Susceptibility of Select Agents to Predation by Predatory Bacteria
Abstract
:1. Introduction
2. Experimental Section
Organism | Strain Name | Origin | Liquid Medium | Agar Medium |
---|---|---|---|---|
Bdellovibrio bacteriovorus | 109J | ATCC (43826) | N/A 1 | |
Bdellovibrio bacteriovorus | HD100 | [24] | ||
Micavibrio aeruginosavorus | ARL-13 | [23] | ||
Brucella mellitensis | 16M—NCTC 10094 | BEI Resources (NR-256) | BB | BA |
Burkholderia mallei | China 5—MM-A, NBL 4 | BEI Resources (NR-21) | BHI | BHIA |
Burkholderia mallei | China 7—NBL 7 | BEI Resources (NR-23) | BHI | BHIA |
Burkholderia pseudomallei | Human/Blood/OH/US/1994 | CDC (2000032029) | BHI | BHIA |
Burkholderia pseudomallei | 1710a | BEI Resources (NR-8071) | BHI | BHIA |
Burkholderia pseudomallei | K96243 | BEI Resources (NR-4073) | BHI | BHIA |
Francisella tularensis | Schu 4 | Bacteriology Division USAMRC | CHB | CA |
Francisella tularensis | WY96-3418 | BEI Resources (NR-644) | CHB | CA |
Klebsiella pneumoniae subsp. pneumoniae | Trevisan | ATCC (43816) | LB | LBA |
Yersinia pestis | C092 | BEI Resources (NR-641) | BHI | BHIA |
Yersinia pestis | 125 Bombay | BEI Resources (NR-20) | BHI | BHIA |
3. Results and Discussion
Predator | |||
---|---|---|---|
B. bacteriovorus 109J | B. bacteriovorus HD100 | M. aeruginosavorus ARL-13 | |
Prey 1 | |||
Y. pestis plague Bombay | + 2 | + | + |
(45 ± 13%) | (39 ± 7%) | (8 ± 2%) | |
(55 ± 15%) * | (54 ± 6%) * | (42 ± 17%) * | |
Y. pestis NR-641 CO92 | + | + | + |
(39 ± 14%) | (16 ± 5%) | (17± 10%) | |
(56± 14%) * | (49 ± 17%) * | (44 ± 15%) * | |
B. mallei NR-21 China 5 | + | + | + |
(66 ± 4%) | (65 ± 3%) | (7 ± 2%) | |
(72 ± 6%) * | (66 ± 6%) * | (27±5%) * | |
B. mallei NR-21 China 7 | + | + | + |
(66 ± 9%) | (67 ± 5%) | (5 ± 2%) | |
(80 ± 5%) * | (69 ± 2%) * | (6 ±2%) * | |
B. pseudomallei NR-8071 1710a | − 3 | − | − |
B. pseudomallei NR-4073 K96243 | − | − | − |
B. pseudomallei OH | − | − | − |
F. tularensis NR-644. WY96-3418 | + | + | − |
(10 ± 3%) | (6 ± 1%) | ||
(21 ± 3%) * | (7 ± 0.5%) * | ||
F. tularensis SCHU 4 | + | + | − |
(18 ± 4%) | (2 ± 1%) | ||
(29 ± 4%) * | (9 ± 2%) * | ||
B. melitensis NR-256 16M | − | − | − |
Predator | |||
---|---|---|---|
B. bacteriovorus 109J | B. bacteriovorus HD100 | M. aeruginosavorus ARL-13 | |
Prey 1 | |||
Y. pestis NR-641 CO92 | 4 ± 0.3 | 1.5 + 0.5 | 1.9 + 0.2 |
B. mallei NR-21 China 5 | 4.6 ± 0.5 | 4.1 ± 0.4 | 0.8 ± 0.2 |
B. mallei NR-21 China 7 | 5.3 ± 0.5 | 4.7 ± 0.5 | 1.6 ± 1.1 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kadouri, D.E.; To, K.; Shanks, R.M.; Doi, Y. Predatory bacteria: A potential ally against multidrug-resistant gram-negative pathogens. PLoS ONE 2013, 8, e63397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolp, H.; Starr, M.P. Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Anton. Van Leeuwenhoek 1963, 29, 217–248. [Google Scholar] [CrossRef]
