Genomic Characterization of Carbapenemase-Producing Klebsiella pneumoniae ST895 Isolates from Canine Origins Through Whole-Genome Sequencing Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation, Purification, and Antimicrobial Susceptibility Testing of K. pneumoniae
2.2. Whole-Genome Sequencing Analysis
2.3. Genetic Analysis of the BlaNDM-5 Genes
2.4. Phylogenetic Analysis
2.5. Data Availability
3. Results
3.1. Phenotyping of Drug Resistance of the Isolated Strain
3.2. Genetic Characterization of K. pneumoniae FO528NT3
3.3. Phylogenetic Analysis of F0528NT3 K. pneumoniae Strain
3.4. Gene Function Analysis of K. pneumoniae FO528NT3
3.5. Genetic Structure Characteristics of Plasmid Carrying BlaNDM-5 Resistance Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choby, J.E.; Howard-Anderson, J.; Weiss, D.S. Hypervirulent Klebsiella pneumoniae—clinical and molecular perspectives. J. Intern. Med. 2020, 287, 283–300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Qi, L.; Liu, X.; Jin, M.J.Y.; Yang, X.; Chen, J.; Qin, S.; Liu, F.; Tang, Y.; Jia, R.; et al. Clinical and Molecular Characterizations of Carbapenem-Resistant Klebsiella pneumoniae Causing Bloodstream Infection in a Chinese Hospital. Microbiol. Spectr. 2022, 10, e01690-22. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Lin, M.L.; Mou, J.L.; Feng, J.H.; Huang, K.; Lao, Y.J.; Cheng, J.; Lin, J. Molecular and Clinical Characteristics of Carbapenem-Resistant Klebsiella pneumoniae Isolates at a Tertiary Hospital in Wuhan, China. Infect. Drug Resist. 2023, 16, 65–76. [Google Scholar] [CrossRef]
- Nguyen, T.N.T.; Nguyen, P.L.N.; Le, N.T.Q.; Nguyen, L.P.H.; Duong, T.B.; Ho, N.D.T.; Nguyen, Q.P.N.; Pham, T.D.; Tran, A.T.; The, H.C.; et al. Emerging carbapenem-resistant Klebsiella pneumoniae sequence type 16 causing multiple outbreaks in a tertiary hospital in southern Vietnam. Microb. Genom. 2021, 7, 000519. [Google Scholar] [CrossRef]
- Bertagnolio, S.; Dobreva, Z.; Centner, C.M.; Olaru, I.D.; Dona, D.; Burzo, S.; Huttner, B.D.; Chaillon, A.; Gebreselassie, N.; Wi, T.; et al. WHO global research priorities for antimicrobial resistance in human health. Lancet Microbe 2024, 5, 100902. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.L.; Nguyen, T.N.T.; Lam, M.M.C.; Judd, L.M.; van Vinh Chau, N.; Dance, D.A.B.; Ip, M.; Karkey, A.; Ling, C.L.; Miliya, T.; et al. Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from South and Southeast Asia. Genome Med. 2020, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Evolution of Drug Resistance in Klebsiella pneumoniae Against Imipenem and Meropenem. 2024. Available online: http://www.chinets.com/Data/GermYear (accessed on 24 September 2024).
- Ma, T.; Xie, N.; Gao, Y.; Fu, J.; Tan, C.E.; Yang, Q.E.; Wang, S.; Shen, Z.; Ji, Q.; Parkhill, J.; et al. VirBR, a transcription regulator, promotes IncX3 plasmid transmission, and persistence of bla(NDM-5) in zoonotic bacteria. Nat. Commun. 2024, 15, 5498. [Google Scholar] [CrossRef]
- Silva, J.M.D.; Menezes, J.; Marques, C.; Pomba, C.F. Companion Animals—An Overlooked and Misdiagnosed Reservoir of Carbapenem Resistance. Antibiotics 2022, 11, 533. [Google Scholar] [CrossRef]
- Wu, W.; Fend, Y.; Tang, G.; Qiao, F.; McNally, A.; Zong, Z. NDM Metallo-β-Lactamases and Their Bacterial Producers in Health Care Settings. Clin. Microbiol. Rev. 2019, 32, e00115-18. [Google Scholar] [CrossRef]
- Giske, C.G.T.J.; Cantón, R.; Kahlmeter, G.; EUCAST Steering Committee. Update from the European Committee on Antimicrobial Susceptibility Testing (EUCAST). J. Clin. Microbiol. 2022, 60, e00276-21. [Google Scholar] [CrossRef] [PubMed]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef] [PubMed]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Clausen, P.T.L.C.; Aarestrup, F.M.; Lund, O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinform. 2018, 19, 307. [Google Scholar] [CrossRef]
