Modeling the Reduction and Cross-Contamination of Salmonella in Poultry Chilling Process in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Inoculum
2.2. Preparation and Inoculation of Chicken Samples
2.3. Chilling Treatments
2.4. Bacterial Enumeration
2.5. Calculation of Bacterial Reduction, Bacterial Transfer Rate and Post-chill Incidence
2.6. Model Development
2.7. Model Evaluation and Validation
2.8. Color Measurements
2.9. Transmission Electron Microscopy (TEM)
3. Results and Discussion
3.1. Salmonella Reduction at Different Chlorine Concentrations
3.2. Transfer of Salmonella at Different Chlorine Concentrations
3.3. Salmonella Post-Chill Incidence under Different Initial Contamination Levels, Pre-Chill Incidences, and Chlorine Concentrations
3.4. Model Development
3.5. Model Evaluation and Validation
3.6. Color Changes during Chilling
3.7. Morphological Changes Reveled by TEM
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rajan, K.; Shi, Z.; Ricke, S.C. Current aspects of Salmonella contamination in the US poultry production chain and the potential application of risk strategies in understanding emerging hazards. Crit. Rev. Microbiol. 2017, 43, 370–392. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Duan, D.; Wu, Z.; Xue, S.; Xu, X.; Zhou, G. Primary concerns regarding the application of electrolyzed water in the meat industry. Food Control. 2019, 95, 50–56. [Google Scholar] [CrossRef]
- Guo, C.; Hoekstra, R.M.; Schroeder, C.M.; Pires, S.M.; Ong, K.L.; Hartnett, E.; Scallan, E. Application of Bayesian techniques to model the burden of human salmonellosis attributable to US food commodities at the point of processing: Adaptation of a Danish model. Foodborne Pathog. Dis. 2011, 8, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, Y.; Song, X.; Cui, S.; Xu, H.; Yang, B.; Huang, J.; Liu, G.; Chen, Q.; Zhou, G.; et al. Prevalence and quantification of Salmonella contamination in raw chicken carcasses at the retail in China. Food Control. 2014, 44, 198–202. [Google Scholar] [CrossRef]
- Yang, B.; Xi, M.; Wang, X.; Cui, S.; Yue, T.; Hao, H.; Walls, I. Prevalence of Salmonella on raw poultry at retail markets in China. J. Food Prot. 2011, 74, 1724–1728. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, Y.; Griffis, C.L.; Waldroup, A.L. A probability model for cross-contamination by Campylobacter jejuni and Salmonella Typhimurium in poultry chilling process. Appl. Eng. Agric. 2002, 18, 717–724. [Google Scholar] [CrossRef]
- James, C.; Vincent, C.; de Andrade Lima, T.I.; James, S.J. The primary chilling of poultry carcasses-a review. Int. J. Refrig. 2006, 29, 847–862. [Google Scholar] [CrossRef]
- Northcutt, J.K.; Smith, D.P.; Musgrove, M.T.; Ingram, K.D.; Hinton, J.A. Microbiological impact of spray washing broiler carcasses using different chlorine concentrations and water temperatures. Poultry Sci. 2005, 84, 1648–1652. [Google Scholar] [CrossRef]
- Jung, Y.; Jang, H.; Guo, M.; Gao, J.; Matthews, K.R. Sanitizer efficacy in preventing cross-contamination of heads of lettuce during retail crisping. Food Microbiol. 2017, 64, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Northcutt, J.; Smith, D.; Ingram, K.D.; Hinton, J.A.; Musgrove, M. Recovery of bacteria from broiler carcasses after spray washing with acidified electrolyzed water or sodium hypochlorite solutions. Poultry Sci. 2007, 86, 2239–2244. [Google Scholar] [CrossRef]
- Nou, X.; Luo, Y. Whole-leaf wash improves chlorine efficacy for microbial reduction and prevents pathogen cross-contamination during fresh-cut lettuce processing. J. Food Sci. 2010, 75, 283–290. [Google Scholar] [CrossRef] [PubMed]
- USDA-FSIS. Draft FSIS compliance guideline for Controlling Salmonella and Campylobacter in raw poultry. 2010. Available online: https://www.fsis.usda.gov/wps/wcm/connect/1d562776-ebfb-4ea5-a19b-e994776a02c6/Compliance_Guideline_Controlling_Salmonella_Poultry.pdf?MOD=AJPERES (accessed on 1 August 2019).
