Balancing Nature and Nurture: The Role of Biocontrol Agents in Shaping Plant Microbiomes for Sustainable Agriculture
Abstract
:1. Mini-Review
2. Summary
Funding
Conflicts of Interest
References
- Santoyo, G. How plants recruit their microbiome? New insights into beneficial interactions. J. Adv. Res. 2022, 40, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Dastogeer, K.M.; Tumpa, F.H.; Sultana, A.; Akter, M.A.; Chakraborty, A. Plant microbiome—An account of the factors that shape community composition and diversity. Curr. Plant Biol. 2020, 23, 100161. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, W.; Bu, J.; Lin, Y.; Bai, Y. Host genetics regulate the plant microbiome. Curr. Opin. Microbiol. 2023, 72, 102268. [Google Scholar] [CrossRef] [PubMed]
- Marschner, P.; Yang, C.H.; Lieberei, R.; Crowley, D.E. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem. 2001, 33, 1437–1445. [Google Scholar] [CrossRef]
- Ou, T.; Xu, W.; Wang, F.; Strobel, G.; Zhou, Z.; Xiang, Z.; Liu, J.; Xie, J. A microbiome study reveals seasonal variation in endophytic bacteria among different mulberry cultivars. Comput. Struct. Biotechnol. J. 2019, 17, 1091–1100. [Google Scholar] [CrossRef]
- Hamaoka, K.; Aoki, Y.; Takahashi, S.; Enoki, S.; Yamamoto, K.; Tanaka, K.; Suzuki, S. Diversity of endophytic bacterial microbiota in grapevine shoot xylems varies depending on wine grape-growing region, cultivar, and shoot growth stage. Sci. Rep. 2022, 12, 15772. [Google Scholar] [CrossRef]
- Shi, Y.W.; Yang, H.M.; Chu, M.; Niu, X.X.; Huo, X.D.; Gao, Y.; Lin, Q.; Zeng, J.; Zhang, T.; Lou, K. Endophytic bacterial communities and spatiotemporal variations in cotton roots in Xinjiang, China. Can. J. Microbiol. 2021, 67, 506–517. [Google Scholar] [CrossRef]
- Ware, I.M.; Van Nuland, M.E.; Yang, Z.K.; Schadt, C.W.; Schweitzer, J.A.; Bailey, J.K. Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology. Commun. Biol. 2021, 4, 748. [Google Scholar] [CrossRef]
- Liu, F.; Hewezi, T.; Lebeis, S.L.; Pantalone, V.; Grewal, P.S.; Staton, M.E. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol. 2019, 19, 201. [Google Scholar] [CrossRef]
- Jia, T.; Shymanovich, T.; Gao, Y.B.; Faeth, S.H. Plant population and genotype effects override the effects of Epichloë endophyte species on growth and drought stress response of Achnatherum robustum plants in two natural grass populations. J. Plant Ecol. 2015, 8, 633–641. [Google Scholar]
- Lopes, L.D.; Hao, J.; Schachtman, D.P. Alkaline soil pH affects bulk soil, rhizosphere, and root endosphere microbiomes of plants growing in a Sandhills ecosystem. FEMS Microbiol. Ecol. 2021, 97, fiab028. [Google Scholar] [CrossRef] [PubMed]
- Ferrarezi, R.S.; Lin, X.; Neira, A.C.G.; Zambon, F.T.; Hu, H.; Wang, X.; Huang, J.H.; Fan, G. Substrate pH influences the nutrient absorption and rhizosphere microbiome of Huanglongbing-affected grapefruit plants. Front. Plant Sci. 2022, 13, 856937. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Feng, J.; Zhang, H.; Xiong, D.; Kong, L.; Seviour, R.; Kong, Y. Effects of soil pH on the growth, soil nutrient composition, and rhizosphere microbiome of Ageratina adenophora. PeerJ 2024, 12, e17231. [Google Scholar] [CrossRef]
- Tkacz, A.; Cheema, J.; Chandra, G.; Grant, A.; Poole, P.S. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J. 2015, 9, 2349–2359. [Google Scholar] [CrossRef]
- Qiao, Q.; Wang, F.; Zhang, J.; Chen, Y.; Zhang, C.; Liu, G.; Zhang, H.; Ma, C.; Zhang, J. The variation in the rhizosphere microbiome of cotton with soil type, genotype, and developmental stage. Sci. Rep. 2017, 7, 3940. [Google Scholar] [CrossRef]
