Role of Natural Volatiles and Essential Oils in Extending Shelf Life and Controlling Postharvest Microorganisms of Small Fruits
Abstract
:1. Introduction
2. Control of Food Born Bacteria by Volatiles and Essential Oils in Small Fruits
3. Control of Fungal Diseases in In Vitro Conditions
3.1. Effect of Volatiles on Fungal Diseases in In Vitro
3.2. Effect of Essential Oils on Fungal Diseases In Vitro
3.3. Mechanism of Action of Volatiles and Essential Oils on Pathogen Growth in In Vitro Conditions
4. Control of Fungal Diseases in In Vivo (in Storage) Conditions
4.1. Effect of Volatiles on Fungal Diseases In Vivo
4.2. Effect of Essential Oils on Fungal Diseases In Vivo
4.3. Effect of Volatiles and Essential Oils on Fruit Quality
4.4. Mechanism of Fruit Resistance to Fungal Attack Treated by Volatiles and Essential Oils
4.5. Phytotoxicity, Off-Flavor and Off-Odor of Volatiles and Essential Oils on Fresh Produce
5. Control of Fungal Diseases in the Field
6. Conclusions
Acknowledgments
References
- Centers for Disease Control and Prevention (CDC), National Outbreak Reporting System (NORS). Available online: https://wwwn.cdc.gov/norsdashboard/ (accessed on 4 June 2018).
- Duduk, N.; Markovic, T.; Vasic, M.; Duduk, B.; Vico, I.; Obradovic, A. Antifungal Activity of Three Essential Oils against Colletotrichum acutatum, the Causal Agent of Strawberry Anthracnose. J. Essent. Oil Bear. Plant. 2015, 18, 529–537. [Google Scholar] [CrossRef]
- Agrios, G.N. Significance of plant diseases; Plant pathology; Academic Press: London, UK, 2000; pp. 25–37. [Google Scholar]
- Tripathi, P.; Dubey, N.K.; Shukla, A.K. Use of some essential oils as post-harvest botanical fungicides in the management of grey mold of grapes caused by Botrytis cinereal. World J. Microbiol. Biotechnol. 2008, 24, 39–46. [Google Scholar] [CrossRef]
- Perdones, A.; Sánchez-Gonzáleza, L.; Chiralt, A.; Vargas, M. Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Bhaskara Reddy, M.V.; Angers, P.; Gosselin, A.; Arul, J. Characterization and use of essential oil from Thymus vulgaris against Botrytis cinerea and Rhizopus stolonifer in strawberry fruits. Phytochemistry 1998, 47, 1515–1520. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp., and Clavibacter michiganeneis subs. Michiganensis. Crop Prot. 2003, 22, 39–44. [Google Scholar] [CrossRef]
- Kulakiotu, E.K.; Thanassoulopoulos, C.C.; Sfakiotakis, E.M. Postharvest biological control of Botrytis cinerea on kiwifruit by volatiles of ‘Isabella’ grapes. Phytopathology 2004, 94, 1280–1285. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, F.T.; Moreno, J.; Daza, P.; Boianova, L.; Romero, F. Antifungal activity of strawberry fruit volatile compounds against Colletotrichum acutatum. J. Agric. Food Chem. 2007, 55, 5701–5707. [Google Scholar] [CrossRef] [PubMed]
- Environmental Working Group (EWG). Dirty Dozen list. Available online: https://www.ewg.org/foodnews/dirty_dozen_list.php (accessed on 9 March 2018).