- Lambina, V.A.; Afinogenova, A.V.; Romay Penobad, Z.; Konovalova, S.M.; Andreev, L.V. New species of exoparasitic bacteria of the genus Micavibrio infecting Gram-positive bacteria. Mikrobiologiia 1983, 52, 777–780. [Google Scholar] [PubMed]
- Sockett, R.E. Predatory lifestyle of Bdellovibrio bacteriovorus. Annu. Rev. Microbiol. 2009, 63, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Iebba, V.; Santangelo, F.; Totino, V.; Nicoletti, M.; Gagliardi, A.; de Biase, R.V.; Cucchiara, S.; Nencioni, L.; Conte, M.P.; Schippa, S. Higher prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects. PLoS ONE 2013, 8, e61608. [Google Scholar] [CrossRef] [PubMed]
- Snyder, A.R.; Williams, H.N.; Baer, M.L.; Walker, K.E.; Stine, O.C. 16S rDNA sequence analysis of environmental Bdellovibrio-and-like organisms (BALO) reveals extensive diversity. Int. J. Syst. Evol. Microbiol. 2002, 52, 2089–2094. [Google Scholar] [CrossRef] [PubMed]
- Schwudke, D.; Strauch, E.; Krueger, M.; Appel, B. Taxonomic studies of predatory bdellovibrios based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from the gut of animals. Syst. Appl. Microbiol. 2001, 24, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Dashiff, A.; Junka, R.A.; Libera, M.; Kadouri, D.E. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J. Appl. Microbiol. 2011, 110, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Shanks, R.M.; Kadouri, D.E. Predatory prokaryotes wage war against eye infections. Future Microbiol. 2014, 9, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Dwidar, M.; Monnappa, A.K.; Mitchell, R.J. The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus. BMB Rep. 2012, 45, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Jurkevitch, E.; Minz, D.; Ramati, B.; Barel, G. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. Isolated on phytopathogenic bacteria. Appl. Environ. Microbiol. 2000, 66, 2365–2371. [Google Scholar] [CrossRef] [PubMed]
- Markelova, N.Y. Predacious bacteria, Bdellovibrio with potential for biocontrol. Int. J. Hyg. Environ. Health 2010, 213, 428–431. [Google Scholar] [CrossRef] [PubMed]
- Rogosky, A.M.; Moak, P.L.; Emmert, E.A. Differential predation by Bdellovibrio bacteriovorus 109J. Curr. Microbiol. 2006, 52, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Committee on Review of the Scientific Approaches Used During the FBI’s Investigation of the 2001 Bacillus Anthracis Mailings; Board on Life Sciences; Division on Earth and Life Studies; Committee on Science, Technology, and Law; Policy and Global Affairs Division; National Research Council. Review of the Scientific Approaches Used during the Fbi’s Investigation of the 2001 Anthrax Letters; National Academies Press (US): Washington, DC, USA, 2011. [Google Scholar]
- Federal Select Agent Program. Available online: http://www.selectagents.gov/SelectAgentsandToxinsList.html (accessed on 30 September 2015).
