Drug Resistance Mutations (DRMs) for Long-Acting Injectable Cabotegravir and Rilpivirine (CAB/RPV LAI) in the HIV-1 Subtype A6 Epidemic in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Clinical Assesment
2.3. Molecular Investigation
2.4. Statistical Evaluation
2.5. Bioethics
3. Results
3.1. Cohort Characteristics
3.2. Presence of DRMs
3.3. Presence of DRMs to LAI CAB+RPV and CAB PrEP
4. Discussion
4.1. Changing HIV Subtype Epidemiology in Poland
4.2. A6 Subtype Genetic Diversity
4.2.1. Significance of the L74I Polymorphism in the A6 HIV-1 Subtype
4.2.2. DRMs in the A6 HIV-1 Subtype
4.3. HIV-1 Subtype A6 in the Context of LAI ART and CAB PrEP
4.4. Significance and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gallo, R.C.; Salahuddin, S.Z.; Popovic, M.; Shearer, G.M.; Kaplan, M.; Haynes, B.F.; Palker, T.J.; Redfield, R.; Oleske, J.; Safai, B. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 1984, 224, 500–503. [Google Scholar] [CrossRef] [PubMed]
- UNAIDS. Global HIV & AIDS Statistics—Fact Sheet. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 21 January 2025).
- Obel, N.; Omland, L.H.; Kronborg, G.; Larsen, C.S.; Pedersen, C.; Pedersen, G.; Sørensen, H.T.; Gerstoft, J. Impact of non-HIV and HIV risk factors on survival in HIV-infected patients on HAART: A population-based nationwide cohort study. PLoS ONE 2011, 6, e22698. [Google Scholar] [CrossRef] [PubMed]
- EACS 2024 Guidelines for the Management of People Living with HIV in Europe. Available online: https://eacs.sanfordguide.com/ (accessed on 20 January 2025).
- Scott, L.J. Dolutegravir/Lamivudine Single-Tablet Regimen: A Review in HIV-1 Infection. Drugs 2020, 80, 61–72. [Google Scholar] [CrossRef]
- UNAIDS DATA 2019. Available online: https://www.unaids.org/sites/default/files/media_asset/2019-UNAIDS-data_en.pdf (accessed on 10 November 2024).
- Parczewski, M.; Scheibe, K.; Witak-Jędra, M.; Pynka, M.; Aksak-Wąs, B.; Urbańska, A. Infection with HIV-1 subtype D adversely affects the live expectancy independently of antiretroviral drug use. Infect. Genet. Evol. 2021, 90, 104754. [Google Scholar] [CrossRef] [PubMed]
- Hemelaar, J.; Elangovan, R.; Yun, J.; Dickson-Tetteh, L.; Kirtley, S.; Gouws-Williams, E.; Ghys, P.D. WHO-UNAIDS Network for HIV Isolation and Characterisation Global and regional epidemiology of HIV-1 recombinants in 1990–2015: A systematic review and global survey. Lancet HIV 2020, 7, e772-81. [Google Scholar] [CrossRef] [PubMed]
- Bbosa, N.; Kaleebu, P.; Ssemwanga, D. HIV subtype diversity worldwide. Curr. Opin. HIV AIDS 2019, 14, 153–160. [Google Scholar] [CrossRef]
- Abad, C.L.; Bello, J.A.G.; Cruz, A.B.; Danilovic, A.; Elias, J.; Bremer, J.W.; Huang, D.D. Prevalent subtypes and one-year outcomes of an HIV-cohort from an urban Philippine center. Medicine 2021, 100, e28315. [Google Scholar] [CrossRef]
- Aibekova, L.; Foley, B.; Hortelano, G.; Raees, M.; Abdraimov, S.; Toichuev, R.; Ali, S. Molecular epidemiology of HIV-1 subtype A in former Soviet Union countries. PLoS ONE 2018, 13, e0191891. [Google Scholar] [CrossRef] [PubMed]
- Kirichenko, A.; Lapovok, I.; Baryshev, P.; van de Vijver, D.A.M.C.; van Kampen, J.J.A.; Boucher, C.A.B.; Paraskevis, D.; Kireev, D. Genetic Features of HIV-1 Integrase Sub-Subtype A6 Predominant in Russia and Predicted Susceptibility to INSTIs. Viruses 2020, 12, 838. [Google Scholar] [CrossRef]
- Serwin, K.; Urbańska, A.; Scheibe, K.; Witak-Jędra, M.; Jankowska, M.; Hlebowicz, M.; Bociąga-Jasik, M.; Kalinowska-Nowak, A.; Biała, M.; Ciepłucha, H.; et al. Molecular epidemiology and HIV-1 variant evolution in Poland between 2015 and 2019. Sci. Rep. 2021, 11, 16609. [Google Scholar] [CrossRef] [PubMed]
- Abidi, S.H.; Aibekova, L.; Davlidova, S.; Amangeldiyeva, A.; Foley, B.; Ali, S. Origin and evolution of HIV-1 subtype A6. PLoS ONE 2021, 16, e0260604. [Google Scholar] [CrossRef] [PubMed]
- Cutrell, A.G.; Schapiro, J.M.; Perno, C.F.; Kuritzkes, D.R.; Quercia, R.; Patel, P.; Polli, J.W.; Dorey, D.; Wang, Y.; Wu, S.; et al. Exploring predictors of HIV-1 virologic failure to long-acting cabotegravir and rilpivirine: A multivariable analysis. AIDS 2021, 35, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.Y.; Kassaye, S.G.; Barrow, G.; Sundaramurthi, J.C.; Jordan, M.R.; Shafer, R.W. HIV-1 transmitted drug resistance surveillance: Shifting trends in study design and prevalence estimates. J. Int. AIDS Soc. 2020, 23, 25611. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. HIV Infection and AIDS. Available online: https://www.ecdc.europa.eu/en/hiv-infection-and-aids (accessed on 20 January 2025).
