Microorganisms—A Journal and a Unifying Concept for the Science of Microbiology
References
- Stanier, R.Y. What is microbiology? In In Essays in Microbiology; Norris, J.R., Richmond, M.H., Eds.; John Wiley & Sons: Chichester, UK, 1978; pp. 1–32. [Google Scholar]
- Stanier, R.Y.; Adelberg, E.A.; Douderoff, M. The Microbial world; Prentice-Hall: Englewood Cliffs, NJ, USA, 1957. [Google Scholar]
- Woyke, T.; Rubin, E.M. Evolution. Searching for new branches on the tree of life. Science 2014, 346, 698–699. [Google Scholar] [CrossRef] [PubMed]
- Boyer, M.; Madoui, M.A.; Gimenez, G.; La Scola, B.; Raoult, D. Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4 domain of life including giant viruses. PloS One 2010, 5, e15530. [Google Scholar] [CrossRef]
- Prosser, J.I.; Tough, A.J. Growth mechanisms and growth kinetics of filamentous microorganisms. Crit.Rev. Biotechnol. 1991, 10, 253–274. [Google Scholar] [CrossRef] [PubMed]
- Cuvelier, M.L.; Allen, A.E.; Monier, A.; McCrow, J.P.; Messié, M.; Tringe, S.G.; Woyke, T.; Welsh, R.M.; Ishoey, T.; Lee, J.-H. Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton. Proc. Natl. Acad. Sci. 2010, 107, 14679–14684. [Google Scholar] [CrossRef]
- Worden, A.Z.; Dupont, C.; Allen, A.E. Genomes of uncultured eukaryotes: Sorting facs from fiction. Genome Biol. 2011, 12, 117. [Google Scholar] [CrossRef] [PubMed]
- Breitbart, M.; Salamon, P.; Andresen, B.; Mahaffy, J.M.; Segall, A.M.; Mead, D.; Azam, F.; Rohwer, F. Genomic analysis of uncultured marine viral communities. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 14250–14255. [Google Scholar] [CrossRef] [PubMed]
- Couradeau, E.; Benzerara, K.; Moreira, D.; Gerard, E.; Kaźmierczak, J.; Tavera, R.; López-García, P. Prokaryotic and eukaryotic community structure in field and cultured microbialites from the alkaline lake alchichica (Mexico). PloS One 2011, 6, e28767. [Google Scholar] [CrossRef]
- Ragon, M.; Fontaine, M.C.; Moreira, D.; López-García, P. Different biogeographic patterns of prokaryotes and microbial eukaryotes in epilithic biofilms. Mol. Ecol. 2012, 21, 3852–3868. [Google Scholar] [CrossRef]
- Alain, K.; Querellou, J. Cultivating the uncultured: Limits, advances and future challenges. Extremophiles 2009, 13, 583–594. [Google Scholar] [PubMed]
- Greub, G. Culturomics: A new approach to study the human microbiome. Clin. Microbiol. Infect. 2012, 18, 1157–1159. [Google Scholar] [PubMed]
- Dubourg, G.; Lagier, J.; Armougom, F.; Robert, C.; Hamad, I.; Brouqui, P.; Raoult, D. The gut microbiota of a patient with resistant tuberculosis is more comprehensively studied by culturomics than by metagenomics. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Ward, N.; Fraser, C.M. How genomics has affected the concept of microbiology. Curr. Opin. Microbiol. 2005, 8, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Angert, E.R.; Clements, K.D.; Pace, N.R. The largest bacterium. Nature 1993, 362, 239–241. [Google Scholar] [CrossRef] [PubMed]
- Courties, C.; Vaquer, A.; Troussellier, M.; Lautier, J.; Chrétiennot-Dinet, M.J.; Neveux, J.; Machado, C.; Claustre, H. Smallest eukaryotic organism. Nature 1994, 370, 255. [Google Scholar] [CrossRef]
- Derelle, E.; Ferraz, C.; Rombauts, S.; Rouze, P.; Worden, A.Z.; Robbens, S.; Partensky, F.; Degroeve, S.; Echeynie, S.; Cooke, R.; et al. Genome analysis of the smallest free-living eukaryote ostreococcus tauri unveils many unique features. Proc. Natl. Acad. Sci. USA 2006, 103, 11647–11652. [Google Scholar] [CrossRef]