- Research Council; Board of Agriculture. Regulating Pesticides in Food-The Delaney Paradox; National Academy Press: Washington, DC, USA, 1987. [Google Scholar]
- Tzortzakis, N.G. Maintaining postharvest quality of fresh produce with volatile compounds. Innov. Food Sci. Emerg. Technol. 2007, 8, 111–116. [Google Scholar] [CrossRef]
- Tzortzakis, N.G.; Economakis, C.D. Antifungal activity of lemongrass (Cympopogon citratus L.) essential oil against key postharvest pathogens. Innov. Food Sci. Emerg. Technol. 2007, 8, 253–258. [Google Scholar] [CrossRef]
- Almenar, E.; Auras, R.; Rubino, M.; Harte, B. A new technique to prevent the main post harvest diseases in berries during storage: Inclusion complexes β-cyclodextrin-hexanal. Int. J. Food Microbiol. 2007, 118, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Hamilton-Kemp, T.R.; Archbold, D.D.; Loughrin, J.H.; Andersen, R.A.; McCracken, C.T.; Collins, R.W. Stimulation and inhibition of fungal pathogens of plants by natural volatile phytochemicals and their analogs. Curr. Top. Phytochem. 2000, 4, 95–104. [Google Scholar]
- Wang, C.Y.; Wang, S.Y.; Yin, J.J.; Parry, J.; Yu, L.L. Enhancing Antioxidant, Antiproliferation, and free radical scavenging activities in strawberries with essential oils. J. Agric. Food Chem. 2007, 55, 6527–6532. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-González, L.; Pastor, C.; Vargas, M.; Chiralt, A.; González-Martínez, C.; Cháfer, M. Effect of hydroxypropylmethylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biol. Technol. 2011, 60, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Wilson, C.L.; Solar, J.M.; El Ghaouth, A.; Wisniewski, M.E. Rapid evaluation of plant extracts and essential oils for antifungal activity against Botrytis cinerea. Plant Dis. 1997, 81, 204–210. [Google Scholar] [CrossRef]
- Hamilton-Kemp, T.R.; Mccracken, C.T.; Loughrin, J.H.; Andersen, R.A.; Hildebrand, D.F. Effects of some natural volatile compounds on the pathogenic fungi A. alternata and Botrytis cinereal. J. Chem. Ecol. 1992, 18, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, S.F.; Spencer, G.F.; Shasha, B.S. Volatile compounds from raspberry and strawberry fruit inhibit postharvest decay fungi. J. Food Sci. 1993, 58, 793–796. [Google Scholar] [CrossRef]
- Combrinck, S.; Regniera, T.; Kamatoub, G.P.P. in vitro activity of eighteen essential oils and some major components against common postharvest fungal pathogens of fruit. Ind. Crop. Prod. 2011, 33, 344–349. [Google Scholar] [CrossRef]
- Santos, N.S.T.; Aguiar, A.J.A.A.; de Oliveira, C.E.V.; de Sales, C.V.; Silva, S.M.; Silva, R.S.; Stamford, T.C.M.; de Souza, E.L. Efficacy of the application of a coating composed of chitosan and Origanum vulgare L. essential oil to control Rhizopus stolonifer and Aspergillus niger in grapes (Vitis labrusca L.). Food Microbiol. 2012, 32, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Bouchra, C.; Achouri, M.; Hassani, L.M.I.; Hmamouchi, M. Chemical composition and antifungal activity of essential oils of seven Moroccan Labiate against Botrytis cinerea Pers: Fr. J. Ethnopharmacol. 2003, 89, 165–169. [Google Scholar] [CrossRef]
- Archbold, D.D.; Hamilton-Kemp, T.R.; Barth, M.M.; Langlois, B.E. Identifying Natural Volatile Compounds That Control Gray Mold (Botrytis cinerea) during Postharvest Storage of Strawberry, Blackberry, and Grape. J. Agric. Food Chem. 1997, 45, 4032–4037. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, S.Y.; Chen, C. Increasing antioxidant activity and reducing decay of blueberries by essential oils. J. Agric. Food. Chem. 2008, 56, 3587–3592. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.; Jaspers, M.V.; Eade, K.; Frampton, C.M.; Stewart, A. Control of Botrytis cinerea in grape using thyme oil. Australas. Plant Pathol. 2001, 30, 21–25. [Google Scholar]
- Valero, D.; Valverde, J.M.; Martı´nez-Romero, D.; Guille´n, F.; Castillo, S.; Serrano, M. The combination of modified atmosphere packaging with eugenol or thymol to maintain quality, safety and functional properties of table grapes. Postharvest Biol. Technol. 2006, 41, 317–327. [Google Scholar] [CrossRef]