- MMWR. Appendix A–AIDS-Defining Conditions. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5710a2.htm (accessed on 20 January 2025).
- Stanford University HIV Drug Resistance Database. Available online: http://hivdb.stanford.edu (accessed on 20 January 2025).
- Beyrer, C.; Wirtz, A.L.; O’Hara, G.; Léon, N.; Kazatchkine, M. The expanding epidemic of HIV-1 in the Russian Federation. PLoS Med. 2017, 14, e1002462. [Google Scholar] [CrossRef]
- Bobkova, M. Current status of HIV-1 diversity and drug resistance monitoring in the former USSR. AIDS Rev. 2013, 15, 204–212. [Google Scholar]
- European Centre for Disease Prevention and Control/WHO Regional Office for Europe. HIV/AIDS Surveillance in Europe 2021–2020 Data; ECDC: Stockholm, Sweden, 2021; Available online: https://www.ecdc.europa.eu/en/publications-data/hiv-aids-surveillance-europe-2021-2020-data (accessed on 15 November 2024).
- Zhukova, A.; Dunn, D.; Gascuel, O.; UK HIV Drug Resistance Database & the Collaborative HIV, Anti-HIV Drug Resistance Network. Modeling Drug Resistance Emergence and Transmission in HIV-1 in the UK. Viruses 2023, 15, 1244. [Google Scholar] [CrossRef]
- Rossetti, B.; Di Giambenedetto, S.; Torti, C.; Postorino, M.C.; Punzi, G.; Saladini, F.; Gennari, W.; Borghi, V.; Monno, L.; Pignataro, A.R.; et al. Antiviral Response Cohort Analysis (ARCA) Collaborative Group. Evolution of transmitted HIV-1 drug resistance and viral subtypes circulation in Italy from 2006 to 2016. HIV Med. 2018, 19, 619–628. [Google Scholar] [CrossRef]
- Hanke, K.; Faria, N.R.; Kühnert, D.; Yousef, K.P.; Hauser, A.; Meixenberger, K.; Hofmann, A.; Bremer, V.; Bartmeyer, B.; Pybus, O.; et al. Reconstruction of the Genetic History and the Current Spread of HIV-1 Subtype A in Germany. J. Virol. 2019, 93, e02238-18. [Google Scholar] [CrossRef]
- Schlösser, M.; Kartashev, V.V.; Mikkola, V.H.; Shemshura, A.; Saukhat, S.; Kolpakov, D.; Suladze, A.; Tverdokhlebova, T.; Hutt, K.; Heger, E.; et al. HIV-1 Sub-Subtype A6: Settings for Normalized Identification and Molecular Epidemiology in the Southern Federal District, Russia. Viruses 2020, 12, 475. [Google Scholar] [CrossRef] [PubMed]
- Serwin, K.; Scheibe, K.; Urbańska, A.; Aksak-Wąs, B.; Karasińska-Cieślak, M.; Ząbek, P.; Siwak, E.; Cielniak, I.; Jabłonowska, E.; Wójcik-Cichy, K.; et al. Phylodynamic evolution of HIV-1 A6 subsubtype epidemics in Poland. J. Med. Virol. 2024, 96, e29482. [Google Scholar] [CrossRef] [PubMed]
- Serwin, K.; Chaillon, A.; Scheibe, K.; Urbańska, A.; Aksak-Wąs, B.; Ząbek, P.; Siwak, E.; Cielniak, I.; Jabłonowska, E.; Wójcik-Cichy, K.; et al. Circulation of Human Immunodeficiency Virus 1 A6 Variant in the Eastern Border of the European Union-Dynamics of the Virus Transmissions Between Poland and Ukraine. Clin. Infect. Dis. 2023, 76, 1716–1724. [Google Scholar] [CrossRef] [PubMed]
- Vasylyev, M.; Skrzat-Klapaczyńska, A.; Bernardino, J.I.; Săndulescu, O.; Gilles, C.; Libois, A.; Curran, A.; Spinner, C.D.; Rowley, D.; Bickel, M.; et al. Unified European support framework to sustain the HIV cascade of care for people living with HIV including in displaced populations of war-struck Ukraine. Lancet HIV 2022, 6, e438–e448. [Google Scholar] [CrossRef]