- Schreiter, S.; Ding, G.C.; Heuer, H.; Neumann, G.; Sandmann, M.; Grosch, R.; Kropf, S.; Smalla, K. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front. Microbiol. 2014, 5, 74815. [Google Scholar] [CrossRef]
- Chaparro, J.M.; Badri, D.V.; Vivanco, J.M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014, 8, 790–803. [Google Scholar] [CrossRef]
- Duran, P.; Ellis, T.J.; Thiergart, T.; Agren, J.; Hacquard, S. Climate drives rhizosphere microbiome variation and divergent selection between geographically distant Arabidopsis populations. New Phytol. 2022, 236, 608–621. [Google Scholar] [CrossRef]
- Wagner, M.R.; Lundberg, D.S.; del Rio, T.G.; Tringe, S.G.; Dangl, J.L.; Mitchell-Olds, T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 2016, 7, 12151. [Google Scholar] [CrossRef]
- Malacrinò, A.; Mosca, S.; Li Destri Nicosia, M.G.; Agosteo, G.E.; Schena, L. Plant genotype shapes the bacterial microbiome of fruits, leaves, and soil in olive plants. Plants 2022, 11, 613. [Google Scholar] [CrossRef]
- Quiza, L.; Tremblay, J.; Pagé, A.P.; Greer, C.W.; Pozniak, C.J.; Li, R.; Haug, B.; Hemmingsen, S.M.; St-Arnaud, M.; Yergeau, E. The effect of wheat genotype on the microbiome is more evident in roots and varies through time. ISME Commun. 2023, 3, 32. [Google Scholar] [CrossRef] [PubMed]
- Campisano, A.; Albanese, D.; Yousaf, S.; Pancher, M.; Donati, C.; Pertot, I. Temperature drives the assembly of endophytic communities’ seasonal succession. Environ. Microbiol. 2017, 19, 3353–3364. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.S.; Nogueira, M.A.; Hungria, M. Microbial inoculants: Reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 2019, 9, 205. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Li, C.H.; Ali, Q.; Zhao, W.; Chi, Y.K.; Shafiq, M.; Ali, F.; Yu, X.Y.; Yu, Q.; Zhao, J.T.; et al. Bacterial and fungal biocontrol agents for plant disease protection: Journey from lab to field, current status, challenges, and global perspectives. Molecules 2023, 28, 6735. [Google Scholar] [CrossRef]
- Welmillage, S.U.; Zhang, Q.; Sreevidya, V.S.; Sadowsky, M.J.; Gyaneshwar, P. Inoculation of Mimosa pudica with Paraburkholderia phymatum results in changes to the rhizoplane microbial community structure. SU Microbes Environ. 2021, 36, ME20153. [Google Scholar] [CrossRef]
- Yaghoubi Khanghahi, Y.M.; Crecchio, C.; Verbruggen, E. Shifts in the rhizosphere and endosphere colonizing bacterial communities under drought and salinity stress as affected by a biofertilizer consortium. Microb. Ecol. 2022, 84, 483–495. [Google Scholar] [CrossRef]
- Senthilkumar, M.; Anandham, R.; Madhaiyan, M.; Venkateswaran, V.; Sa, T. Endophytic bacteria: Perspectives and applications in agricultural crop production. In Bacteria in Agrobiology: Crop Ecosystems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 61–96. [Google Scholar]
- Andrade, G.; Mihara, K.L.; Linderman, R.G.; Bethlenfalvay, G.J. Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 1997, 192, 71–79. [Google Scholar] [CrossRef]
- Wamberg, C.; Christensen, S.; Jakobsen, A.K.; Muller, S.J. Sorensen The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol. Biochem. 2003, 35, 1349–1357. [Google Scholar] [CrossRef]
- Marschner, P.; Baumann, K. Changes in bacterial community structure induced by mycorrhizal colonization in split-root maize. Plant Soil 2003, 251, 279–289. [Google Scholar] [CrossRef]
- Ravnskov, S.; Jensen, B.; Knudsen, I.M.; Bødker, L.; Jensen, D.F.; Karliński, L.; Larsen, J. Soil inoculation with the biocontrol agent Clonostachys rosea and the mycorrhizal fungus Glomus intraradices results in mutual inhibition, plant growth promotion, and alteration of soil microbial communities. Soil Biol. Biochem. 2006, 38, 3453–3462. [Google Scholar] [CrossRef]