- Suzan-Monti, M.; La Scola, B.; Raoult, D. Genomic and evolutionary aspects of mimivirus. Virus Res. 2006, 117, 145–155. [Google Scholar] [CrossRef] [PubMed]
- La Scola, B.; Audic, S.; Robert, C.; Jungang, L.; de Lamballerie, X.; Drancourt, M.; Birtles, R.; Claverie, J.M.; Raoult, D. A giant virus in amoebae. Science 2003, 299, 2033. [Google Scholar]
- Philippe, N.; Legendre, M.; Doutre, G.; Coute, Y.; Poirot, O.; Lescot, M.; Arslan, D.; Seltzer, V.; Bertaux, L.; Bruley, C.; et al. Pandoraviruses: Amoeba viruses with genomes up to 2.5 mb reaching that of parasitic eukaryotes. Science 2013, 341, 281–286. [Google Scholar] [CrossRef]
- Nasir, A.; Kim, K.M.; Caetano-Anolles, G. Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms archaea, bacteria and eukarya. BMC Evol. Biol. 2012, 12, 156. [Google Scholar] [CrossRef] [PubMed]
- La Scola, B.; Desnues, C.; Pagnier, I.; Robert, C.; Barrassi, L.; Fournous, G.; Merchat, M.; Suzan-Monti, M.; Forterre, P.; Koonin, E.; et al. The virophage as a unique parasite of the giant mimivirus. Nature 2008, 455, 100–104. [Google Scholar]
- Claverie, J.M. Viruses take center stage in cellular evolution. Genome Biol. 2006, 7, 110. [Google Scholar] [CrossRef] [PubMed]
- Forterre, P. Defining life: The virus viewpoint. Orig. Life Evol. Biosph. 2010, 40, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.-L.; Rothfield, L. The bacterial cytoskeleton. Microbiol. Mol. Biol. Rev. 2006, 70, 729–754. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, C.; Samudrala, R.; Anderson, I.; Hedlund, B.P.; Petroni, G.; Michailova, N.; Pinel, N.; Overbeek, R.; Rosati, G.; Staley, J.T. Genes for the cytoskeletal protein tubulin in the bacterial genus prosthecobacter. Proc. Natl. Acad. Sci. 2002, 99, 17049–17054. [Google Scholar] [CrossRef] [PubMed]
- Pilhofer, M.; Ladinsky, M.S.; McDowall, A.W.; Petroni, G.; Jensen, G.J. Microtubules in bacteria: Ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton. PLoS Biol. 2011, 9, e1001213. [Google Scholar] [CrossRef] [PubMed]
- Ettema, T.J.; Bernander, R. Cell division and the escrt complex: A surprise from the archaea. Commun. Integr. Biol. 2009, 2, 86–88. [Google Scholar] [PubMed]
- Gribaldo, S.; Poole, A.M.; Daubin, V.; Forterre, P.; Brochier-Armanet, C. The origin of eukaryotes and their relationship with the archaea: Are we at a phylogenomic impasse? Nat. Rev. Microbiol. 2010, 8, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Martijn, J.; Ettema, T. From archaeon to eukaryote: The evolutionary dark ages of the eukaryotic cell. Biochem. Soc. Trans. 2013, 41, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Spang, A.; Martijn, J.; Saw, J.H.; Lind, A.E.; Guy, L.; Ettema, T.J. Close encounters of the third domain: The emerging genomic view of archaeal diversity and evolution. Archaea 2013, 2013. [Google Scholar] [CrossRef]
- Golding, G.B.; Gupta, R.S. Protein-based phylogenies support a chimeric origin for the eukaryotic genome. Mol. Biol. Evol. 1995, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cotton, J.A.; McInerney, J.O. Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function. Proc. Natl. Acad.Sci. 2010, 107, 17252–17255. [Google Scholar] [CrossRef] [PubMed]
- Rivera, M.C.; Lake, J.A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 2004, 431, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Poole, A.M.; Penny, D. Evaluating hypotheses for the origin of eukaryotes. Bioessays 2007, 29, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Kurland, C.G.; Collins, L.J.; Penny, D. Genomics and the irreducible nature of eukaryote cells. Science 2006, 312, 1011–1014. [Google Scholar] [CrossRef] [PubMed]
