Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Yeast Strains
2.3. Media Preparation and Cultivation of Yeasts
2.3.1. Enzyme Hydrolysis of Animal Fat
2.3.2. Media Composition
- (a)
- Cultivation in Erlenmeyer flasks (50 mL of basic medium) on glucose for the construction of growth curves in the time period 0–146 h/two parallel cultivations; evaluation of means (n = 2)
- (b)
- Cultivation in Erlenmeyer flasks (50 mL of medium) in 6 different media (C sources: Glucose, glycerol, crude fat, emulsified fat, hydrolyzed fat, and crude fat + enzyme; C/N ratio = 13; see below) for 96 h for (i) continuous measurement of biomass, pH of media, and lipase production in the time period from 0–96 h and (ii) continuous measurement of lipid and metabolite production during the time period from 60–96 h (supposed stationary phase)/three parallel cultivations; evaluation of means ± SD (n = 3)
- (c)
- Cultivation in Pyrex flasks (500 mL of medium) in four different media (C sources: Glucose, glycerol, crude fat, and emulsified fat) for 96 h, at 4 different C/N ratios in the range of 13–100, to measure the production of biomass and metabolites. Some of these media were evaluated for biosurfactant production)/three parallel cultivations; evaluation of means ± SD (n = 3)
2.4. Analytical Methods
2.4.1. Cell Dry Weight
2.4.2. Lipase Activity
2.4.3. Biosurfactants
2.4.4. Carotenoids
2.4.5. Lipids and Fatty Acids
2.4.6. Glycerol
2.4.7. Glucans
2.5. Electron Microscopy
2.6. Statistical Analysis
3. Results
3.1. Animal Fat Processing
3.2. Growth Parameters and Biomass Production in Different Fat-Based Media
3.3. Extracellular Lipase Production
3.4. Biosurfactant Production
3.5. Metabolite Production in Fat-Based Media Rearranged
3.5.1. Production of Carotenoids and Sterols during Growth in Fat Media
3.5.2. Production of Metabolites on Fat-Based Media at Different C/N Ratios
3.5.3. Fatty Acid Composition in Fat-Based Media
3.5.4. Production of Glucans
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stephen, L. Fats and Oils–Animal Based. In Food Processing: Principles and Applications; Clark, S., Jung, S., Lamsal, B., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Gunstone, F.D. Modifying Lipids for Use in Food, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2006; p. 429. [Google Scholar]
- Doppenberg, J. All about Feed. Nord. Nutr. Recomm. 2012, 23, 9–11. [Google Scholar]
- Gupta, R.; Rathi, P.; Bradoo, S. Lipase mediated upgradation of dietary fats and oils. Crit. Rev. Food Sci. Nutr. 2003, 43, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.; Graeff-Hönninger, S.; French, W.T.; Hernandez, R.; Merkt, N.; Claupein, W.; Hetrick, M.; Pham, P. Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents. Energy 2013, 61, 34–43. [Google Scholar] [CrossRef]
- Kendrick, A.; Ratledge, C. Lipids of selected moulds grown for production of n-3 and n-6 polyunsaturated fatty acids. Lipids 1992, 20, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, S.; Aggelis, G. Yarrowia lipolytica: A model microorganism used for the production of tailor-made lipids. Eur. J. Lipid Sci. Technol. 2010, 112, 639–654. [Google Scholar] [CrossRef]
- Kosa, G.; Kohler, A.; Shapaval, V.; Zimmermann, B.; Forfang, K.; Afseth, N.K.; Tzimorotas, D.; Vuoristo, K.S.; Horn, S.J.; Mounier, J.; et al. Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microb. Cell Fact. 2017, 16, 101. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Dimou, A.; Fakas, S.; Diamantopoulou, P.; Philippoussis, A.; Galiotou-Panayotou, M.; Aggelis, G. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. Appl. Microbiol. 2013, 56, 1138–1150. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Aggelis, G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour. Technol. 2002, 82, 43–49. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Aggelis, G. Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial fats. Curr. Microbiol. 2003, 46, 398–402. [Google Scholar] [CrossRef]