- Chang, Y.; Xia, X.; Sui, L.; Kang, Q.; Lu, Y.; Li, L.; Liu, W.; Li, Q.; Zhang, Z. Endophytic colonization of entomopathogenic fungi increases plant disease resistance by altering the endophytic bacterial community. J. Basic Microbiol. 2021, 61, 1098–1112. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Deng, Y.; Yu, X.; Wu, G.; Gao, Y.; Ren, A. Epichloë endophyte infection changes the root endosphere microbial community composition of Leymus chinensis under both potted and field growth conditions. Microb. Ecol. 2023, 85, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Guzmán, P.; Kumar, A.; de los Santos-Villalobos, S.; Parra-Cota, F.I.; Orozco-Mosqueda, M.d.C.; Fadiji, A.E.; Hyder, S.; Babalola, O.O.; Santoyo, G. Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases—A Review. Plants 2023, 12, 432. [Google Scholar] [CrossRef]
- de Azevedo Silva, F.; Vieira, V.O.; da Silva, R.C.; Pinheiro, D.G.; Soares, M.A. Introduction of Trichoderma spp. biocontrol strains against Sclerotinia sclerotiorum alters soil microbial community composition in common bean (Phaseolus vulgaris L.). Biol. Control. 2021, 163, 104755. [Google Scholar] [CrossRef]
- Leal, C.; Eichmeier, A.; Štůsková, K.; Armengol, J.; Bujanda, R.; Fontaine, F.; Trotel-Aziz, P.; Gramaje, D. Establishment of biocontrol agents and their impact on rhizosphere microbiome and induced grapevine defenses are highly soil-dependent. Phytobiomes J. 2024, 8, 111–127. [Google Scholar] [CrossRef]
- Savazzini, F.; Longa, C.M.O.; Pertot, I. Impact of the biocontrol agent Trichoderma atroviride SC1 on soil microbial communities of a vineyard in northern Italy. Soil Biol. Biochem. 2009, 41, 1457–1465. [Google Scholar] [CrossRef]
- Sylla, J.; Alsanius, B.W.; Krüger, E.; Reineke, A.; Strohmeier, S.; Wohanka, W. Leaf microbiota of strawberries as affected by biological control agents. Phytopathology 2013, 103, 1001–1011. [Google Scholar] [CrossRef]
- Li, H.; Toh, R.; Wei, Y.; Wang, Y.; Hu, J.; An, S.; Yang, K.; Wu, Y.; Li, J.; Philp, J.; et al. Trichoderma asperellum effects on microbial communities in ginger rhizospheres. Appl. Soil Ecol. 2022, 170, 104230. [Google Scholar] [CrossRef]
- Ganuza, M.; Pastor, N.; Boccolini, M.; Erazo, J.; Palacios, S.; Oddino, C.; Reynoso, M.M.; Rovera, M.; Torres, A.M. Evaluating the impact of the biocontrol agent Trichoderma harzianum ITEM 3636 on indigenous microbial communities from field soils. J. Appl. Microbiol. 2019, 126, 608–623. [Google Scholar] [CrossRef]
- de Azevedo Silva, F.; de Oliveira Vieira, V.; Carrenho, R.; Rodrigues, V.B.; Lobo Junior, M.; Silva, G.F.; Soares, M.A. Influence of biocontrol agents Trichoderma spp. on microbial community structure and functionality in common bean (Phaseolus vulgaris L.) inoculated with Sclerotinia sclerotiorum. Appl. Soil Ecol. 2021, 168, 104190. [Google Scholar] [CrossRef]
- Gasoni, L.; Khan, N.; Yokoyama, K.; Chiessa, G.H.; Kobayashi, K. Impact of Trichoderma harzianum biocontrol agent on functional diversity of soil microbial community in tobacco monoculture in Argentina. World J. Agric. Sci. 2008, 4, 527–532. [Google Scholar]
- Senkovs, M.; Nikolajeva, V.; Makarenkova, G.; Petrina, Z. Influence of Trichoderma asperellum and Bacillus subtilis as biocontrol and plant growth-promoting agents on soil microbiota. Ann. Microbiol. 2021, 71, 34. [Google Scholar] [CrossRef]
- Dai, Z.; Ahmed, W.; Yang, J.; Yao, X.; Zhang, J.; Wei, L.; Ji, G. Seed coat treatment by plant-growth-promoting rhizobacteria Lysobacter antibioticus 13–6 enhances maize yield and changes rhizosphere bacterial communities. Biol. Fertil. Soils 2023, 59, 317–331. [Google Scholar] [CrossRef]