- Gribaldo, S.; Brochier, C. Phylogeny of prokaryotes: Does it exist and why should we care? Res. Microbiol. 2009, 160, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Gogarten, J.P.; Doolittle, W.F.; Lawrence, J.G. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 2002, 19, 2226–2238. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.; Fournier, G.P.; Lapierre, P.; Swithers, K.S.; Green, A.G.; Andam, C.P.; Gogarten, J.P. A rooted net of life. Biol. Direct 2011, 6, 45. [Google Scholar] [CrossRef] [PubMed]
- Kurland, C.G.; Canback, B.; Berg, O.G. Horizontal gene transfer: A critical view. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 9658–9662. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, I.; Lumbsch, H.T. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PloS One 2009, 4, e4437. [Google Scholar] [CrossRef] [PubMed]
- Daubin, V.; Moran, N.A.; Ochman, H. Phylogenetics and the cohesion of bacterial genomes. Science 2003, 301, 829–832. [Google Scholar] [CrossRef] [PubMed]
- Wolf, Y.I.; Rogozin, I.B.; Grishin, N.V.; Koonin, E.V. Genome trees and the tree of life. Trends Genet. 2002, 18, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Horvath, P.; Barrangou, R. Crispr/Cas, the immune system of bacteria and archaea. Science 2010, 327, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Bhaya, D.; Davison, M.; Barrangou, R. Crispr-cas systems in bacteria and archaea: Versatile small rnas for adaptive defense and regulation. Annu. Rev. Genet. 2011, 45, 273–297. [Google Scholar] [CrossRef]
- Deveau, H.; Garneau, J.E.; Moineau, S. Crispr/Cas system and its role in phage-bacteria interactions. Annual Rev. Microbiol. 2010, 64, 475–493. [Google Scholar] [CrossRef]
- Rohwer, F.; Thurber, R.V. Viruses manipulate the marine environment. Nature 2009, 459, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Suttle, C.A. Marine viruses—Major players in the global ecosystem. Nat. Rev. Microbiol. 2007, 5, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Brussaard, C.P.; Wilhelm, S.W.; Thingstad, F.; Weinbauer, M.G.; Bratbak, G.; Heldal, M.; Kimmance, S.A.; Middelboe, M.; Nagasaki, K.; Paul, J.H.; et al. Global-scale processes with a nanoscale drive: The role of marine viruses. ISME J. 2008, 2, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Forterre, P. Three rna cells for ribosomal lineages and three DNA viruses to replicate their genomes: A hypothesis for the origin of cellular domain. Proc. Natl. Acad. Sci. USA. 2006, 103, 3669–3674. [Google Scholar] [CrossRef] [PubMed]
- Gaj, T.; Gersbach, C.A.; Barbas, C.F., III. ZFN, TALEN, and Crispr/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuerst, J.A. Microorganisms—A Journal and a Unifying Concept for the Science of Microbiology. Microorganisms 2014, 2, 140-146. https://doi.org/10.3390/microorganisms2040140
Fuerst JA. Microorganisms—A Journal and a Unifying Concept for the Science of Microbiology. Microorganisms. 2014; 2(4):140-146. https://doi.org/10.3390/microorganisms2040140
Chicago/Turabian StyleFuerst, John A. 2014. "Microorganisms—A Journal and a Unifying Concept for the Science of Microbiology" Microorganisms 2, no. 4: 140-146. https://doi.org/10.3390/microorganisms2040140
APA StyleFuerst, J. A. (2014). Microorganisms—A Journal and a Unifying Concept for the Science of Microbiology. Microorganisms, 2(4), 140-146. https://doi.org/10.3390/microorganisms2040140