- Jun, W.; Guo, Y.C.; Ning, L.I. Prevalence and risk assessment of Campylobacter jejuni in chicken in China. Biomed. Environ. Sci. 2013, 26, 243–248. [Google Scholar]
- Moore, A.; Nannapaneni, R.; Kiess, A.; Sharma, C.S. Evaluation of USDA approved antimicrobials on the reduction of Salmonella and Campylobacter in ground chicken frames and their effect on meat quality. Poultry Sci. 2017, 96, 2385–2392. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.Y.; Park, S.Y.; Kang, I.S.; Ha, S.D. The evaluation of combined chemical and physical treatments on the reduction of resident microorganisms and Salmonella Typhimurium attached to chicken skin. Poultry Sci. 2013, 93, 208–215. [Google Scholar] [CrossRef]
- Parveen, S.; Taabodi, M.; Schwarz, J.G.; Oscar, T.P.; Harter-Dennis, J.; White, D.G. Prevalence and antimicrobial resistance of Salmonella recovered from processed poultry. J. Food Prot. 2007, 70, 2466–2472. [Google Scholar] [CrossRef]
- Reiter, M.G.R.; Fiorese, M.L.; Moretto, G.; López, M.C.; Jordano, R. Prevalence of Salmonella in a poultry slaughterhouse. J. Food Prot. 2007, 70, 1723–1725. [Google Scholar] [CrossRef]
- Thomson, J.E.; Bailey, J.S.; Cox, N.A.; Posey, D.A.; Carson, M.O. Salmonella on broiler carcasses as affected by fresh water input rate and chlorination of chiller water. J. Food Prot. 1979, 42, 954–955. [Google Scholar] [CrossRef]
- Minami, A.W.; Chaicumpa, C.N.; Manas, S.; Samosornsuk, S.; Monden, K.; Takeshi, S.; Kawamoto, M. Prevalence of foodborne pathogens in open markets and supermarkets in Thailand. Food Control. 2010, 21, 221–226. [Google Scholar] [CrossRef]
- Wang, W.; Li, M.; Li, Y. Modeling the thermoultrasound inactivation of Vibrio parahaemolyticus in raw peeled shrimps. J. Food Prot. 2013, 76, 1712–1718. [Google Scholar] [CrossRef]
- Yang, H.; Wang, S.; Li, Y.; Johnson, M.G. Predictive models for the survival/death of Campylobacter jejuni and Salmonella Typhimurium in poultry scalding and chilling. J. Food Sci. 2010, 67, 1836–1843. [Google Scholar] [CrossRef]
- NY/T1174-2006. Quality Management Practice for Broiler Slaughtering(ICS: 67.120.20 X18, issued by the Standardization Administration of the People’s Republic of China). Available online: http://down.foodmate.net/standard/sort/5/10836.html (accessed on 10 May 2018).
- Saeed, M.O.; Azizli, K.; Isa, M.H.; Bashir, M.J.K. Application of ccd in rsm to obtain optimize treatment of pome using fenton oxidation process. J. Water Process Eng. 2015, 8, e7–e16. [Google Scholar] [CrossRef]
- Mohana, S.; Shrivastava, S.; Divecha, J.; Madamwar, D. Response surface methodology for optimization of medium for decolorization of textile dye direct black 22 by a novel bacterial consortium. Bioresour. Technol. 2008, 99, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Wang, W.; Zhang, X.; Zhang, J.; Liao, M.; Yang, H.; Li, Y. Modeling the reduction of Salmonella spp. on chicken breasts and wingettes during scalding for QMRA of the poultry supply chain in China. Microorganisms 2019, 7, 165. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Li, Q.; Yang, X.; Zhang, W.; Li, W. Multiobjective optimization for crash safety design of vehicles using stepwise regression model. Struct. Multidiscip. Optim. 2008, 35, 561–569. [Google Scholar] [CrossRef]
- Ross, T. Indices for performance evaluation of predictive models in food microbiology. J. Appl. Microbiol. 1996, 81, 501–508. [Google Scholar] [CrossRef]
- Wang, W.; Li, M.; Fang, W.; Pradhan, A.K.; Li, Y. A predictive model for assessment of decontamination effects of lactic acid and chitosan used in combination on Vibrio parahaemolyticus in shrimps. Int. J. Food Microbiol. 2013, 167, 124–130. [Google Scholar] [CrossRef]