- Alikhan, N.F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011, 12, 402. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lei, L.; Zhang, H.; Dai, H.; Song, Y.; Li, L.; Wang, Y.; Xia, Z. Molecular Investigation of Klebsiella pneumoniae from Clinical Companion Animals in Beijing, China, 2017–2019. Pathogens 2021, 10, 271. [Google Scholar] [CrossRef]
- Liu, C.; Fang, Y.; Zeng, Y.; Lu, J.; Sun, Q.; Zhou, H.; Shen, Z.; Chen, G. First Report of OXA-181-Producing Klebsiella pneumoniae in China. Infect. Drug Resist. 2020, 13, 995–998. [Google Scholar] [CrossRef] [PubMed]
- Magobo, R.E.; Ismail, H.; Lowe, M.; Strasheim, W.; Mogokotleng, R.; Perovic, O.; Kwenda, S.; Ismail, A.; Makua, M.; Bore, A.; et al. Outbreak of NDM-1- and OXA-181-Producing Klebsiella pneumoniae Bloodstream Infections in a Neonatal Unit, South Africa. Emerg. Infect. Dis. 2023, 29, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, K.F.C.; Nascimento, A.P.A.; Farias, B.O.; Brito, A.S.G.; Magaldi, M.; Gimenez, A.; de Filippis, I.; Clementino, M.M.; Bianco, K.; Saggioro, E.; et al. Occurrence of Klebsiella pneumoniae ST244 and ST11 extensively drug-resistant producing KPC, NDM, OXA-370 in wastewater, Brazil. J. Appl. Microbiol. 2023, 134, lxad130. [Google Scholar] [CrossRef] [PubMed]
- Aurilio, C.; Sansone, P.; Barbarisi, M.; Pota, V.; Giaccari, L.G.; Coppolino, F.; Barbarisi, A.; Passavanti, M.B.; Pace, M.C. Mechanisms of Action of Carbapenem Resistance. Antibiotics 2022, 11, 421. [Google Scholar] [CrossRef]
- Yang, Q.E.; Ma, X.; Zeng, L.; Wang, Q.; Li, M.; Teng, L.; He, M.; Liu, C.; Zhao, M.; Wang, M.; et al. Interphylum dissemination of NDM-5-positive plasmids in hospital wastewater from Fuzhou, China: A single-centre, culture-independent, plasmid transmission study. Lancet Microbe 2024, 5, e13–e23. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, S.; Fang, R.; Wu, Q.; Li, J.; Zhang, Y.; Rocker, A.; Cao, J.; Lithgow, T.; Zhou, T. Dynamic Epidemiology and Virulence Characteristics of Carbapenem-Resistant Klebsiella pneumoniae in Wenzhou, China from 2003 to 2016. Infect. Drug Resist. Vol. 2020, 13, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Kyung, S.M.; Lee, J.; Lee, E.S.; Hwang, C.Y.; Yoo, H.S. Genomic molecular epidemiology of carbapenemase-producing Escherichia coli ST410 isolates by complete genome analysis. Vet. Res. 2023, 54, 72. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Gao, W.; Sun, Y.; Ye, Y.; Luo, T.; Pan, Y.; Zhang, C.; Zhou, A.; Ren, W.; Du, C. Genomic Characterization of Carbapenemase-Producing Klebsiella pneumoniae ST895 Isolates from Canine Origins Through Whole-Genome Sequencing Analysis. Microorganisms 2025, 13, 332. https://doi.org/10.3390/microorganisms13020332
Huang R, Gao W, Sun Y, Ye Y, Luo T, Pan Y, Zhang C, Zhou A, Ren W, Du C. Genomic Characterization of Carbapenemase-Producing Klebsiella pneumoniae ST895 Isolates from Canine Origins Through Whole-Genome Sequencing Analysis. Microorganisms. 2025; 13(2):332. https://doi.org/10.3390/microorganisms13020332
Chicago/Turabian StyleHuang, Ronglei, Wei Gao, Yue Sun, Yan Ye, Tingting Luo, Yitong Pan, Chengyang Zhang, Ang Zhou, Wenzhi Ren, and Chongtao Du. 2025. "Genomic Characterization of Carbapenemase-Producing Klebsiella pneumoniae ST895 Isolates from Canine Origins Through Whole-Genome Sequencing Analysis" Microorganisms 13, no. 2: 332. https://doi.org/10.3390/microorganisms13020332
APA StyleHuang, R., Gao, W., Sun, Y., Ye, Y., Luo, T., Pan, Y., Zhang, C., Zhou, A., Ren, W., & Du, C. (2025). Genomic Characterization of Carbapenemase-Producing Klebsiella pneumoniae ST895 Isolates from Canine Origins Through Whole-Genome Sequencing Analysis. Microorganisms, 13(2), 332. https://doi.org/10.3390/microorganisms13020332