Salinity and Temperature Influence Growth and Pigment Production in the Marine-Derived Fungal Strain Talaromyces albobiverticillius 30548
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Preparation of Seed Media
2.2. Preparation of Culture Media and Submerged Fermentation
2.3. Monitoring Methods
2.4. Determination of Dry Biomass
2.5. Estimation of Pigment Absorbance and Standard Curve
- C = concentration of pigments in g/L
- Abs500 = absorbance at 500 nm wavelength
2.6. Color Analysis of Pigments
2.7. Quality Control
2.8. Statistical Analysis
3. Results
3.1. Influence of Temperature on Fungal Growth and Biomass
3.2. Influence of Temperature on Pigment Production
3.3. Influence of Sea Salts on Fungal Growth Rate and Dry Biomass Weight
3.4. Influence of Sea Salts on Pigment Production
3.5. Effect of Sea Salts on Color Hues
4. Discussion
4.1. Temperature Effects
4.2. Salinity Effects
4.3. Differences in Color Hues
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hajjaj, H.; Blanc, P.; Groussac, E.; Uribelarrea, J.-L.; Goma, G.; Loubiere, P. Kinetic analysis of red pigment and citrinin production by Monascus ruber as a function of organic acid accumulation. Enzyme Microb. Technol. 2000, 27, 619–625. [Google Scholar] [CrossRef]
- Zhang, L.; An, R.; Wang, J.; Sun, N.; Zhang, S.; Hu, J.; Kuai, J. Exploring novel bioactive compounds from marine microbes. Curr. Opin. Microbiol. 2005, 8, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Vaishnav, P.; Demain, A.L. Unexpected applications of secondary metabolites. Biotechnol. Adv. 2011, 29, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.; Ansari, M.I.; Ahmad, A.; Mishra, M. Major bioactive metabolites from marine fungi: A review. Bioinformation 2015, 11, 176. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.-H.; Jang, S.; Heo, Y.M.; Min, M.; Lee, H.; Lee, Y.M.; Lee, H.; Kim, J.-J. Investigation of marine-derived fungal diversity and their exploitable biological activities. Mar. Drugs 2015, 13, 4137–4155. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Trincone, A. Bioactive compounds produced by strains of Penicillium and Talaromyces of marine origin. Mar. Drugs 2016, 14, 37. [Google Scholar] [CrossRef] [PubMed]
- Kirti, K.; Amita, S.; Priti, S.; Jyoti, S. Colorful world of microbes: Carotenoids and their applications. Adv. Biol. 2014, 2014, 837891. [Google Scholar] [CrossRef]
- Dufossé, L. Pigments microbial. In Encyclopedia of Microbiology, 3rd ed.; Schaechter, M., Ed.; Elsevier: New York, NY, USA, 2009; pp. 457–471. [Google Scholar]
- Dufossé, L. Microbial production of food grade pigments. Food Technol. Biotechol. 2006, 44, 313–323. [Google Scholar]
- Dufossé, L.; Fouillaud, M.; Caro, Y.; Mapari, S.A.; Sutthiwong, N. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr. Opin. Biotechnol. 2014, 26, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Adrio, J.L.; Demain, A.L. Fungal biotechnology. Int. Microbiol. 2003, 6, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.S. The role of natural product chemistry in drug discovery. J. Nat. Prod. 2004, 67, 2141–2153. [Google Scholar] [CrossRef] [PubMed]
- Imhoff, J.F. Natural products from marine fungi—Still an underrepresented resource. Mar. Drugs 2016, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, I.; Kim, S.-K. Immense essence of excellence: Marine microbial bioactive compounds. Mar. Drugs 2010, 8, 2673–2701. [Google Scholar] [CrossRef] [PubMed]