- Nordmann, B.D. Issues in biosecurity and biosafety. Int. J. Antimicrob. Agents 2010, 36, S66–S69. [Google Scholar] [CrossRef] [PubMed]
- Limmathurotsakul, D.; Peacock, S.J. Melioidosis: A clinical overview. Br. Med. Bull. 2011, 99, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, H.P. Mechanisms of antibiotic resistance in burkholderia pseudomallei: Implications for treatment of melioidosis. Future Microbiol. 2012, 7, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Grundmann, O. The current state of bioterrorist attack surveillance and preparedness in the US. Risk Manag. Healthc. Policy 2014, 7, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Imperiale, M.J.; Casadevall, A. Bioterrorism: Lessons learned since the anthrax mailings. MBIO 2011, 2, e211–e232. [Google Scholar] [CrossRef] [PubMed]
- Fraser, C.M.; Dando, M.R. Genomics and future biological weapons: The need for preventive action by the biomedical community. Nat. Genet. 2001, 29, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, R.; Boone, S.A.; Greenberg, D.; Keim, P.; Gerba, C.P. Persistence of category a select agents in the environment. Appl. Environ. Microbiol. 2008, 74, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Kadouri, D.E.; Wu, M. Genomic insights into an obligate epibiotic bacterial predator: Micavibrio aeruginosavorus ARL-13. BMC Genomics 2011. [Google Scholar] [CrossRef] [PubMed]
- Rendulic, S.; Jagtap, P.; Rosinus, A.; Eppinger, M.; Baar, C.; Lanz, C.; Keller, H.; Lambert, C.; Evans, K.J.; Goesmann, A.; et al. A predator unmasked: Life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 2004, 303, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Pike, J.; Bogich, T.; Elwood, S.; Finnoff, D.C.; Daszak, P. Economic optimization of a global strategy to address the pandemic threat. Proc. Natl. Acad. Sci. USA 2014, 111, 18519–18523. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.T. Who will develop new antibacterial agents? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014. [Google Scholar] [CrossRef] [PubMed]
- Dashiff, A.; Kadouri, D.E. Predation of oral pathogens by Bdellovibrio bacteriovorus 109J. Mol. Oral Microbiol. 2011, 26, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Rotem, O.; Pasternak, Z.; Shimoni, E.; Belausov, E.; Porat, Z.; Pietrokovski, S.; Jurkevitch, E. Cell-cycle progress in obligate predatory bacteria is dependent upon sequential sensing of prey recognition and prey quality cues. Proc. Natl. Acad. Sci. USA 2015, 112, E6028–E6037. [Google Scholar] [CrossRef] [PubMed]
- Shatzkes, K.; Chae, R.; Tang, C.; Ramirez, G.C.; Mukherjee, S.; Tsenova, L.; Connell, N.D.; Kadouri, D.E. Examining the safety of respiratory and intravenous inoculation of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus in a mouse model. Sci. Rep. 2015. [Google Scholar] [CrossRef] [PubMed]
- Dashiff, A.; Keeling, T.G.; Kadouri, D.E. Inhibition of predation by Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus via host cell metabolic activity in the presence of carbohydrates. Appl. Environ. Microbiol. 2011, 77, 2224–2231. [Google Scholar] [CrossRef] [PubMed]
- Kadouri, D.E.; Tran, A. Measurement of predation and biofilm formation under different ambient oxygen conditions using a simple gasbag-based system. Appl. Environ. Microbiol. 2013, 79, 5264–5271. [Google Scholar] [CrossRef] [PubMed]
- Kadouri, D.; Venzon, N.C.; O’Toole, G.A. Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Appl. Environ. Microbiol. 2007, 73, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Lambina, V.A.; Afinogenova, A.V.; Romai Penabad, S.; Konovalova, S.M.; Pushkareva, A.P. Micavibrio admirandus gen. et sp. Nov. Mikrobiologiia 1982, 51, 114–117. [Google Scholar] [PubMed]
- Dashiff, A.; Kadouri, D.E. A new method for isolating host-independent variants of Bdellovibrio bacteriovorus using E. coli. auxotrophs. Open Microbiol. J. 2009, 3, 87–91. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, R.; Chae, R.; Mukherjee, S.; Singleton, E.J.; Occi, J.L.; Kadouri, D.E.; Connell, N.D. Susceptibility of Select Agents to Predation by Predatory Bacteria. Microorganisms 2015, 3, 903-912. https://doi.org/10.3390/microorganisms3040903
Russo R, Chae R, Mukherjee S, Singleton EJ, Occi JL, Kadouri DE, Connell ND. Susceptibility of Select Agents to Predation by Predatory Bacteria. Microorganisms. 2015; 3(4):903-912. https://doi.org/10.3390/microorganisms3040903
Chicago/Turabian StyleRusso, Riccardo, Richard Chae, Somdatta Mukherjee, Eric J. Singleton, James L. Occi, Daniel E. Kadouri, and Nancy D. Connell. 2015. "Susceptibility of Select Agents to Predation by Predatory Bacteria" Microorganisms 3, no. 4: 903-912. https://doi.org/10.3390/microorganisms3040903
APA StyleRusso, R., Chae, R., Mukherjee, S., Singleton, E. J., Occi, J. L., Kadouri, D. E., & Connell, N. D. (2015). Susceptibility of Select Agents to Predation by Predatory Bacteria. Microorganisms, 3(4), 903-912. https://doi.org/10.3390/microorganisms3040903