- Nabigol, A.; Morshedi, H. Evaluation of the antifungal activity of the Iranian thyme essential oils on the postharvest pathogens of strawberry fruits. Afr. J. Biotechnol. 2011, 10, 9864–9869. [Google Scholar]
- Jin, P.; Wang, S.Y.; Gao, H.; Chen, H.; Zheng, Y.; Wang, C.Y. Effect of cultural system and essential oil treatment on antioxidant capacity in raspberries. Food Chem. 2012, 132, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Narciso, J.; Wang, Z.; Ference, C.; Bai, J.; Zhou, K. Effects of Chitosan-Essential Oil Coatings on Safety and Quality of Fresh Blueberries. J. Food Sci. 2014, 79, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Calo, J.R.; Crandall, P.G.; Bryan, C.O.; Ricke, S. Essential oils as antimicrobials in food systems—A review. Food Control. 2015, 54. [Google Scholar] [CrossRef]
- Andersen, R.A.; Hamilton-Kemp, T.R.; Hildebrand, D.F.; McCracken, C.T., Jr.; Collins, R.W.; Fleming, P.D. Structure-antifungal activity relationships among volatile C6 and C9 aliphatic aldehydes, ketones, and alcohols. J. Agric. Food. Chem. 1994, 42, 1563–1568. [Google Scholar] [CrossRef]
- Song, J.; Leepipattanawit, R.; Deng, W.; Beaudry, R.M. Hexanal vapor is a natural metabolizable fungicide: Inhibition of fungal activity and enhancement of aroma biosynthesis in apple slices. J. Am. Soc. Hortic. Sci. 1996, 121, 937–942. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Taxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Caccioni, D.R.L.; Gardini, F.; Lanciotti, R.; Guerzoni, M.E. Antifungal activity of natural volatile compounds in relation to their vapor pressure. Sci. Aliments 1997, 17, 21–34. [Google Scholar]
- Monzote, L.; Stamberg, W.; Staniek, K.; Gille, L. Toxic effects of carvacrol, caryophyllene oxide, and ascaridole from essential oil of Chenopodium ambrosioides on mitochondria. Toxicol. Appl. Pharmacol. 2009, 240, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Gardini, F.; Lanciotti, R.; Caccioni, D.R.L.; Guerzoni, M.E. Antifungal activity of hexanal as dependent on its vapor pressure. J. Agric. Food Chem. 1997, 33, 50–55. [Google Scholar] [CrossRef]
- Inouye, S.; Takizawa, T.; Yamaguchi, H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemother. 2001, 47, 565–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavan, P.S.; Tupe, S.G. Antifungal activity and mechanism of action of carvacrol and thymol against vineyard and wine spoilage yeasts. Food Control 2014, 46, 115–120. [Google Scholar] [CrossRef]
- Sivakumar, P.M.; Kumar, T.M.; Doble, M. Antifungal activity, mechanism and QSAR studies on chalcones. Chem. Biol. Drug Des. 2009, 74, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Rozmer, Z.; Perjési, P. Naturally occurring chalcones and their biological activities. Phytochem. Rev. 2016, 15, 87–120. [Google Scholar] [CrossRef]
- Kurita, N.; Miyaji, M.; Kurane, R.; Takahara, Y.; Ichimura, K. Antifungal activity and molecular orbital energies of aldehyde compounds from oils of higher plants. Agric. Biol. Chem. 1979, 43, 2365–2371. [Google Scholar]
- Babu, K.S.; Li, X.C.; Jacob, M.R.; Zhang, Q.; Khan, S.; Ferreia, D.; Clark, A.M. Synthesis, antifungal activity, and structure-activity relationships of coruscanone A. analogs. J. Med. Chem. 2006, 49, 7877–7886. [Google Scholar] [CrossRef] [PubMed]
- Wedge, D.E.; Galindo, J.C.G.; Macias, F.A. Fungicidal activity of natural and synthetic sesquiterpene lactone analogs. Phytochemistry 2000, 53, 747–757. [Google Scholar] [CrossRef]
- Solgi, M.; Kafi, M.; Taghavi, T.S.; Naderi, R. Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. ‘Dune’) flowers. Postharvest Biol. Technol. 2009, 53, 155–158. [Google Scholar] [CrossRef]
- Pe´rez, A.G.; Sanz, C.; Olias, R.; Olias, J.M. Lipoxygenase and hydroperoxide lyase activities in ripening strawberry fruits. J. Agric. Food Chem. 1999, 47, 249–253. [Google Scholar] [CrossRef]
- Neri, F.; Mari, M.; Brigati, S.; Bertolini, P. Fungicidal activity of plant volatile compounds for controlling Monilinia laxa in stone fruit. Plant Dis. 2007, 91, 30–35. [Google Scholar] [CrossRef]
- Jobling, J. Essential oils: A new idea for postharvest disease control. Good Fruit and Vegetables Magazine 2000, 11, 50. Available online: http://www.postharvest.com.au/gfv_oils.pdf (accessed on 3 October 2018).
