Whey and its Utilization. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 134–155. [Google Scholar] [CrossRef]
- Gülşen, N.; Coşkun, B.; Umucalilar, H.D.; Inal, F.; Boydak, M. Effect of lactose and dried whey supplementation on growth performance and histology of the immune system in broilers. Arch. Tierernahr. 2002, 56, 131–139. [Google Scholar] [CrossRef]
- Ocejo, M.; Oporto, B.; Juste, R.A.; Hurtado, A. Effects of dry whey powder and calcium butyrate supplementation of corn/soybean-based diets on productive performance, duodenal histological integrity, and Campylobacter colonization in broilers. BMC Vet. Res. 2017, 13, 199. [Google Scholar] [CrossRef] [PubMed]
- Pineda-Quiroga, C.; Camarinha-Silva, A.; Borda-Molina, D.; Atxaerandio, R.; Ruiz, R.; García-Rodríguez, A. Feeding broilers with dry whey powder and whey protein concentrate affected productive performance, ileal digestibility of nutrients and cecal microbiota community. Animal 2018, 12, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Tsiouris, V.; Kontominas, M.G.; Filioussis, G.; Chalvatzi, S.; Giannenas, I.; Papadopoulos, G.; Koutoulis, K.; Fortomaris, P.; Georgopoulou, I. The Effect of Whey on Performance, Gut Health and Bone Morphology Parameters in Broiler Chicks. Foods 2020, 9, 588. [Google Scholar] [CrossRef]
- Greenhalgh, S.; Lemme, A.; Dorigam, J.C.P.; Chrystal, P.V.; Macelline, S.P.; Liu, S.Y.; Selle, P.H. Dietary crude protein concentrations, feed grains, and whey protein interactively influence apparent digestibility coefficients of amino acids, protein, starch, and performance of broiler chickens. Poult. Sci. 2022, 101, 102131. [Google Scholar] [CrossRef] [PubMed]
- M’Sadeq, S.A.; Wu, S.B.; Choct, M.; Forder, R.; Swick, R.A. Use of yeast cell wall extract as a tool to reduce the impact of necrotic enteritis in broilers. Poult. Sci. 2015, 94, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Ahiwe, E.U.; Chang’a, E.P.; Abdallh, M.E.; Al-Qahtani, M.; Kheravii, S.K.; Wu, S.; Graham, H.; Iji, P.A. Dietary hydrolysed yeast cell wall extract is comparable to antibiotics in the control of subclinical necrotic enteritis in broiler chickens. Br. Poult. Sci. 2019, 60, 757–765. [Google Scholar] [CrossRef]
- Simões, L.C.; Simões, M.; Vieira, M.J. Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria. Antonie Leeuwenhoek 2010, 98, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Kiňová Sepová, H.; Florová, B.; Bilková, A.; Drobná, E.; Březina, V. Evaluation of adhesion properties of lactobacilli probiotic candidates. Monatshefte Fuer Chem. 2018, 149, 893–899. [Google Scholar] [CrossRef]
- Balcázar, J.L.; Vendrell, D.; de Blas, I.; Ruiz-Zarzuela, I.; Gironés, O.; Múzquiz, J.L. In vitro competitive adhesion and production of antagonistic compounds by lactic acid bacteria against fish pathogens. Vet. Microbiol. 2007, 122, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh Behbahani, B.; Noshad, M.; Falah, F. Inhibition of Escherichia coli adhesion to human intestinal Caco-2 cells by probiotic candidate Lactobacillus plantarum strain L15. Microb. Pathog. 2019, 136, 103677. [Google Scholar] [CrossRef]