- Wensing, A.M.; Calvez, V.; Ceccherini-Silberstein, F.; Charpentier, C.; Günthard, H.F.; Paredes, R.; Shafer, R.W.; Richman, D.D. 2022 update of the drug resistance mutations in HIV-1. Top. Antivir. Med. 2022, 30, 559–574. [Google Scholar] [PubMed]
- Scheibe, K.; Urbańska, A.; Serwin, K.; Parczewski, M. Frequency of genotypic factors possibly associated with cabotegravir/rilpivirine failure in antiretroviral treatment-naïve and -experienced HIV-1- infected population. Infect. Genet. Evol. 2022, 104, 105358. [Google Scholar] [CrossRef] [PubMed]
- Los Alamos National Laboratory. Available online: https://www.hiv.lanl.gov/content/index (accessed on 17 November 2024).
- Lapovok, I.; Laga, V.; Kazennova, E.; Bobkova, M. HIV Type 1 Integrase Natural Polymorphisms in Viral Variants Circulating in FSU Countries. Curr. HIV Res. 2017, 15, 318–326. [Google Scholar] [CrossRef]
- Jeffrey, J.L.; St Clair, M.; Wang, P.; Wang, C.; Li, Z.; Beloor, J.; Talarico, C.; Fridell, R.; Krystal, M.; White, C.T.; et al. Impact of Integrase Sequences from HIV-1 Subtypes A6/A1 on the In Vitro Potency of Cabotegravir or Rilpivirine. Antimicrob. Agents Chemother. 2022, 66, e0170221. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Cordwell, T.; Nguyen, H.; Li, J.; Jeffrey, J.L.; Kuritzkes, D.R. Effect of the L74I Polymorphism on Fitness of Cabotegravir-Resistant Variants of Human Immunodeficiency Virus 1 Subtype A6. J. Infect. Dis. 2023, 228, 1352–1356. [Google Scholar] [CrossRef] [PubMed]
- Pingarilho, M.; Pimentel, V.; Diogo, I.; Fernandes, S.; Miranda, M.; Pineda-Pena, A.; Libin, P.; Theys, K.; Martins, M.R.O.; Vandamme, A.M.; et al. Increasing Prevalence of HIV-1 Transmitted Drug Resistance in Portugal: Implications for First Line Treatment Recommendations. Viruses 2020, 12, 1238. [Google Scholar] [CrossRef] [PubMed]
- Christopoulos, K.A.; Grochowski, J.; Mayorga-Munoz, F.; Hickey, M.D.; Imbert, E.; Szumowski, J.D.; Dilworth, S.; Oskarsson, J.; Shiels, M.; Havlir, D.; et al. First Demonstration Project of Long-Acting Injectable Antiretroviral Therapy for Persons with and Without Detectable Human Immunodeficiency Virus (HIV) Viremia in an Urban HIV Clinic. Clin. Infect. Dis. 2023, 76, 645–651. [Google Scholar] [CrossRef]
- Paraskevis, D.; Kostaki, E.; Magiorkinis, G.; Gargalianos, P.; Xylomenos, G.; Magiorkinis, E.; Lazanas, M.; Chini, M.; Nikolopoulos, G.; Skoutelis, A.; et al. Prevalence of drug resistance among HIV-1 treatment-naïve patients in Greece during 2003-2015: Transmitted drug resistance is due to onward transmissions. Infect. Genet. Evol. 2017, 54, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Loosli, T.; Hossmann, S.; Ingle, S.M.; Okhai, H.; Kusejko, K.; Mouton, J.; Bellecave, P.; van Sighem, A.; Stecher, M.; d’Arminio Monforte, A.; et al. HIV-1 drug resistance in people on dolutegravir-based antiretroviral therapy: A collaborative cohort analysis. Lancet HIV 2023, 10, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Sanaubarova, A.; Pujol-Hodge, E.; Dzissyuk, N.; Lemey, P.; Vermund, S.H.; Leigh Brown, A.J.; Ali, S. High-Level Drug-Resistant Mutations among HIV-1 Subtype A6 and CRF02_AG in Kazakhstan. Viruses 2023, 15, 1407. [Google Scholar] [CrossRef] [PubMed]
