How to Show the Real Microbial Biodiversity? A Comparison of Seven DNA Extraction Methods for Bacterial Population Analyses in Matrices Containing Highly Charged Natural Nanoparticles
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methods
Method | Mechanical Disruption | Company | Abbreviation |
---|---|---|---|
Fast DNA Spin Kit for soil | X | MP Biomedicals | MP Soil |
Fast DNA Spin Kit for soil modified (EtOH) | X | MP Biomedicals | MP Soil EtOH |
innu speed soil DNA Kit Sample 1 | X | Analytik Jena | AJ Soil 1 |
innu speed soil DNA Kit Sample 2 | X | Analytik Jena | AJ Soil 2 |
Precellys Soil DNA Kit | X | PeQLab | PeQLab Soil |
QIAamp DNA MiniKit slurry extract | - | Qiagen | QIA Mini slu |
QIAamp DNA MiniKit supernatant extract | - | Qiagen | QIA Mini sup |
QIAamp DNA stool Kit User developed Sample 1 | - | Qiagen | QIA stool 1 |
QIAamp DNA stool Kit User developed Sample 2 | - | Qiagen | QIA stool 2 |
Soil Microbe DNA Kit Sample 1 | X | Zymo Research | ZR Soil 1 |
Soil Microbe DNA Kit Sample 2 | X | Zymo Research | ZR Soil 2 |
Pure Skim Milk Powder | X | Skim Milk | |
Phenol-Chloroform extraction without Skim Milk | X | PhChl | |
Phenol-Chloroform extraction with Skim Milk 1 | X | PhChl Skim 1 | |
Phenol-Chloroform extraction with Skim Milk 2 | X | PhChl Skim 2 | |
GeneMATRIX Soil DNA Purification Kit + 0 µL Poly A | X | EURx | EURx Soil 0 Pol |
GeneMATRIX Soil DNA Purification Kit + 20 µL Poly A | X | EURx | EURx Soil 20 Pol |
GeneMATRIX Soil DNA Purification Kit + 40 µL Poly A | X | EURx | EURx Soil 40 Pol |
GeneMATRIX Soil DNA Purification Kit + 60 µL Poly A | X | EURx | EURx Soil 60 Pol |
2.3. DNA Analysis
3. Results and Discussion
Method | Extracted DNA (ng/g) | DNA Quality | qPCR: Ct-Values | |||
---|---|---|---|---|---|---|
λ260/280 | λ260/230 | 1:1 | 1:10 | 1:100 | ||
MP Soil | 1935 | 1.43 | 0.02 | n.d. | n.d. | 38.61 * |
MP Soil EtOH | 1050 | 1.56 | 0.04 | n.d. | 34.23 * | 38.10 |
AJ Soil 1 | 1184 | 0.97 | 0.02 | n.d. | 37.12 * | 39.60 |
AJ Soil 2 | 448 | 0.72 | 0.01 | n.d. | 38.12 | 37.72 * |
PeQLab Soil | 1120 | 1.52 | 0.01 | 39.20 | n.d. | 37.82 * |
QIA Mini slu | 6560 | 1.08 | 0.29 | n.d. | n.d. | n.d. |
QIA Mini sup | 1560 | 1.69 | 0.41 | n.d. | n.d. | n.d. |
QIA stool 1 | 19600 | 2.81 | 0.12 | n.d. | n.d. | n.d. |
QIA stool 2 | 19200 | 2.56 | 0.11 | n.d. | n.d. | 38.69 * |
ZR Soil 1 | 7520 | 1.08 | 0.27 | n.d. | 39.73 * | n.d. |
ZR Soil 2 | 13960 | 1.10 | 0.39 | 39.48 | 38.43 * | n.d. |
Skim Milk | 140 | 1.59 | 0.20 | n.d. | 39.09 * | 39.58 |
PhChl | 100 | 1.26 | 0.22 | 39.72 * | n.d. | n.d. |
PhChl Skim 1 | 130 | 0.89 | 2.07 | 36.85 * | 38.23 | n.d. |
PhChl Skim 2 | 170 | 1.00 | 0.49 | 35.57 * | 37.00 | n.d. |
EURx Soil 0 Pol | 1560 | 1.20 | 0.40 | n.d. | n.d. | n.d. |
EURx Soil 20 Pol | 1410 | 1.51 | 0.41 | n.d. | 39.36 * | 39.96 |
EURx Soil 40 Pol | 1200 | 2.49 | 0.43 | n.d. | n.d. | n.d. |
EURx Soil 60 Pol | 1410 | 0.82 | 0.35 | n.d. | 38.42 * | 39.64 |
Species | MP Soil | MP Soil EtOH | AJ Soil 1 | AJ Soil 2 | PeQLab Soil | QIA Mini 1 | ZR Soil 1 | ZR Soil 2 | Skim Milk | PhChl | PhChl Skim 1 | PhChl Skim 2 | EURx Soil 20 Pol | EURx Soil 60 Pol | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sphingomonas melonis 1 | X | X | X | X | X | X | |||||||||
Mitsuaria chitosanitabida 1 | X | X | X | X | X | X | X | X | X | X | X | X | |||
Pseudomonas saccharophila | X | X | X | X | |||||||||||
Propionibacterium acnes | X | X | X | X | X | X | X | X | X | ||||||
Caulobacter leidyi 1 | X | X | X | ||||||||||||
Pelomonas aquatic 2 | X | X | |||||||||||||
Streptococcus pneumonia 1 | X | X | |||||||||||||
Bradyrhizobium elkanii 1 | X | X | |||||||||||||
Staphylococcus epidermidis 1 | X | ||||||||||||||
Streptococcus mitis | X | X | |||||||||||||
Aquabacterium commune 1 | X | X | X | X | |||||||||||