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta 2013, 1830, 3670–3695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, J.R. Natural Products: The Secondary Metabolites; Royal Society of Chemistry: Cambridge, UK, 2003; p. 147. [Google Scholar]
- Ebel, R. 2.08—Natural product diversity from marine fungi. In Comprehensive Natural Products II; Liu, H.-W., Mander, L., Eds.; Elsevier: Oxford, UK, 2010; pp. 223–262. [Google Scholar]
- Rateb, M.E.; Ebel, R. Secondary metabolites of fungi from marine habitats. Nat. Prod. Rep. 2011, 28, 290–344. [Google Scholar] [CrossRef]
- Fouillaud, M.; Venkatachalam, M.; Girard-Valenciennes, E.; Caro, Y.; Dufossé, L. Anthraquinones and derivatives from marine-derived fungi: Structural diversity and selected biological activities. Mar. Drugs 2016, 14, 64. [Google Scholar] [CrossRef]
- Avalos, J.; Carmen Limon, M. Biological roles of fungal carotenoids. Curr. Genet. 2015, 61, 309–324. [Google Scholar] [CrossRef]
- Berestetskiy, A.O.; Gasich, E.L.; Poluektova, E.V.; Nikolaeva, E.V.; Sokornova, S.V.; Khlopunova, L.B. Biological activity of fungi from the phyllosphere of weeds and wild herbaceous plants. Microbiology 2014, 83, 523–530. [Google Scholar] [CrossRef]
- Dadachova, E.; Bryan, R.A.; Howell, R.C.; Schweitzer, A.D.; Aisen, P.; Nosanchuk, J.D.; Casadevall, A. The radioprotective properties of fungal melanin are a function of its chemical composition, stable radical presence and spatial arrangement. Pigment Cell Melanoma Res. 2008, 21, 192–199. [Google Scholar] [CrossRef]
- Gessler, N.; Egorova, A.; Belozerskaya, T. Fungal anthraquinones. Appl. Biochem. Microbiol. 2013, 49, 85–99. [Google Scholar] [CrossRef]
- Jančič, S.; Frisvad, J.C.; Kocev, D.; Gostinčar, C.; Džeroski, S.; Gunde-Cimerman, N. Production of secondary metabolites in extreme environments: Food-and airborne Wallemia spp. Produce toxic metabolites at hypersaline conditions. PLoS ONE 2016, 11, e0169116. [Google Scholar] [CrossRef] [PubMed]
- Margalith, P. Pigment Microbiology; Springer: London, UK; New York, NY, USA, 1992; p. 156. [Google Scholar]
- Kurobane, I.; Vining, L.C.; McInnes, A.G.; Walter, J.A. Use of 13C in biosynthetic studies. The labeling pattern in dihydrofusarubin enriched from [13C]- and [13C, 2H]acetate in cultures of Fusarium solani. Can. J. Chem. 1980, 58, 1380–1385. [Google Scholar] [CrossRef]
- Julia, P.; Martinkova, L.; Lolinski, J.; Machek, F. Ethanol as substrate for pigment production by the fungus Monascus purpureus. Enzyme Microb. Technol. 1994, 16, 996–1001. [Google Scholar]
- Cho, Y.J.; Hwang, H.J.; Kim, S.W.; Song, C.H.; Yun, J.W. Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. J. Biotechnol. 2002, 95, 13–23. [Google Scholar] [CrossRef]
- Cai, Y.; Din, Y.; Ta, G.; Lia, X. Production of 1,5-dihydroxy-3-methoxy-7-methylanthracene-9,10-dione by submerged culture of Shiraia bambusicola. J. Microbiol. Biotechnol. 2008, 18, 322–327. [Google Scholar]
- Yu, J.H.; Keller, N. Regulation of secondary metabolism in filamentous fungi. Annu. Rev. Phytopathol. 2005, 43, 437–458. [Google Scholar] [CrossRef]
- Arumugam, G.; Srinivasan, S.; Joshi, G.; Gopal, D.; Ramalingam, K. Production and characterization of bioactive metabolites from piezotolerant deep sea fungus Nigrospora sp. in submerged fermentation. J. Appl. Microbiol. 2015, 118, 99–111. [Google Scholar] [CrossRef]