- Ramirez-Hernandez, A.; Brashears, M.M.; Sanchez-Plata, M.X. Efficacy of lactic acid, lactic acid-acetic acid blends, and peracetic acid to reduce Salmonella on chicken parts under simulated commercial processing conditions. J. Food Prot. 2018, 81, 17–24. [Google Scholar] [CrossRef]
- Xie, L.; Shang, W.; Liu, C.; Zhang, Q.; Sunter, G.; Hong, J.; Zhou, X. Mutual association of broad bean wilt virus 2 VP37-derived tubules and plasmodesmata obtained from cytological observation. Sci. Rep. 2016, 6, 21552. [Google Scholar] [CrossRef]
- Yang, H.; Li, Y.; Johnson, M.G. Survival and death of Salmonella Typhimurium and Campylobacter jejuni in processing water and on chicken skin during poultry scalding and chilling. J. Food Prot. 2001, 64, 770–776. [Google Scholar] [CrossRef]
- Lillard, H.S. Factors affecting the persistence of Salmonella during the processing of poultry. J. Food Prot. 1989, 52, 829–832. [Google Scholar] [CrossRef] [PubMed]
- Nagel, G.M.; Bauermeister, L.J.; Bratcher, C.L.; Singh, M.; McKee, S.R. Salmonella and Campylobacter reduction and quality characteristics of poultry carcasses treated with various antimicrobials in a post-chill immersion tank. Int. J. Food Microbiol. 2013, 165, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.M.; Axtell, S. The effect of monochloramine versus chlorine on pathogenic, indicator, and spoilage bacteria associated with broiler chicken carcasses: A model, pilot scale, and industrial study. J. Food Prot. 2005, 68, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Tamblyn, K.C.; Conner, D.E. Bactericidal activity of organic acids in combination with transdermal compounds against Salmonella Typhimurium attached to broiler skin. Food Microbiol. 1997, 14, 477–484. [Google Scholar] [CrossRef]
- Luo, Y.; Nou, X.; Millner, P.; Zhou, B.; Shen, C.; Yang, Y.; Shelton, D. A pilot plant scale evaluation of a new process aid for enhancing chlorine efficacy against pathogen survival and cross-contamination during produce wash. Int. J. Food Microbiol. 2012, 158, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Munther, D.; Wu, J. Enhanced surveillance on food-borne disease outbreaks: Dynamics of cross-contamination in biocidal wash procedure. J. Theor. Biol. 2013, 321, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Mead, G.C.; Hudson, W.R.; Hinton, M.H. Use of a marker organism in poultry processing to identify sites of cross-contamination and evaluate possible control measures. Brit. Poultry Sci. 1994, 35, 345–354. [Google Scholar] [CrossRef]
- Lillard, H.S. Effect on broiler carcasses and water of treating chiller water with chlorine or chlorine dioxide. Poultry Sci. 1980, 59, 1761–1766. [Google Scholar] [CrossRef]
- FAO/WHO. Risk assessment of Campylobacter spp. in broiler chickens: Technical Report; WHO Library: Geneva, Switzerland, 2009; Available online: https://apps.who.int/iris/bitstream/handle/10665/43731/9789241547369_eng.pdf (accessed on 10 August 2019).
- Hayama, Y.; Yamamoto, T.; Kasuga, F.; Tsutsui, T. Simulation model for Campylobacter cross-contamination during poultry processing at slaughterhouses. Zoonoses Public Health 2011, 58, 399–406. [Google Scholar] [CrossRef]
- Chen, Y.; Jackson, K.M.; Chea, F.P.; Schaffner, D.W. Quantification and variability analysis of bacterial cross-contamination rates in common food service tasks. J. Food Prot. 2001, 64, 72–80. [Google Scholar] [CrossRef]