- Neri, F.; Mari, M.; Brigati, S. Control de Penicillium expansum by plant volatile compounds. Plant Pathol. 2006, 55, 100–105. [Google Scholar] [CrossRef]
- Croft, K.P.C.; Juttner, F.; Slusarenko, A.J. Volatile products of the lipoxygenase pathway evolved from Phaseolus Vulgaris (L.) leaves inoculated with Pseudomonas syringae pV phaseolicola. Plant Physiol. 1993, 101, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Corbo, M.R.; Lanciotti, R.; Gardini, F.; Sinigaglia, M.; Guerzoni, M.E. Effects of hexanal, trans-2-hexenal and storage temperature on shelf life of fresh sliced apples. J. Agric. Food Chem. 2000, 48, 2401–2408. [Google Scholar] [CrossRef] [PubMed]
- Fallik, E.; Archbold, D.D.; Hamilton-Kemp, T.R.; Clements, A.M.; Collins, R.W.; Barth, M.M. (E)-2-Hexenal both stimulates and inhibits Botrytis cinerea growth in vitro and on strawberry fruit in vivo. J. Am. Soc. Hortic. Sci. 1998, 123, 875–881. [Google Scholar]
- Aloui, H.; Khwaldia, K.; Licciardello, F.; Mazzaglia, A.; Muratore, G.; Hamdi, M.; Restucciad, C. Efficacy of the combined application of chitosan and Locust Bean Gum with different citrus essential oils to control postharvest spoilage caused by Aspergillus flavus in dates. Int. J. Food Microbiol. 2014, 170, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.; Martinez-Romero, D.; Castillo, S.; Guille, F.; Valero, D. The use of natural antifungal compounds improves the beneficial effect of MAP in sweet cherry storage. Innov. Food Sci. Emerg. Technol. 2005, 6, 115–123. [Google Scholar] [CrossRef]
- Prasad, K.; Stadelbacher, G.J. Effect of acetaldehyde vapor on postharvest decay and market quality of fresh strawberries. Phytopathology 1974, 64, 948–951. [Google Scholar] [CrossRef]
Volatile, EO, plant extract | Concentration | Disease/plant | Parameters measured | Reference |
---|---|---|---|---|
in vitro application | ||||
(E)-hex-2-enal, hexanal, (E)-non-2-enal, nonanal, 2-carene, limonene and aldehydes upon wounding of tomato leaves | 10% solution (w/w) of the test compound and diluted serially (w/w) to 1 and 0.1% solutions. | Altenaria alternata and Botrytis cinerea | Hyphal length | Hamilton-Kemp et al. [19] |
Aldehydes hexanal and (E)-hex-2-enal; the alcohols hexan-1-ol, (Z)-hex-3-en-1-ol, and (E)-hex-2-en-1-ol; and the esters (Z)-hex-3-enyl acetate, (Z)-hex-2-enyl acetate, and hexyl acetate. | 33.78 to 1351.35 µL L−1 | Colletotrichum acutatum | Mycelial growth, conidial germination, development of appressoria, MID, ID95, ID50 | Arroyo et al. [9] |
Fifteen compounds from aldehydes, alcohols, ketones, an ester and a mixed alcohol and ketone moiety. | 0, 0.02, 0.04, 0.1, 0.4 µL mL−1 | B. cinerea | Growth of fungi, % of control | Vaughn et al. [20] |
Hexanal in β-cyclodextrin complex | 0, 1, 1.5, 2, 4, 5, 7, 10 µL | C. acutatum, A. alternata and B. cinerea | Radial growth of cultures in cm2 | Almenar et al. [14] |
Extracts from 345 plants and 49 essential oils | 10% plant extract solution, 50, 25, 12.5, 6.25, 3.13, 1.56, 0.78, and 0.39% EOs | B. cinerea | Reduction in spore germination | Wilson et al. [18] |