- Netzker, T.; Fischer, J.; Weber, J.; Mattern, D.J.; König, C.C.; Valiante, V.; Schroeckh, V.; Brakhage, A.A. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front. Microbiol. 2015, 6, 299. [Google Scholar] [CrossRef]
- Lang, G.; Wiese, J.; Schmaljohann, R.; Imhoff, J.F. New pentaenes from the sponge-derived marine fungus Penicillium rugulosum: Structure determination and biosynthetic studies. Tetrahedron 2007, 63, 11844–11849. [Google Scholar] [CrossRef]
- Bringmann, G.; Gulder, T.A.; Lang, G.; Schmitt, S.; Stöhr, R.; Wiese, J.; Nagel, K.; Imhoff, J.F. Large-scale biotechnological production of the antileukemic marine natural product sorbicillactone A. Mar. Drugs 2007, 5, 23–30. [Google Scholar] [CrossRef]
- Wiese, J.; Ohlendorf, B.; Blümel, M.; Schmaljohann, R.; Imhoff, J.F. Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar. Drugs 2011, 9, 561–585. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, J.; Liu, P.; Wang, W.; Zhu, W. Three new compounds from Aspergillus terreus pt06-2 grown in a high salt medium. Mar. Drugs 2011, 9, 1368–1378. [Google Scholar] [CrossRef] [PubMed]
- Varoglu, M.; Crews, P. Biosynthetically diverse compounds from a saltwater culture of sponge-derived Aspergillus niger. J. Nat. Prod. 2000, 63, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Uehara, H.; Matsunami, K.; Aoki, S.; Kitagawa, I. Trichoharzin, a new polyketide produced by the imperfect fungus Trichoderma harzianum separated from the marine sponge Micale cecilia. Tetrahedron Lett. 1993, 34, 7925–7928. [Google Scholar] [CrossRef]
- Fouillaud, M.; Venkatachalam, M.; Llorente, M.; Magalon, H.; Cuet, P.; Dufossé, L. Biodiversity of pigmented fungi isolated from marine environment in La Réunion island, Indian ocean: New resources for colored metabolites. J. Fungi 2017, 3, 36. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, M.; Magalon, H.; Dufossé, L.; Fouillaud, M. Production of pigments from the tropical marine-derived fungi Talaromyces albobiverticillius: New resources for natural red-colored metabolites. J. Food Compos. Anal. 2018, 70, 35–48. [Google Scholar] [CrossRef]
- Venkatachalam, M.; Zelena, M.; Cacciola, F.; Ceslova, L.; Emmanuelle, G.-V.; Clerc, P.; Dugo, P.; Mondello, L.; Fouillaud, M.; Rotondo, A.; et al. Partial characterization of the pigments produced by the marine-derived fungus Talaromyces albobiverticillius 30548. Towards a new fungal red colorant for the food industry. J. Food Compos. Anal. 2018, 67, 38–47. [Google Scholar] [CrossRef]
- Overy, D.; Correa, H.; Roullier, C.; Chi, W.C.; Pang, K.L.; Rateb, M.; Ebel, R.; Shang, Z.; Capon, R.; Bills, G.; et al. Does osmotic stress affect natural product expression in fungi? Mar. Drugs 2017, 15, 254. [Google Scholar] [CrossRef]
- Huang, J.; Lu, C.; Qian, X.; Huang, Y.; Zheng, Z.; Shen, Y. Effect of salinity on the growth, biological activity and secondary metabolites of some marine fungi. Acta Oceanol. Sin. 2011, 30, 118–123. [Google Scholar] [CrossRef]
- Cho, Y.J.; Park, J.P.; Hwang, H.J.; Kim, S.W.; Choi, J.W.; Yun, J.W. Production of red pigment by submerged culture of Paecilomyces sinclairii. Lett. Appl. Microbiol. 2002, 35, 195–202. [Google Scholar] [CrossRef]
- Méndez, A.; Pérez, C.; Montañéz, J.C.; Martínez, G.; Aguilar, C.N. Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J. Zhejiang Univ. Sci. B 2011, 12, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Niknejad, F.; Moshfegh, M.; Najafzadeh, M.J.; Houbraken, J.; Rezaei, S.; Zarrini, G.; Faramarzi, M.A.; Nafissi-Varcheh, N. Halotolerant ability and alpha-amylase activity of some saltwater fungal isolates. Iran. J. Pharm. Res. 2013, 12, 113–119. [Google Scholar] [PubMed]