- Jensen, D.A.; Friedrich, L.M.; Harris, L.J.; Danyluk, M.D.; Schaffner, D.W. Cross-contamination of Escherichia coli O157: H7 between lettuce and wash water during home-scale washing. Food Microbiol. 2015, 46, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Ross, T.; Dalgaard, P.; Tienungoon, S. Predictive modelling of the growth and survival of Listeria in fishery products. Int. J. Food Microbiol. 2000, 62, 231–245. [Google Scholar] [CrossRef]
- Sharma, C.S.; Ates, A.; Joseph, P.; Nannapaneni, R.; Kiess, A. Reduction of Salmonella in skinless chicken breast fillets by lauric arginate surface application. Poultry Sci. 2013, 92, 1419–1424. [Google Scholar] [CrossRef] [PubMed]
Variable | Range | Level | ||||
---|---|---|---|---|---|---|
−α | −1 | 0 | 1 | α | ||
Initial contamination level (log CFU/g) | 1–5 | 1 | 2 | 3 | 4 | 5 |
Pre-chill incidence (%) | 3–40 | 3 | 10.2 | 21.5 | 32.8 | 40 |
Chlorine (mg/L) | 0–100 | 0 | 20 | 50 | 80 | 100 |
Run | Initial Contamination Level (log CFU/g) | Pre-Chill Incidence (%) | Chlorine (mg/L) | a Post-Chill Incidence (%) |
---|---|---|---|---|
1 | 2 | 32.8 | 80 | 43.3 ± 14.1abcd |
2 | 4 | 10.2 | 80 | 66. 7 ± 4.7abc |
3 | 3 | 21.5 | 50 | 65 ± 2.4abc |
4 | 2 | 10.2 | 20 | 40 ± 12.4bcd |
5 | 3 | 21.5 | 50 | 68.4 ± 11.8ab |
6 | 4 | 32.8 | 20 | 91.7 ± 7.1a |
7 | 3 | 21.5 | 50 | 65 ± 11.8abc |
8 | 4 | 32.8 | 80 | 85 ± 2.4a |
9 | 2 | 10.2 | 80 | 35 ± 7.1bcd |
10 | 2 | 32.8 | 20 | 60 ± 28.3bcd |
11 | 3 | 21.5 | 50 | 70 ± 14.1ab |
12 | 4 | 10.2 | 20 | 90 ± 9.4a |
13 | 3 | 21.5 | 0 | 81.7 ± 21.2a |
14 | 3 | 40 | 50 | 78.4 ± 25.9a |
15 | 5 | 21.5 | 50 | 90 ± 4.7a |
16 | 3 | 21.5 | 50 | 65 ± 4.7abc |
17 | 3 | 3 | 50 | 40 ± 18.9bcd |
18 | 3 | 21.5 | 100 | 65 ± 2.4bc |
19 | 3 | 21.5 | 50 | 63.3 ± 4.7abc |
20 | 1 | 21.5 | 50 | 30 ± 4.7cd |
Run | Initial Contamination Level (log CFU/g) | Pre-Chill Incidence (%) | Chlorine (mg/L) | Post-Chill Incidence (%) | |
---|---|---|---|---|---|
Observed | Predicted | ||||
1 | 3 | 12.5 | 10 | 62.5 ± 8.8 | 69.1 |
2 | 3 | 37.5 | 10 | 100.0 ± 0.0 | 88.0 |
3 | 3 | 12.5 | 70 | 50.0 ± 0.0 | 52.0 |
4 | 3 | 37.5 | 70 | 87.5 ± 8.8 | 71.0 |
5 | 5 | 12.5 | 10 | 100.0 ± 0.0 | 100.6 |
6 | 5 | 37.5 | 10 | 100.0 ± 0.0 | 119.5 |
7 | 5 | 12.5 | 70 | 100.0 ± 0.0 | 83.5 |
8 | 5 | 37.5 | 70 | 100.0 ± 0.0 | 102.5 |
Factor | Value | Standard Error | Prob > F |
---|---|---|---|
Intercept | 92.0 | 3.3 | |
X1 | 31.0 | 2.8 | < 0.0001 ** |
X2 | 13.6 | 2.8 | 0.0002 * |
X3 | −9.7 | 2.8 | 0.004 * |
X32 | 10.8 | 4.6 | 0.03 * |
Chlorine (mg/L) | ΔL | Δa | Δb | ΔE |
---|---|---|---|---|
0 | 5.4 ± 1.0a | 1.4 ± 0.4a | 3.3 ± 0.9a | 6.5 |
20 | 7.0 ± 1.9a | 2.2 ± 0.9a | 1.6 ± 0.7a | 7.5 |
50 | 5.6 ± 1.6a | 0.8 ± 0.9a | 2.8 ± 1.6a | 6.3 |
100 | 5.5 ± 2.2a | 1.7 ± 1.0a | 2.8 ± 1.4a | 6.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Wang, W.; Zhang, J.; Liao, M.; Yang, H.; Fang, W.; Li, Y. Modeling the Reduction and Cross-Contamination of Salmonella in Poultry Chilling Process in China. Microorganisms 2019, 7, 448. https://doi.org/10.3390/microorganisms7100448
Xiao X, Wang W, Zhang J, Liao M, Yang H, Fang W, Li Y. Modeling the Reduction and Cross-Contamination of Salmonella in Poultry Chilling Process in China. Microorganisms. 2019; 7(10):448. https://doi.org/10.3390/microorganisms7100448
Chicago/Turabian StyleXiao, Xingning, Wen Wang, Jianmin Zhang, Ming Liao, Hua Yang, Weihuan Fang, and Yanbin Li. 2019. "Modeling the Reduction and Cross-Contamination of Salmonella in Poultry Chilling Process in China" Microorganisms 7, no. 10: 448. https://doi.org/10.3390/microorganisms7100448
APA StyleXiao, X., Wang, W., Zhang, J., Liao, M., Yang, H., Fang, W., & Li, Y. (2019). Modeling the Reduction and Cross-Contamination of Salmonella in Poultry Chilling Process in China. Microorganisms, 7(10), 448. https://doi.org/10.3390/microorganisms7100448