- Śliżewska, K.; Chlebicz-Wójcik, A.; Nowak, A. Probiotic Properties of New Lactobacillus Strains Intended to Be Used as Feed Additives for Monogastric Animals. Probiotics Antimicrob. Proteins 2021, 13, 146–162. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.; Sharma, M.; Ravishakar, S. Effect of curli expression and hydrophobicity of Escherichia coli O157: H7 on attachment to fresh produce surfaces. J. Appl. Microbiol. 2011, 110, 737–745. [Google Scholar] [CrossRef]
- Goel, A.; Halami, P.M.; Tamang, J.P. Genome Analysis of Lactobacillus plantarum Isolated from Some Indian Fermented Foods for Bacteriocin Production and Probiotic Marker Genes. Front. Microbiol. 2020, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, N.; Gu, Q.; Li, P. Whole genome sequence analysis and in vitro probiotic characteristics of a Lactobacillus strain Lactobacillus paracasei ZFM54. J. Appl. Microbiol. 2020, 129, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Saran, S.; Bisht, M.S.; Singh, K.; Teotia, U.V.S. Comparing adhesion attributes of two isolates of Lactobacillus acidophilus of assessment of prebiotics, honey and inulin. Int. J. Sci. Res. Publ. 2012, 2, 2250–3153. [Google Scholar]
- Armas, F.; Camperio, C.; Marianelli, C. In Vitro Assessment of the Probiotic Potential of Lactococcus lactis LMG 7930 against Ruminant Mastitis-Causing Pathogens. PLoS ONE 2017, 12, e0169543. [Google Scholar] [CrossRef] [PubMed]
- Sabbatini, S.; Monari, C.; Ballet, N.; Mosci, P.; Decherf, A.C.; Pélerin, F.; Perito, S.; Scarpelli, P.; Vecchiarelli, A. Saccharomyces cerevisiae-based probiotic as novel anti-microbial agent for therapy of bacterial vaginosis. Virulence 2018, 9, 954–966. [Google Scholar] [CrossRef]
- Xu, C.; Wei, F.; Yang, X.; Feng, Y.; Liu, D.; Hu, Y. Lactobacillus salivarius CML352 Isolated from Chinese Local Breed Chicken Modulates the Gut Microbiota and Improves Intestinal Health and Egg Quality in Late-Phase Laying Hens. Microorganisms 2022, 10, 726. [Google Scholar] [CrossRef]
- Khromova, N.Y.; Epishkina, J.M.; Karetkin, B.A.; Khabibulina, N.V.; Beloded, A.V.; Shakir, I.V.; Panfilov, V.I. The Combination of In Vitro Assessment of Stress Tolerance Ability, Autoaggregation, and Vitamin B-Producing Ability for New Probiotic Strain Introduction. Microorganisms 2022, 10, 470. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Yang, R.S.; Lin, Y.C.; Xin, W.G.; Zhou, H.Y.; Wang, F.; Zhang, Q.L.; Lin, L.B. Assessment of the safety and probiotic characteristics of Lactobacillus salivarius CGMCC20700 based on whole-genome sequencing and phenotypic analysis. Front. Microbiol. 2023, 14, 1120263. [Google Scholar] [CrossRef] [PubMed]
- das Neves Selis, N.; de Oliveira, H.B.M.; Leão, H.F.; Dos Anjos, Y.B.; Sampaio, B.A.; Correia, T.M.L.; Almeida, C.F.; Pena, L.S.C.; Reis, M.M.; Brito, T.L.S.; et al. Lactiplantibacillus plantarum strains isolated from spontaneously fermented cocoa exhibit potential probiotic properties against Gardnerella vaginalis and Neisseria gonorrhoeae. BMC Microbiol. 2021, 21, 198. [Google Scholar] [CrossRef] [PubMed]
- Tuo, Y.; Yu, H.; Ai, L.; Wu, Z.; Guo, B.; Chen, W. Aggregation and adhesion properties of 22 Lactobacillus strains. J. Dairy Sci. 2013, 96, 4252–4257. [Google Scholar] [CrossRef]
- Cozzolino, A.; Vergalito, F.; Tremonte, P.; Iorizzo, M.; Lombardi, S.J.; Sorrentino, E.; Luongo, D.; Coppola, R.; Di Marco, R.; Succi, M. Preliminary evaluation of the safety and probiotic potential of Akkermansia muciniphila DSM 22959 in comparison with Lactobacillus rhamnosus GG. Microorganisms 2020, 8, 189. [Google Scholar] [CrossRef] [PubMed]