- Velmurugan, P.; Lee, Y.H.; Nanthakumar, K.; Kamala-Kannan, S.; Dufossé, L.; Mapari, S.A.; Oh, B.T. Water-soluble red pigments from Isaria farinosa and structural characterization of the main colored component. J. Basic Microbiol. 2010, 50, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.G.; Zhang, F.; Wang, Z.T.; Hu, Z.B. Identification and chemical profiling of monacolins in red yeast rice using high-performance liquid chromatography with photodiode array detector and mass spectrometry. J. Pharm. Biomed. Anal. 2004, 35, 1101–1112. [Google Scholar] [CrossRef]
- Mapari, S.A.S.; Meyer, A.S.; Thrane, U. Colorimetric characterization for comparative analysis of fungal pigments and natural food colorants. J. Agric. Food Chem. 2006, 54, 7027–7035. [Google Scholar] [CrossRef]
- Ogbonna, C.N. Production of food colorants by filamentous fungi. Afr. J. Microbiol. Res. 2016, 10, 960–971. [Google Scholar]
- Babitha, S.; Soccol, C.R.; Pandey, A. Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresour. Technol. 2007, 98, 1554–1560. [Google Scholar] [CrossRef]
- Aujla, I.S.; Paulitz, T.C. An improved method for establishing accurate water potential levels at different temperatures in growth media. Front. Microbiol. 2017, 8, 1497. [Google Scholar] [CrossRef]
- Masuma, R.; Yamaguchi, Y.; Noumi, M.; Omura, S.; Namikoshi, M. Effect of sea water concentration on hyphal growth and antimicrobial metabolite production in marine fungi. Mycoscience 2001, 42, 455–459. [Google Scholar] [CrossRef]
- Liu, S.; Li, J.; Wu, Y.; Ren, Y.; Liu, Q.; Wang, Q.; Zhou, X.; Cai, M.; Zhang, Y. De novo transcriptome sequencing of marine-derived Aspergillus glaucus and comparative analysis of metabolic and developmental variations in response to salt stress. Genes Genom. 2017, 39, 317–329. [Google Scholar] [CrossRef]
- Mapari, S.A.S. Chemotaxonomic Exploration of Fungal Biodiversity for Polyketide Natural Food Colorants… Discovery & Evaluation of Cell Factories, and Characterization of Pigments. Ph.D. Thesis, Technical University of Denmark, Kgs. Lyngby, Denmark, 2009. [Google Scholar]
- Gunde-Cimerman, N.; Oren, A.; Plemenitaš, A. Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya; Springer: Dordrecht, The Netherlands, 2005; Volume 9. [Google Scholar]
- Ritchie, D. Salinity optima for marine fungi affected by temperature. Am. J. Bot. 1957, 44, 870–874. [Google Scholar] [CrossRef]
- Ritchie, D. The efect of salinity and temperature on marine and other fungi from various climates. Bull. Torrey Bot. Club 1959, 86, 367–373. [Google Scholar] [CrossRef]
- Dunn, P.H.; Baker, G.E. Filamentous fungi of the Psammon habitat at Enewetak atoll, Marshall islands. Mycologia 1983, 75, 839–853. [Google Scholar] [CrossRef]
- Janso, J.E.; Bernan, V.S.; Greenstein, M.; Bugni, T.S.; Ireland, C.M. Penicillium dravuni, a new marine-derived species from an alga in fiji. Mycologia 2005, 97, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, R.; Molitoris, H.-P. Combined influence of salinity and temperature (Phoma-pattern) on growth of marine fungi. Can. J. Bot. 1992, 70, 2111–2115. [Google Scholar] [CrossRef]
- O’Mahony, R.J.; Burns, A.T.H.; Millam, S.; Hooley, P.; Fincham, D.A. Isotropic growth of spores and salt tolerance in Aspergillus nidulans. Mycol. Res. 2002, 106, 1480–1486. [Google Scholar] [CrossRef]