- Załęski, A.; Lembas, A.; Dyda, T.; Siwak, E.; Osińska, J.; Suchacz, M.; Stempkowska-Rejek, J.; Strycharz, M.; Orzechowska, J.; Wiercińska-Drapało, A. Changes in Primary HIV-1 Drug Resistance Due to War Migration from Eastern Europe. J. Immigr. Minor. Health 2024, 26, 15–22. [Google Scholar] [CrossRef]
- Swindells, S.; Lutz, T.; Van Zyl, L.; Porteiro, N.; Stoll, M.; Mitha, E.; Shon, A.; Benn, P.; Huang, J.O.; Harrington, C.M.; et al. Week 96 extension results of a Phase 3 study evaluating long-acting cabotegravir with rilpivirine for HIV-1 treatment. AIDS 2022, 36, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Delany-Moretlwe, S.; Hughes, J.P.; Bock, P.; Ouma, S.G.; Hunidzarira, P.; Kalonji, D.; Kayange, N.; Makhema, J.; Mandima, P.; Mathew, C.; et al. HPTN 084 study group. Cabotegravir for the prevention of HIV-1 in women: Results from HPTN 084, a phase 3, randomized clinical trial. Lancet 2022, 399, 1779–1789. [Google Scholar] [CrossRef]
All Patients (n = 357) | A6 Subtype (n = 177) | B Subtype (n = 159) | p | |
---|---|---|---|---|
Total number (n (%)) | 357 (100.00) | 177 (49.58) | 159 (44.54) | 0.177 |
Age (mean (SD)) | 34.31 (10.61) | 34.15 (10.75) | 34.44 (10.94) | 0.528 |
Male sex (n (%)) | 298 (83.47) | 138 (77.97) | 141 (88.68) | 0.008 |
Female sex (n (%)) | 59 (16.53) | 39 (22.03) | 18 (11.32) | 0.009 |
FSU nationality (n (%)) | 102 (28.57) | 79 (44.63) | 23 (14.47) | <0.001 |
Polish nationality (n (%)) | 247 (69.11) | 96 (54.24) | 131 (82.39) | <0.001 |
MSM (n (%)) | 238 (66.67) | 104 (58.76) | 118 (74.21) | 0.003 |
Heterosexual (n (%)) | 86 (24.09) | 58 (32.77) | 24 (15.09) | <0.001 |
IDU (n (%)) | 22 (6.16) | 10 (5.65) | 12 (7.55) | 0.493 |
Vertical (n (%)) | 11 (3.08) | 5 (2.82) | 5 (3.14) | 0.863 |
Recent HIV infection (n (%)) | 70 (19.61) | 34 (19.21) | 31 (19.50) | 0.947 |
AIDS (n (%)) | 61 (17.09) | 30 (16.95) | 30 (18.87) | 0.647 |
All Patients (n = 357) | A6 Subtype (n = 177) | B Subtype (n = 159) | p | |
---|---|---|---|---|
All mutations | ||||
Any mutation (n (%)) | 143 (40.06) | 58 (32.77) | 78 (49.06) | 0.002 |
Any major mutation (n (%)) | 36 (10.08) | 24 (13.56) | 11 (6.92) | 0.047 |
Any accessory mutation (n (%)) | 118 (33.05) | 42 (23.73) | 72 (45.28) | <0.001 |
InSTI mutations | ||||
Any InSTI mutation (n (%)) | 44 (12.32) | 9 (5.08) | 32 (20.13) | <0.001 |
Any major InSTI mutation (n (%)) | 4 (1.12) | 2 (1.13) | 2 (1.26) | 0.914 |
Any accessory InSTI mutation (n (%)) | 40 (11.20) | 7 (3.95) | 30 (18.87) | <0.001 |
Any InSTI polymorphism (n (%)) | 12 (3.36) | 0 (0.00) | 9 (5.66) | 0.006 |
NNRTI mutations | ||||
Any NNRTI mutation (n (%)) | 58 (16.25) | 29 (16.38) | 27 (16.98) | 0.883 |