Thermus thermophiles 2 | X | X | X | ||||||||||||
Comamonas denitrificans | X | ||||||||||||||
Clostridium thiosulfatireducens 1 | X | ||||||||||||||
different spezies | minimal | 5 | 3 | 5 | 5 | 6 | 3 | 3 | 4 | 3 | 3 | 2 * | 2 * | 2 | 3 |
maximal | 9 | 6 | 9 | 7 | 7 | 4 | 4 | 6 | 4 | 3 | 5 | 4 | 2 | 3 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ferrari, B.C.; Binnerup, S.J.; Gillings, M. Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl. Environ. Microbiol. 2005, 71, 8714–8720. [Google Scholar]
- Furlong, M.A.; Singleton, D.R.; Coleman, D.C.; Whitman, W.B. Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl. Environ. Microbiol. 2002, 68, 1265–1279. [Google Scholar] [CrossRef]
- Kaden, R.; Menger-Krug, E.; Emmerich, K.; Petrick, K.; Mühling, M.; Krolla-Sidenstein, P. The Dynamic Cultivation System: A new method for the detection of temporal shifts in microbial community structure in clay. Appl. Clay Sci. 2012, 65–66, 53–56. [Google Scholar] [CrossRef]
- Torsvik, V.; Goksoyr, J.; Daae, F.L. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 1990, 56, 782–787. [Google Scholar] [PubMed]
- Holben, W.E.; Jansson, J.K.; Chelm, B.K.; Tiedje, J.M. DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl. Environ. Microbiol. 1988, 54, 703–711. [Google Scholar] [PubMed]
- Steffan, R.J.; Atlas, R.M. DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl. Environ. Microbiol. 1988, 54, 2185–2191. [Google Scholar] [PubMed]
- Torsvik, V.; Salte, K.; Sorheim, R.; Goksoyr, J. Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl. Environ. Microbiol. 1990, 56, 776–781. [Google Scholar] [PubMed]
- Pietramellara, G.; Franchi, M.; Gallori, E.; Nannipieri, P. Effect of molecular characteristics of DNA on its adsorption and binding on homoionic montmorillonite and kaolinite. Biol. Fertil. Soils 2001, 33, 402–409. [Google Scholar]
- Scheffer, F.; Schachtschabel, F.; Blume, H.P.; Brümmer, G.W.; Schwertmann, U.; Horn, R.; Kögel-Knabner, I.; Stahr, K.W.; Beyer, L.; Auerswald, K.; et al. Renger Lehrbuch der Bodenkunde Scheffer Schachtschabel, 15th ed.; Spektrum Akademischer Verlag: Heidelberg, Germany, 2002. [Google Scholar]
- Takada-Hoshino, Y.; Matsumot, N. An Improved DNA Extraction Method Using Skim Milk from Soils That Strongly Adsorb DNA. Microbes Environ. 2004, 19, 13–19. [Google Scholar] [CrossRef]
- Volossiouk, T.; Robb, E.J.; Nazar, R.N. Direct DNA extraction for PCR-mediated assays of soil organisms. Appl. Environ. Microbiol. 1995, 61, 3972–3976. [Google Scholar] [PubMed]
- Petrick, K.; Diedel, R.; Peuker, M.; Dieterle, M.; Kuch, P.; Kaden, R.; Krolla-Sidenstein, P.; Schuhmann, R.; Emmerich, K. Character and amount of I–S mixed-layer minerals and physical-chemical parameters of two ceramic clays from Westerwald, Germany: Implications for processing properties. Clays Clay Miner. 2011, 59, 58–74. [Google Scholar] [CrossRef]
- Tsai, Y.L.; Olson, B.H. Rapid method for direct extraction of DNA from soil and sediments. Appl. Environ. Microbiol. 1991, 57, 1070–1074. [Google Scholar] [PubMed]
- Schuppler, M.; Mertens, F.; Schon, G.; Gobel, U.B. Molecular characterization of nocardioform actinomycetes in activated sludge by 16S RNA analysis. Microbiology 1995, 141, 513–521. [Google Scholar] [CrossRef]
- Gotz, D.; Banta, A.; Beveridge, T.J.; Rushdi, A.I.; Simoneit, B.R.T.; Reysenbach, A. Persephonella marina gen. nov., sp nov and Persephonella guaymasensis sp nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int. J. Syst. Evol. Microbiol. 2002, 52, 1349–1359. [Google Scholar] [CrossRef]
- Fischer, S.G.; Lerman, L.S. Separation of Random Fragments of DNA According to Properties of Their Sequences. Available online: http://www.pnas.org/content/77/8/4420.short (accessed on 31 August 2015).