- Kunčič, M.K.; Kogej, T.; Drobne, D.; Gunde-Cimerman, N. Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl. Environ. Microbiol. 2010, 76, 329–337. [Google Scholar] [CrossRef]
- Blomberg, A.; Adler, L. Physiology of osmotolerance in fungi. Adv. Microb. Physiol. 1992, 33, 145–212. [Google Scholar] [PubMed]
- Bowman, S.M.; Free, S.J. The structure and synthesis of the fungal cell wall. BioEssays 2006, 28, 799–808. [Google Scholar] [CrossRef]
- Kapteyn, J.C.; Van Den Ende, H.; Klis, F.M. The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim. Biophys. Acta Gen. Subj. 1999, 1426, 373–383. [Google Scholar] [CrossRef]
- Mager, W.H.; Siderius, M. Novel insights into the osmotic stress response of yeast. FEMS Yeast Res. 2002, 2, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Castillo, G.; Demoulin, V. Nacl salinity and temperature effects on growth of three wood-rotting basidiomycetes from a Papua New Guinea coastal forest. Mycol. Res. 1997, 101, 341–344. [Google Scholar] [CrossRef]
- Santos-Ebinuma, V.C.; Roberto, I.C.; Teixeira, M.F.; Pessoa, A., Jr. Improvement of submerged culture conditions to produce colorants by Penicillium purpurogenum. Braz. J. Microbiol. 2014, 45, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Chintapenta, L.K.; Rath, C.C.; Maringinti, B.; Ozbay, G. Culture conditions for growth and pigment production of a mangrove Penicillium species. J. Multidiscip. Sci. Res. 2014, 2, 01–05. [Google Scholar]
- Sutherland, I.W. Biotechnology of Microbial Exopolysaccharides; Cambridge University Press: Cambridge, UK, 1990; Volume 9, p. 163. [Google Scholar]
- Hajjaj, H.; Blanc, P.; Groussac, E.; Goma, G.; Uribelarrea, J.; Loubiere, P. Improvement of red pigment/citrinin production ratio as a function of environmental conditions by Monascus ruber. Biotechnol. Bioeng. 1999, 64, 497–501. [Google Scholar] [CrossRef]
- Ahn, J.; Jung, J.; Hyung, W.; Haam, S.; Shin, C. Enhancement of Monascus pigment production by the culture of Monascus sp. J101 at low temperature. Biotechnol. Prog. 2006, 22, 338–340. [Google Scholar] [CrossRef]
- Chintapenta, L.K.; Rath, C.C.; Maringinti, B.; Ozbay, G. Pigment production from a mangrove Penicillium. Afr. J. Biotechnol. 2014, 13, 2668–2674. [Google Scholar]
- Chadni, Z.; Rahaman, M.H.; Jerin, I.; Hoque, K.M.F.; Reza, M.A. Extraction and optimisation of red pigment production as secondary metabolites from Talaromyces verruculosus and its potential use in textile industries. Mycology 2017, 8, 48–57. [Google Scholar] [CrossRef]
- Lopes, F.C.; Tichota, D.M.; Pereira, J.Q.; Segalin, J.; de Oliveira Rios, A.; Brandelli, A. Pigment production by filamentous fungi on agro-industrial byproducts: An eco-friendly alternative. Appl. Biochem. Biotechnol. 2013, 171, 616–625. [Google Scholar] [CrossRef]
- Řezanka, T.; Spížek, J. Griseofulvin and other biologically active halogen containing compounds from fungi. Stud. Nat. Prod. Chem. 2005, 32, 471–547. [Google Scholar]
- Hsu, Y.-W.; Hsu, L.-C.; Liang, Y.-H.; Kuo, Y.-H.; Pan, T.-M. New bioactive orange pigments with yellow fluorescence from Monascus-fermented Dioscorea. J. Agric. Food Chem. 2011, 59, 4512–4518. [Google Scholar] [CrossRef] [PubMed]
- Eman, M.M.; Abbady, M.S. Secondary metabolites and bioactivity of the Monascus pigments, review. Glob. J. Biotechnol. Biochem. 2014, 9, 1–13. [Google Scholar]