Twenty six essential oils of ten plants (Chenopodium ambrosioides, Eucalyptus citriodora, Eupatorium cannabinum, Lawsonia inermis, Ocimum canum, O. gratissimum, O. sanctum, Prunus persica, Zingiber cassumunar and Zingiber officinale) | 500 ppm, different for MIC and MFC | B. cinerea, and only three selected essential oils on 15 other fruit rotting pathogens | % mycelial inhibition, MIC | Tripathi et al. [4] |
Oregano, thyme, dictamnus, marjoram (carvacrol), lavender (linalool, linalyl acetate), rosemary, sage (eucalyptol) and pennyroyal (cis-menthone) EOs | Not specified | B. cinerea, Fusarium sp., Clavibacter michiganensis | Radial growth on PDA | Daferera et al. [7] |
EOs of two clonal types of Thymus vulgaris | 50, 100, 200 ppm | B. cinerea and Rhizopus stolonifer | % inhibition of radial growth | Bhaskara Redy et al. [6] |
Lemongrass (Cympopogon citratus) | 25, 50, 100, 500 ppm | B. cinerea, Colletotrichum coccodes, C. herbarum, R. stolonifer, Aspergillus niger | Pathogen development, spore production, spore germination, germ tube length | Tzortzakis & Economakis [13] |
Eighteen EOs | 50–3000 µLL−1 | 5 pathogens from 5 crops including B. cinerea from grape | Visual inspection, inhibition of mycelial growth (%) | Combrinck et al. [21] |
Thyme (P-cymene, thymol, α-terpineol, carvacrol, Cinnamon bark (cinnameldehyde, cinnamyl acetate), Clove bud (eugenol, β-caryophyllene) | 13 concentrations from 0.067 to 667 µL L−1 of media | C. acutatum | Mycelial growth, conidial germination, appressoria formation | Duduk et al. [2] |
Origanum vulgare L. essential oil | 40, 20, 10, 5, 2.5, 1.25, 0.06 µL mL−1 | R. stolonifer and A. niger | Mycelial growth of the test fungi, spore germination and morphological changes | Santos et al. [22] |
Essential oils of seven Moroccan Labiatae | 0, 10, 50, 100, 150, 200 and 250 ppm | B. cinerea | Percentage of inhibition of radial growth vs control | Bouchra et al. [23] |
in vivo (in storage) application | ||||
(E)-hex-2-enal | 4, 5, 10, 20, and 50 µL L−1 | C. acutatum inoculated strawberry fruit | Incidence of infected fruits, scale 0,1 | Arroyo et al. [9] |
Three groups of naturally occurring volatile compoundscontains 24 volatiles | 2, 10, 100 µL/250 mL bottle | Strawberry, blackberry & grape | Lesion appearance and size, phytotoxicity | Archbold et al. [24] |
Fifteen volatiles released by red raspberries and strawberries | 0.4 µL mL−1 | B. cinerea on raspberry and strawberry | Rated for development of fungi and damage of volatile | Vaughn et al. [20] |
Thymol, menthol, eugenol | 200 mg L−1 | Strawberry | Sugar, acid, anthocyanin, TPC, ORAC, DPPH, HRS, SARS, flavonoids | Wang et al. [16] |
Carvacrol, anethole, cinnamaldehyde, cinnamic acid, perillaldehyde, linalool, and p-cymene | 200 mg L−1 | Blueberries | ORAC) and hydroxyl radical (•OH) scavenging, total anthocyanins, total phenolics capacity, sugars, organic acids, % of fruit showing fungal symptoms | Wang et al. [25] |
Volatile substances emitted by ‘Isabella’ grapes | 0, 300, 400, or 500 g of ‘Isabella’ grapes | B. cinerea in kiwifruit | # infected kiwifruit, # kiwifruit on which fungal fruiting bodies had appeared | Kulakiotu, et al. [8] |
Eucalyptus and cinnamon EOs | 50, 500 ppm | Strawberry, tomato | Degree of visual infection, weight loss, TSS, firmness, TA, TPC, | Tzortzakis [12] |
Thyme, Cinnamon bark, Clove bud EO | 13 conc. (0.067–667) | C. acutatum | # of diseased fruit or mycelial growth | Duduk et al. [2] |