- Altschul, S.; Madden, T.; Schaffer, A.; Zhang, J.H.; Zhang, Z.; Miller, W.; Lipman, D. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl. Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Morrison, M. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 2004, 70, 4800–4806. [Google Scholar] [CrossRef] [PubMed]
- Lunsdorf, H.; Erb, R.W.; Abraham, W.R.; Timmis, K.N. “Clay hutches”: A novel interaction between bacteria and clay minerals. Environ. Microbiol. 2000, 2, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Muyzer, G.; de Waal, E.C.; Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar] [PubMed]
- Lian, W.C.; Hsiao, H.C.; Chou, C.C. Survival of bifidobacteria after spray-drying. Int. J. Food Microbiol. 2002, 74, 79–86. [Google Scholar] [CrossRef]
- Wan, J.; King, K.; Craven, H.; McAuley, C.; Tan, S.E.; Coventry, M.J. Probelia™ PCR system for rapid detection of Salmonella in milk powder and ricotta cheese. Lett. Appl. Microbiol. 2000, 30, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Ranjard, L.; Poly, F.; Combrisson, J.; Richaume, A.; Gourbiere, F.; Thioulouse, J.; Nazaret, S. Heterogeneous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determined by enumeration and DNA fingerprinting approach (RISA). Microb. Ecol. 2000, 39, 263–272. [Google Scholar] [PubMed]
- Mills, W.B.; Lew, C.S.; Loh, J.Y. Predictions of Potential Human Health and Ecological Risks from Power Plant Discharges of Total Residual Chlorine and Chloroform into Rivers. Environ. Sci. Technol. 1998, 32, 2162–2171. [Google Scholar] [CrossRef]
- Tong, Z.; Qingxiang, Z.; Hui, H.; Qin, L.; Yi, Z.; Min, Q. Kinetic study on the removal of toxic phenol and chlorophenol from waste water by horseradish peroxidase. Chemosphere 1998, 37, 1571–1577. [Google Scholar] [CrossRef]
- Sumner, M.E.; Miller, W.P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis Part 3—Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America Inc: Madison, WI, USA, 1996; Volume 3, pp. 1201–1229. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaden, R.; Krolla-Sidenstein, P. How to Show the Real Microbial Biodiversity? A Comparison of Seven DNA Extraction Methods for Bacterial Population Analyses in Matrices Containing Highly Charged Natural Nanoparticles. Microorganisms 2015, 3, 695-706. https://doi.org/10.3390/microorganisms3040695
Kaden R, Krolla-Sidenstein P. How to Show the Real Microbial Biodiversity? A Comparison of Seven DNA Extraction Methods for Bacterial Population Analyses in Matrices Containing Highly Charged Natural Nanoparticles. Microorganisms. 2015; 3(4):695-706. https://doi.org/10.3390/microorganisms3040695
Chicago/Turabian StyleKaden, Rene, and Peter Krolla-Sidenstein. 2015. "How to Show the Real Microbial Biodiversity? A Comparison of Seven DNA Extraction Methods for Bacterial Population Analyses in Matrices Containing Highly Charged Natural Nanoparticles" Microorganisms 3, no. 4: 695-706. https://doi.org/10.3390/microorganisms3040695
APA StyleKaden, R., & Krolla-Sidenstein, P. (2015). How to Show the Real Microbial Biodiversity? A Comparison of Seven DNA Extraction Methods for Bacterial Population Analyses in Matrices Containing Highly Charged Natural Nanoparticles. Microorganisms, 3(4), 695-706. https://doi.org/10.3390/microorganisms3040695