- Salehin, A.; Hafiz, M.H.R.; Hayashi, S.; Adachi, F.; Itoh, K. Effects of the biofertilizer OYK (Bacillus sp.) inoculation on endophytic microbial community in sweet potato. Horticulturae 2020, 6, 81. [Google Scholar] [CrossRef]
- Gu, Y.; Liang, W.; Li, Z.; Liu, S.; Liang, S.; Lei, P.; Wang, R.; Gao, N.; Li, S.; Xu, Z.; et al. Biocontrol agent Bacillus velezensis T-5 modifies tomato root exudate profile, altering soil bacterial community composition. Plant Soil 2023, 490, 669–680. [Google Scholar] [CrossRef]
- Wan, T.; Zhao, H.; Wang, W. Effect of biocontrol agent Bacillus amyloliquefaciens SN16-1 and plant pathogen Fusarium oxysporum on tomato rhizosphere bacterial community composition. Biol. Control 2017, 112, 1–9. [Google Scholar] [CrossRef]
- Ahmed, W.; Dai, Z.; Zhang, J.; Li, S.; Ahmed, A.; Munir, S.; Liu, Q.; Tan, Y.; Ji, G.; Zhao, Z. Plant-Microbe Interaction: Mining the Impact of Native Bacillus amyloliquefaciens WS-10 on Tobacco Bacterial Wilt Disease and Rhizosphere Microbial Communities. Microbiol. Spectr. 2022, 10, e01471-22. [Google Scholar] [CrossRef]
- Cucu, M.A.; Gilardi, G.; Pugliese, M.; Ferrocino, I.; Gullino, M.L. Effects of biocontrol agents and compost on Phytophthora capsici in zucchini and rhizosphere microbiota. Appl. Soil Ecol. 2020, 154, 103659. [Google Scholar] [CrossRef]
- Gao, G.; Yin, D.; Chen, S.; Xia, F.; Yang, J.; Li, Q.; Wang, W. Effect of biocontrol agent Pseudomonas fluorescens 2P24 on soil fungal community in cucumber rhizosphere using T-RFLP and DGGE. PLoS ONE 2012, 7, e31806. [Google Scholar] [CrossRef]
- Johansen, A.; Olsson, S. Using phospholipid fatty acid analysis to study short-term effects of biocontrol agent Pseudomonas fluorescens DR54 in barley rhizosphere. Microb. Ecol. 2005, 49, 272–281. [Google Scholar] [CrossRef]
- Shaukat, S.S.; Siddiqui, I.A. Impact of biocontrol agent Pseudomonas fluorescens CHA0 and its genetically modified derivatives on fungal diversity in mungbean rhizosphere. J. Appl. Microbiol. 2003, 95, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Andreote, F.D.; de Araújo, W.L.; de Azevedo, J.L.; van Elsas, J.D.; da Rocha, U.N.; van Overbeek, L.S. Endophytic colonization of potato (Solanum tuberosum L.) by a novel competent bacterial endophyte, Pseudomonas putida strain P9, and its effect on associated bacterial communities. Appl. Environ. Microbiol. 2009, 75, 3396–3406. [Google Scholar] [CrossRef] [PubMed]
- Scherwinski, K.; Grosch, R.; Berg, G. Effect of bacterial antagonists on lettuce: Active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiol. Ecol. 2008, 64, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Araujo, R.; Dunlap, C.; Barnett, S.; Franco, C.M. Decoding wheat microbiomes in Rhizoctonia solani-infested soils challenged by Streptomyces biocontrol agents. Front. Plant Sci. 2019, 10, 1038. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, B.; Yin, Y.; Liang, F.; Xie, D.; Han, T.; Liu, Y.; Yan, B.; Li, Q.; Huang, Y.; et al. Impact of biocontrol microbes on soil microbial diversity in ginger (Zingiber officinale Roscoe). Pest Manag. Sci. 2021, 77, 5537–5546. [Google Scholar] [CrossRef]
Plant Type | Environmental Conditions | Differences in Bacterial Populations | Reference |
---|---|---|---|
Mulberry cultivars | Seasonal variation | Endophytic bacterial communities varied seasonally and between mulberry cultivars | [5] |
Grapevine cultivars | Growing region, plant genotype, plant growth stage | Bacterial microbiomes differed based on region, cultivar, and growth stage | [6] |
Cotton | Spatiotemporal variation | Endophytic communities showed spatial and temporal shifts in cotton roots | [7] |
Mustard plant | Climate | Climate caused divergence in plant-microbiome interactions affecting phenology | [8] |
Soybean | Soil, plant genotype | Soil microbiome and plant genotype shaped rhizosphere microbiome assembly | [9] |