- Patakova, P. Monascus secondary metabolites: Production and biological activity. J. Ind. Microbiol. Biotechnol. 2013, 40, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Martinkova, L.; Veselý, D. Biological activity of polyketide pigments produced by the fungus Monascus. J. Appl. Microbiol. 1995, 79, 609–616. [Google Scholar]
Temperature | Exponential Phase | Fungal Growth Rate (g/L/day) * | SD | R2 | Maximum Dry Biomass Weight (g/L) * | SD |
---|---|---|---|---|---|---|
21 °C | Days 1 to 7 | 0.71 a | 0.07 | 0.97 | 6.22b | 0.12 |
24 °C | Days 1 to 6 | 0.69 a | 0.11 | 0.93 | 5.48 a | 0.07 |
27 °C | Days 1 to 5 | 1.11 b | 0.09 | 0.99 | 5.66 a | 0.09 |
Temperature | Exponential Phase | Production Rate (g/L/day) * | SD | R2 | Maximum Pigment Yield (g/L) * | SD |
---|---|---|---|---|---|---|
21 °C | Days 2 to 8 | 0.22 a | 0.04 | 0.97 | 1.34 a | 0.08 |
24 °C | Days 2 to 7 | 0.36 a | 0.07 | 0.98 | 1.49 a | 0.06 |
27 °C | Days 2 to 7 | 0.29 a | 0.03 | 0.98 | 1.46 a | 0.08 |
Sea Salts Concentration | Reference Code | Exponential Phase | Fungal Growth Rate (g/L/day) * | SD | R2 | Final Biomass (g/L) * | SD |
---|---|---|---|---|---|---|---|
0% | T1 | Days 1 to 6 | 0.58 a | 0.05 | 0.93 | 4.88 a | 0.03 |
3.65% | T2 | Days 1 to 5 | 0.55 a | 0.09 | 0.96 | 5.01 a | 0.03 |
6% | T3 | Days 1 to 6 | 1.28b | 0.05 | 0.89 | 8.28 b | 0.06 |
9% | T4 | Days 1 to 8 | 0.77c | 0.02 | 0.99 | 9.22 c | 0.09 |
Sea Salts Concentration | Reference Code | Exponential Phase | Production Rate (g/L/day) * | SD | R2 | Final Pigment Yield (g/L) * | SD |
---|---|---|---|---|---|---|---|
0% | T1 | Days 2 to 7 | 0.27 a | 0.09 | 0.98 | 1.46 a | 0.08 |
3.65% | T2 | Days 2 to 9 | 0.22 a | 0.07 | 0.93 | 1.45 a | 0.06 |
6% | T3 | Days 2 to 9 | 0.13b | 0.09 | 0.99 | 1.09b | 0.08 |
9% | T4 | Days 2 to 9 | 0.05c | 0.08 | 0.90 | 0.56c | 0.07 |
Sea Salts Concentration | Reference Code | L | a* | b* | h°ab | Chroma |
---|---|---|---|---|---|---|
0% | T1 | 57.12 | 56.73 | 42.94 | 37.08 | 71.75 |
3.65% | T2 | 48.16 | 61.38 | 46.08 | 36.89 | 76.14 |
6% | T3 | 75.25 | 49.87 | 21.25 | 23.07 | 54.20 |
9% | T4 | 81.25 | 6.87 | 29.87 | 77.04 | 30.62 |
Monascus red rice | R | 54.02 | 57.41 | 61.97 | 47.19 | 84.48 |
Quinizarin | O | 91.24 | 42.18 | 65.12 | 57.06 | 77.59 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venkatachalam, M.; Gérard, L.; Milhau, C.; Vinale, F.; Dufossé, L.; Fouillaud, M. Salinity and Temperature Influence Growth and Pigment Production in the Marine-Derived Fungal Strain Talaromyces albobiverticillius 30548. Microorganisms 2019, 7, 10. https://doi.org/10.3390/microorganisms7010010
Venkatachalam M, Gérard L, Milhau C, Vinale F, Dufossé L, Fouillaud M. Salinity and Temperature Influence Growth and Pigment Production in the Marine-Derived Fungal Strain Talaromyces albobiverticillius 30548. Microorganisms. 2019; 7(1):10. https://doi.org/10.3390/microorganisms7010010
Chicago/Turabian StyleVenkatachalam, Mekala, Léa Gérard, Cathie Milhau, Francesco Vinale, Laurent Dufossé, and Mireille Fouillaud. 2019. "Salinity and Temperature Influence Growth and Pigment Production in the Marine-Derived Fungal Strain Talaromyces albobiverticillius 30548" Microorganisms 7, no. 1: 10. https://doi.org/10.3390/microorganisms7010010
APA StyleVenkatachalam, M., Gérard, L., Milhau, C., Vinale, F., Dufossé, L., & Fouillaud, M. (2019). Salinity and Temperature Influence Growth and Pigment Production in the Marine-Derived Fungal Strain Talaromyces albobiverticillius 30548. Microorganisms, 7(1), 10. https://doi.org/10.3390/microorganisms7010010