Essential oils from thyme (T. vulgaris), clove (Syzygium aromaticum), and massoialactone (bark of the tree Cryptocarya massoia) | (0, 0.033, 0.1, 0.33, 1.0 and 3.3%) for phytotoxicity, B. cinerea inoculated on heated lesions and treated with (0.033, 0.1, 0.33%) EOs | B. cinerea in grapes | Scaling the formation of necrosis on the underside of the leaves | Walter et al. [26] |
Eugenol or thymol | 75 or 150 µL/bag (vol. was not mentioned) | Grape | Ethylene, weight loss, color and firmness, TSS, TA, sensory analysis, decay, microorganism analysis, antioxidant activity, TPC, total anthocyanins, organic acids, and sugar contents | Valero et al. [27] |
O. vulgare L. essential oil | 40, 20, 10, 5, 2.5, 1.25, 0.06 µL mL−1 | Grapes | TSS, TA, weight loss, color, firmness, anthocyanin, and sensory characteristics of the fruits during storage | Santos et al. [22] |
O. sanctum, P. persica and Z. officinale | 200,100 and 100 ppm | B. cinerea in grapes | Initiations of rotting of the fruits | Tripathi et al. [4] |
Thymus danensis and T. carmanicus | 150, 300, 600, 1200 µL L−1 | R. stolonifer, Penicillium digitatum, A. niger and B. cinerea strawberry | Disease incidence (%) | Nabigol & Morshedi [28] |
EOs of two T. vulgaris clones | 50, 100, 200 ppm | B. cinerea and R. stolonifer | Decay of fruit | Bhaskara Reddy et al. [6] |
Carvacrol, anethole, cinnamic acid, perillaldehyde, cinnamaldehyde, and linalool | 200 mg L−1 | Raspberries | SOD, CAT, G-POD, AsA-POD, GR, GSH-POD, MDAR, DHAR, Protein content, TPC, Total anthocyanins, ORAC, HOSC, DPPH, flavonoids | Jin et al. [29] |
Carvacrol, cinnamaldehyde | 0.50% | Escherichia coli and P. digitatum on blueberries | Microbial populations, fruit firmness | Sun et al. [30] |
Bergamot EO, on grape | 2% w/v | Grape cv Muscatel | Microbial counts, weight loss, ºBrix, total phenols, antioxidant activity, color and texture, respiration rate | Sánchez-González et al. [17] |
In situ (field application) | ||||
Thyme R oil in two years and massoialactone year 2 | 0.033 Thyme, 0.1 massoialactone | Botrytis in grape | B. cinerea sporulation on leaves, % of berries showing B. cinerea sporulation | Walter et al. [26] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taghavi, T.; Kim, C.; Rahemi, A. Role of Natural Volatiles and Essential Oils in Extending Shelf Life and Controlling Postharvest Microorganisms of Small Fruits. Microorganisms 2018, 6, 104. https://doi.org/10.3390/microorganisms6040104
Taghavi T, Kim C, Rahemi A. Role of Natural Volatiles and Essential Oils in Extending Shelf Life and Controlling Postharvest Microorganisms of Small Fruits. Microorganisms. 2018; 6(4):104. https://doi.org/10.3390/microorganisms6040104
Chicago/Turabian StyleTaghavi, Toktam, Chyer Kim, and Alireza Rahemi. 2018. "Role of Natural Volatiles and Essential Oils in Extending Shelf Life and Controlling Postharvest Microorganisms of Small Fruits" Microorganisms 6, no. 4: 104. https://doi.org/10.3390/microorganisms6040104
APA StyleTaghavi, T., Kim, C., & Rahemi, A. (2018). Role of Natural Volatiles and Essential Oils in Extending Shelf Life and Controlling Postharvest Microorganisms of Small Fruits. Microorganisms, 6(4), 104. https://doi.org/10.3390/microorganisms6040104