Sleepy grass | Plant genotype | Plant population and genotype overrode effects of endophyte on growth/drought | [10] |
Barley and grass plants | Soil pH | Alkaline soil pH affected microbiomes of bulk soil, rhizosphere, and endosphere | [11] |
Grapefruit | Substrate pH | Substrate pH influenced nutrient uptake and rhizosphere microbiome | [12] |
Crofton weed | Soil pH | Soil pH affected growth, soil nutrients, and rhizosphere microbiome | [13] |
Lettuce, wheat, oat | Soil composition | Rhizosphere microbiome stability depended on plant type and soil | [14] |
Cotton | Soil type, plant genotype, development | Rhizosphere microbiome varied with soil, genotype, and development stage | [15] |
Lettuce | Soil type | Soil type affected the rhizosphere microbiome of field-grown lettuce | [16] |
Arabidopsis | Plant development stage | Rhizosphere microbiome assembly was affected by plant development stage | [17] |
Arabidopsis | Climate, geographic distance | Climate caused rhizosphere microbiome variation in distant populations | [18] |
Drummond’s rockcress | Host genotype, plant age | Host genotype and age shaped leaf and root microbiomes | [19] |
Olive | Plant genotype | Plant genotype shaped microbiomes of fruits, leaves, and soil | [20] |
Wheat | Plant genotype, plant development stage | Wheat genotype effect was more evident in roots and it varied over time | [21] |
Oak, olive, grapevine | Temperature | Temperature caused seasonal succession of endophytic communities | [22] |
Trichoderma Strains | Crop/System | Analytical Methods | Microbial Community Impact and Key Findings | Reference |
---|---|---|---|---|
T. atroviride SC1 | Grapevines | qPCR, BIOLOG Microtiter™ GN2 plates, NGS | Short-term shifts in microbial communities; greater impact on fungal than bacterial communities, with significantly lower alpha diversity due to fungal dominance. | [36,37] |
T. atroviride HB20111 | American ginseng | NGS | Alterations in bacterial communities of the cortex; fungi more affected in plant tissues, with enhanced abundance of Novosphingobium and Pseudogymnoascus; stronger impact on plant-associated microbes. | [39] |
T. harzianum ITEM 3636 | Peanut | DGGE, NGS | Changes in microbial community composition; minimal impact on diversity, but shifts in community composition and functionality. | [40] |
T. harzianum ESALQ-1306 | Beans | NGS | Significant changes in bacterial and fungal community composition in the rhizosphere; control treatment maintained highest fungal diversity; T. harzianum ESALQ-1306 produced the most unique taxa. | [41] |
Common Beans | NGS | Significant changes in endophytic fungal diversity and dominance; fungal diversity and dominance varied at the phylum and family level. | [35] | |
T. harzianum R3P2 | Tobacco | BIOLOG Microtiter™ GN2 plates | Changes in soil microbial community and metabolic diversity; short-term shifts in microbial community. | [42] |
T. harzianum T22 | Strawberries | Pyrosequencing of ITS ribosomal RNA and 16S RNA | Altered fungal composition and diversity in phyllosphere; increased abundance of Sordariomycetes and decreased Dothideomycetes; no effect on bacterial diversity. | [38] |
Trichoderma asperellum MSCL 309 | Soil sample | Biolog EcoPlate, direct count | Did not significantly affect the metabolic diversity of the community but changed the utilization of carbohydrates, complex carbon compounds, and organic phosphorus compounds. | [43] |
Biocontrol Genus | Biocontrol Strain | Crop | Effect on Microbial Community | Duration of Effect | Reference |
---|---|---|---|---|---|