- Dell’Anno, M.; Giromini, C.; Reggi, S.; Cavalleri, M.; Moscatelli, A.; Onelli, E.; Rebucci, R.; Sundaram, T.S.; Coranelli, S.; Spalletta, A.; et al. Evaluation of Adhesive Characteristics of L. plantarum and L. reuteri Isolated from Weaned Piglets. Microorganisms 2021, 9, 1587. [Google Scholar] [CrossRef]
- Nallala, V.S.; Sadishkumar, V.; Jeevaratnam, K. Molecular characterization of antimicrobial Lactobacillus isolates and evaluation of their probiotic characteristics in vitro for use in poultry. Food Biotechnol. 2017, 31, 20–41. [Google Scholar] [CrossRef]
- Guan, C.; Chen, X.; Jiang, X.; Zhao, R.; Yuan, Y.; Chen, D.; Zhang, C.; Lu, M.; Lu, Z.; Gu, R. In vitro studies of adhesion properties of six lactic acid bacteria isolated from the longevous population of China. RSC Adv. 2020, 10, 24234–24240. [Google Scholar] [CrossRef] [PubMed]
- Collado, M.C.; Surono, I.; Meriluoto, J.; Salminen, S. Indigenous dadih lactic acid bacteria: Cell-surface properties and interactions with pathogens. J. Food Sci. 2007, 72, M89–M93. [Google Scholar] [CrossRef] [PubMed]
- Dias, F.S.; Duarte, F.; Schwan, F. Evaluation of adhesive properties of presumptive probiotic Lactobacillus plantarum strains. Biosci. J. 2013, 29, 1678–1686. [Google Scholar]
- Piekarska-Radzik, L.; Klewicka, E. Wpływ preparatu z jagód Acai (Euterpe oleracea) na właściwości powierzchniowe, autoagregację i tworzenie biofilmu przez bakterie z rodzaju Lactobacillus. Żywność. Nauka. Technologia. Jakość 2020, 1, 96–110. [Google Scholar] [CrossRef]
- Fernández, S.; Fraga, M.; Silveyra, E.; Trombert, A.; Rabaza, A.; Pla, M.; Zunino, P. Probiotic properties of native Lactobacillus spp. strains for dairy calves. Benef. Microbes 2018, 9, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Billah, M.M.; Hoque, M.Z.; Akter, F.; Hossain, K.; MSM, R.; Islam, K.M.D. Isolation, Identification and Analysis of Probiotic properties of Lactobacillus Spp. from selective regional yoghurts. World J. Dairy Food Sci. 2010, 5, 39–46. [Google Scholar]
- Ashraf, R.; Smith, S.C. Selective enumeration of dairy based strains of probiotic and lactic acid bacteria. Int. Food Res. J. 2015, 22, 2576–2586. [Google Scholar]
- Mandal, S.; Hati, S.; Puniya, A.K.; Khamrui, K.; Singh, K. Enhancement of survival of alginate-encapsulated Lactobacillus casei NCDC 298. J. Sci. Food Agric. 2014, 94, 1994–2001. [Google Scholar] [CrossRef]
- Prete, R.; Long, S.L.; Gallardo, A.L.; Gahan, C.G.; Corsetti, A.; Joyce, S.A. Beneficial bile acid metabolism from Lactobacillus plantarum of food origin. Sci. Rep. 2020, 10, 1165. [Google Scholar] [CrossRef] [PubMed]
- Messaoudi, S.; Madi, A.; Prévost, H.; Feuilloley, M.; Manai, M.; Dousset, X.; Connil, N. In vitro evaluation of the probiotic potential of Lactobacillus salivarius SMXD51. Anaerobe 2012, 18, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Rajab, S.; Tabandeh, F.; Shahraky, M.K.; Alahyaribeik, S. The effect of Lactobacillus cell size on its probiotic characteristics. Anaerobe 2020, 62, 102103. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ishfaq, M.; Guo, Y.; Chen, C.; Li, J. Assessment of Probiotic Properties of Lactobacillus salivarius Isolated From Chickens as Feed Additives. Front. Vet. Sci. 2020, 7, 415. [Google Scholar] [CrossRef]