Any major NNRTI mutation (n (%)) | 19 (5.32) | 15 (8.47) | 3 (1.89) | 0.007 |
Any accessory NNRTI mutation (n (%)) | 39 (10.92) | 14 (7.91) | 24 (15.09) | 0.038 |
Any NNRTI polymorphism (n (%)) | 25 (7.00) | 13 (7.34) | 5 (3.14) | 0.088 |
HIV drug resistance | ||||
Transmitted, major all (n (%)) | 27 (7.56) | 18 (10.17) | 9 (5.66) | 0.129 |
Transmitted major to INSTI (n (%)) | 2 (0.56) | 1 (0.56) | 1 (0.63) | 0.939 |
Transmitted major to NNRTI (n (%)) | 16 (4.48) | 13 (7.34) | 2 (1.26) | 0.007 |
Acquired, major all (n (%)) | 9 (2.52) | 6 (3.39) | 3 (1.89) | 0.269 |
Acquired major to INSTI (n (%)) | 2 (0.56) | 1 (0.56) | 1 (0.63) | 0.939 |
Acquired major to NNRTI (n (%)) | 3 (0.84) | 2 (1.13) | 1 (0.63) | 0.626 |
All Patients (n = 357) | A6 Subtype (n = 177) | B Subtype (n = 159) | p | |
---|---|---|---|---|
Cabotegravir mutations | ||||
All cabotegravir mutations (n (%)) | 10 (2.80) | 5 (2.82) | 4 (2.52) | 0.861 |
Major cabotegravir mutations (n (%)) | 5 (1.40) | 3 (1.69) | 2 (1.26) | 0.741 |
Accessory cabotegravir mutations (n (%)) | 5 (1.40) | 2 (1.13) | 2 (1.26) | 0.914 |
Cabotegravir polymorphisms (n (%)) | 12 (3.36) | 0 (0.00) | 9 (5.66) | 0.006 |
Rilpivirine mutations | ||||
All rilpivirine mutations (n (%)) | 45 (12.61) | 19 (10.73) | 24 (15.09) | 0.232 |
Major rilpivirine mutations (n (%)) | 11 (3.08) | 9 (5.08) | 1 (0.63) | 0.016 |
Accessory rilpivirine mutations (n (%)) | 34 (9.52) | 10 (5.65) | 23 (14.47) | 0.007 |
Rilpivirine polymorphisms (n (%)) | 25 (7.00) | 13 (7.34) | 5 (3.14) | 0.088 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Załęski, A.; Lembas, A.; Dyda, T.; Osińska, J.; Jabłońska, J.; Stempkowska-Rejek, J.; Orzechowska, J.; Wiercińska-Drapało, A. Drug Resistance Mutations (DRMs) for Long-Acting Injectable Cabotegravir and Rilpivirine (CAB/RPV LAI) in the HIV-1 Subtype A6 Epidemic in Poland. Microorganisms 2025, 13, 321. https://doi.org/10.3390/microorganisms13020321
Załęski A, Lembas A, Dyda T, Osińska J, Jabłońska J, Stempkowska-Rejek J, Orzechowska J, Wiercińska-Drapało A. Drug Resistance Mutations (DRMs) for Long-Acting Injectable Cabotegravir and Rilpivirine (CAB/RPV LAI) in the HIV-1 Subtype A6 Epidemic in Poland. Microorganisms. 2025; 13(2):321. https://doi.org/10.3390/microorganisms13020321
Chicago/Turabian StyleZałęski, Andrzej, Agnieszka Lembas, Tomasz Dyda, Joanna Osińska, Joanna Jabłońska, Justyna Stempkowska-Rejek, Justyna Orzechowska, and Alicja Wiercińska-Drapało. 2025. "Drug Resistance Mutations (DRMs) for Long-Acting Injectable Cabotegravir and Rilpivirine (CAB/RPV LAI) in the HIV-1 Subtype A6 Epidemic in Poland" Microorganisms 13, no. 2: 321. https://doi.org/10.3390/microorganisms13020321
APA StyleZałęski, A., Lembas, A., Dyda, T., Osińska, J., Jabłońska, J., Stempkowska-Rejek, J., Orzechowska, J., & Wiercińska-Drapało, A. (2025). Drug Resistance Mutations (DRMs) for Long-Acting Injectable Cabotegravir and Rilpivirine (CAB/RPV LAI) in the HIV-1 Subtype A6 Epidemic in Poland. Microorganisms, 13(2), 321. https://doi.org/10.3390/microorganisms13020321