Lysobacter | antibioticus 13-6 | Maize | Significant increase at the rhizosphere relative abundance of Gammaproteobacteria, Gemmatimonadetes, and Bacteroidetes at the phylum level, as well as Streptomyces, Lysobacter, and Nitrospira at the genus level. | From seed coating until mature plant | [44] |
Bacillus | subtilis | Grapevine | Successful establishment in clay loam but minimal alteration of existing bacterial microbiome. | Temporary, no significant long-term disruption. | [36] |
sp. biofertilizer (OYK) | Sweet Potato | Changed endophytic bacterial composition in a cultivar-dependent manner, with increased Shannon diversity index. | Transient impact on microbial diversity | [45] | |
velezensis T-5 | Tomato | Altered root exudates, increased diversity indices (Shannon evenness, inverse Simpson, Shannon diversity), increased Bacteroidetes, Alphaproteobacteria, and Verrucomicrobia, while decreasing Actinobacteria. | Significant short-term effects. | [46] | |
amyloliquefaciens SN16-1 | Tomato | Increased Pseudomonas and Massilia while decreasing Arenimonas, Brevundimonas, and Nocardioides. | Transient (short-term, community reversion within 40 days). | [47] | |
amyloliquefaciens, WS-10 | Tabacco | Changed both diversity indices and bacterial and fungal community composition | Examined one time at the end of a pot experiment | [48] | |
subtilis | Zucchini | Controlled Phytophthora capsici, disease reduction rates of 31.9% to 60.1% while maintaining microbial balance in the rhizosphere. | Temporary, maintained microbial balance | [49] | |
Pseudomonas | fluorescens 2P24 | Cucumber | Temporary changes in bacterial populations mainly increased Gram-negative bacteria. | Transient, returned to baseline in about one month. | [50] |
fluorescens DR54 | Barley | Temporary shifts in microbial populations. | Transient, reversion within a month. | [51] | |
fluorescens CHA0 | Mungbean | Reduced fungal diversity, increased Aspergillus niger and Trichoderma viride while suppressing Fusarium oxysporum. | Long-term, strain-specific changes observed. | [52] | |
putida P9 | Potato | Altered abundance of Pseudomonas azotoformans, Pseudomonas veronii, and Pseudomonas syringae in rhizoplane and endosphere. | Persisted through different growth stages. | [53] | |
trivialis 3Re2-7 | Lettuce | A pronounced effect was found in root endosphere. | Minor short-term effects observed. | [54] | |
Streptomyces | Different strains | Wheat | Modulated root microbiome, decreased Paenibacillus, increased Exophiala, Phaeoacremonium and Xylariaceae, with time-dependent microbial changes. | Temporal dynamics played a crucial role. | [55] |
Serratia | plymuthica 3Re4-18 | Lettuce | More pronounced effects in root endosphere compared to rhizosphere, altering microbial composition. | Minor short-term effects observed. | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moussa, S.; Iasur Kruh, L. Balancing Nature and Nurture: The Role of Biocontrol Agents in Shaping Plant Microbiomes for Sustainable Agriculture. Microorganisms 2025, 13, 323. https://doi.org/10.3390/microorganisms13020323
Moussa S, Iasur Kruh L. Balancing Nature and Nurture: The Role of Biocontrol Agents in Shaping Plant Microbiomes for Sustainable Agriculture. Microorganisms. 2025; 13(2):323. https://doi.org/10.3390/microorganisms13020323
Chicago/Turabian StyleMoussa, Suzana, and Lilach Iasur Kruh. 2025. "Balancing Nature and Nurture: The Role of Biocontrol Agents in Shaping Plant Microbiomes for Sustainable Agriculture" Microorganisms 13, no. 2: 323. https://doi.org/10.3390/microorganisms13020323
APA StyleMoussa, S., & Iasur Kruh, L. (2025). Balancing Nature and Nurture: The Role of Biocontrol Agents in Shaping Plant Microbiomes for Sustainable Agriculture. Microorganisms, 13(2), 323. https://doi.org/10.3390/microorganisms13020323