- Hamon, E.; Horvatovich, P.; Izquierdo, E.; Bringel, F.; Marchioni, E.; Aoudé-Werner, D.; Ennahar, S. Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance. BMC Microbiol. 2011, 11, 63. [Google Scholar] [CrossRef] [PubMed]
- Argyri, A.A.; Zoumpopoulou, G.; Karatzas, K.A.; Tsakalidou, E.; Nychas, G.J.; Panagou, E.Z.; Tassou, C.C. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 2013, 33, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Bujnakova, D.; Strakova, E.; Kmet, V. In vitro evaluation of the safety and probiotic properties of Lactobacilli isolated from chicken and calves. Anaerobe 2014, 29, 118–127. [Google Scholar] [CrossRef]
- Arena, M.P.; Silvain, A.; Normanno, G.; Grieco, F.; Drider, D.; Spano, G.; Fiocco, D. Use of Lactobacillus plantarum Strains as a Bio-Control Strategy against Food-Borne Pathogenic Microorganisms. Front. Microbiol. 2016, 7, 464. [Google Scholar] [CrossRef] [PubMed]
- Agriopoulou, S.; Stamatelopoulou, E.; Sachadyn-Król, M.; Varzakas, T. Lactic Acid Bacteria as Antibacterial Agents to Extend the Shelf Life of Fresh and Minimally Processed Fruits and Vegetables: Quality and Safety Aspects. Microorganisms 2020, 8, 952. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yu, Z.; Tian, F.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb. Cell Factories 2020, 19, 23. [Google Scholar] [CrossRef] [PubMed]
- Mukisa, I.M.; Byaruhanga, Y.B.; Muyanja, C.M.; Langsrud, T.; Narvhus, J.A. Production of organic flavor compounds by dominant lactic acid bacteria and yeasts from Obushera, a traditional sorghum malt fermented beverage. Food Sci. Nutr. 2016, 5, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Lo, R.; Ho, V.T.T.; Bansal, N.; Turner, M.S. The genetic basis underlying variation in production of the flavour compound diacetyl by Lactobacillus rhamnosus strains in milk. Int. J. Food Microbiol. 2018, 265, 30–39. [Google Scholar] [CrossRef]
- Masiá, C.; Geppel, A.; Jensen, P.E.; Buldo, P. Effect of Lactobacillus rhamnosus on Physicochemical Properties of Fermented Plant-Based Raw Materials. Foods 2021, 10, 573. [Google Scholar] [CrossRef] [PubMed]
- Nguon, S.; Novy, P.; Kokoska, L. Potentiation of the in vitro antistaphylococcal effect of oxacillin and tetracycline by the anti-inflammatory drug diacetyl rhein. Chemotherapy 2013, 59, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Leska, A.; Nowak, A.; Rosicka-Kaczmarek, J.; Ryngajłło, M.; Czarnecka-Chrebelska, K.H. Characterization and Protective Properties of Lactic Acid Bacteria Intended to Be Used in Probiotic Preparation for Honeybees (Apis mellifera L.)—An In Vitro Study. Animals 2023, 13, 1059. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.H.; Ren, L.Q.; Zhou, Y.; Ye, B.C. Characterization of antimicrobial activity of three Lactobacillus plantarum strains isolated from Chinese traditional dairy food. Food Sci. Nutr. 2019, 7, 1997–2005. [Google Scholar] [CrossRef] [PubMed]
- Quigley, E.M.M. Prebiotics and Probiotics in Digestive Health. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2019, 17, 333–344. [Google Scholar] [CrossRef]
- Wieërs, G.; Belkhir, L.; Enaud, R.; Leclercq, S.; Philippart de Foy, J.M.; Dequenne, I.; de Timary, P.; Cani, P.D. How Probiotics Affect the Microbiota. Front. Cell. Infect. Microbiol. 2020, 9, 454. [Google Scholar] [CrossRef]
L. plantarum 47 | L. plantarum OK-B | L. salivarius AN9 | L. plantarum AN8 | |
---|---|---|---|---|
Control | + | + | + | + |
First order error | 0.01 < p < 0.001 | 0.01 < p < 0.001 | 0.01 < p < 0.001 | 0.01 < p < 0.001 |
L. plantarum 47 | L. plantarum OK-B | L. salivarius AN9 | L. plantarum AN8 | |
---|---|---|---|---|
L. plantarum 47 | 0 | - | + | - |
L. plantarum OK-B | - | 0 | + | - |
L. salivarius AN9 | + | + | 0 | - |
L. plantarum AN8 | - | - | - | 0 |
L. plantarum 47 | L. plantarum OK-B | L. salivarius AN9 | L. plantarum AN8 | |
---|---|---|---|---|
E. coli + LAB 1 | + | + | + | + |
Type I error | 0.01 < p < 0.001 | 0.01 < p < 0.001 | 0.01 < p < 0.001 | 0.01 < p < 0.001 |
L. plantarum 47 + E. coli | L. plantarum OK-B + E. coli | L. salivarius AN9 + E. coli | L. plantarum AN8 + E. coli | |
---|---|---|---|---|
L. plantarum 47 + E. coli | 0 | - | - | - |
L. plantarum OK-B + E. coli | - | 0 | + | - |
L. salivarius AN9 + E. coli | - | + | 0 | - |
L. plantarum AN8 + E. coli | - | - | - | 0 |
(a) | ||||
L. plantarum 47 | L. plantarum OK-B | L. salivarius AN9 | L. plantarum AN8 | |
L. plantarum 47 | 0 | - | + | - |
L. plantarum OK-B | - | 0 | - | - |
L. salivarius AN9 | + | - | 0 | + |
L. plantarum AN8 | - | - | + | 0 |
(b) | ||||
L. plantarum 47 | L. plantarum OK-B | L. salivarius AN9 | L. plantarum AN8 | |
L. plantarum 47 | 0 | + | - | - |
L. plantarum OK-B | + | 0 | - | + |
L. salivarius AN9 | - | - | 0 | - |
L. plantarum AN8 | - | + | - | 0 |
(c) | ||||
L. plantarum 47 | L. plantarum OK-B | L. salivarius AN9 | L. plantarum AN8 | |
L. plantarum 47 | 0 | - | + | - |
L. plantarum OK-B | - | 0 | - | - |
L. salivarius AN9 | + | - | 0 | - |
L. plantarum AN8 | - | - | - | 0 |
Strain | Viability [%] ± SD | ||
---|---|---|---|
1 h | 2 h | 4 h | |
L. plantarum 47 | 68.47 ± 7.31 | 56.25 ± 5.53 | 54.67 ± 10.19 |
L. plantarum OK-B | 78.85 ± 5.07 | 70.32 ± 13.20 | 35.64 ± 21.23 |
L. salivarius AN9 | 49.02 ± 5.68 | 46.78 ± 9.31 | 50.21 ± 10.06 |
L. plantarum AN8 | 43.47 ± 23.84 | 34.05 ± 33.07 | 26.28 ± 44.52 |
Strain | Viability [%] ± SD | ||
---|---|---|---|
1 h | 2 h | 4 h | |
L. plantarum 47 | 8.35 ± 173.21 | 0 | 0 |
L. plantarum OK-B | 38.23 ± 24.77 | 0 | 0 |
L. salivarius AN9 | 0 | 0 | 0 |
L. plantarum AN8 | 20.99 ± 124.14 | 0.08 ± 173.21 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamojska, D.; Rosicka-Kaczmarek, J.; Macierzyńska-Piotrowska, E.; Nowak, A. The Characterization of Lactic Acid Bacteria Strains as Components of a Biopreparation for Chickens for Slaughter. Microorganisms 2025, 13, 317. https://doi.org/10.3390/microorganisms13020317
Zamojska D, Rosicka-Kaczmarek J, Macierzyńska-Piotrowska E, Nowak A. The Characterization of Lactic Acid Bacteria Strains as Components of a Biopreparation for Chickens for Slaughter. Microorganisms. 2025; 13(2):317. https://doi.org/10.3390/microorganisms13020317
Chicago/Turabian StyleZamojska, Daria, Justyna Rosicka-Kaczmarek, Ewa Macierzyńska-Piotrowska, and Adriana Nowak. 2025. "The Characterization of Lactic Acid Bacteria Strains as Components of a Biopreparation for Chickens for Slaughter" Microorganisms 13, no. 2: 317. https://doi.org/10.3390/microorganisms13020317
APA StyleZamojska, D., Rosicka-Kaczmarek, J., Macierzyńska-Piotrowska, E., & Nowak, A. (2025). The Characterization of Lactic Acid Bacteria Strains as Components of a Biopreparation for Chickens for Slaughter. Microorganisms, 13(2), 317. https://doi.org/10.3390/microorganisms13020317