- Roux-Van der Merwe, M.P.; Badenhorst, J.; Britz, T.J. Fungal treatment of an edible-oil-containing industrial effluent. World J. Microbiol. Biotechnol. 2005, 21, 947–953. [Google Scholar] [CrossRef]
- Latha, B.V.; Jeevaratnam, K.; Murali, H.S.; Manja, K.S. Influence of growth factors on carotenoid pigmentation of Rhodotorula glutinis DFR-PDY from natural source. Ind. J. Biotechnol. 2005, 4, 353–357. [Google Scholar]
- Libkind, D.; van Broock, M. Biomass and carotenoid pigment production by patagonian native yeasts. World J. Microbiol. Biotechnol. 2006, 22, 687–692. [Google Scholar] [CrossRef]
- Yurkov, A.M.; Vustin, M.M.; Tyaglov, B.V.; Maksimova, I.A.; Sinekoiy, S.P. Pigmented Basidiomycetous yeasts are a promising source of carotenoids and ubiquinone Q10. Microbiology 2008, 77, 1–6. [Google Scholar] [CrossRef]
- Cheirsilp, B.; Louhasakul, Y. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Bioresour. Technol. 2013, 142, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.; Gomes, A.S.; Silva, C.M.; Belo, I. Microbial lipids and added value metabolites production by Yarrowia lipolytica from pork lard. J. Biotechnol. 2018, 265, 76–85. [Google Scholar] [CrossRef]
- Marova, I.; Szotkowski, M.; Vanek, M.; Rapta, M.; Byrtusova, D.; Mikheichyk, N.; Haronikova, A.; Certik, M.; Shapaval, V. Utilization of animal fat waste as carbon source by carotenogenic yeasts–a screening study. EuroBiotech J. 2017, 1, 310–318. [Google Scholar] [CrossRef]
- Petrik, S.; Hároniková, A.; Márová, I.; Kostovová, I.; Breierová, E. Production of biomass, carotenoids and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production-a comparative screening study. Ann. Microbiol. 2013, 63, 1537–1551. [Google Scholar] [CrossRef]
- Obruca, S.; Sedlacek, P.; Mravec, F.; Krzyzanek, V.; Nebesarova, J.; Samek, O.; Kucera, D.; Benesova, P.; Hrubanova, K.; Milerova, M.; et al. The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. New Biotechnol. 2017, 39, 68–80. [Google Scholar] [CrossRef]
- Kucera, D.; Pernicova, I.; Kovalcik, A.; Koller, M.; Mullerova, L.; Sedlacek, P.; Mravec, F.; Nebesarova, J.; Kalina, M.; Marova, I.; et al. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresour. Technol. 2018, 256, 552–556. [Google Scholar] [CrossRef]
- Rossi, M.; Amaretti, A.; Raimondi, S.; Leonardi, A. Getting lipids for biodiesel production from oleaginous fungi. In Biodiesel-Feedstocks and Processing Technologies; InTech, IntechOpen Limited: London, UK, 2011. [Google Scholar]
- Schiavone, M.; Sieczkowski, N.; Castex, M.; Dague, E.; François, J.M. Effects of the strain background and autolysis process on the composition and biophysical properties of the cell wall from two different industrial yeasts. FEMS Yeast Res. 2015, 15, fou012. [Google Scholar] [CrossRef]
- Gründemann, C.; Garcia-Käufer, M.; Sauer, B.; Scheer, R.; Merdivan, S.; Bettin, P.; Huber, R.; Lindequist, U. Comparative chemical and biological investigations of β-glucan-containing products from shiitake mushrooms. J. Funct. Foods 2015, 18, 692–702. [Google Scholar] [CrossRef]
- Aguilar-Uscanga, B.; Francois, J.M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett. Appl. Microbiol. 2003, 37, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Yang, J.; Xu, X.; Zhang, L.; Nie, Q.; Xian, M. Biodiesel production from oleaginous microorganisms. Renew. Energy 2009, 34, 1–5. [Google Scholar] [CrossRef]
- Braunwald, T.; Schwemmlein, L.; Graeff-Hönninger, S. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 2013, 97, 6581–6588. [Google Scholar] [CrossRef]
- Jiru, T.M.; Groenewald, M.; Pohl, C.; Steyn, L.; Kiggundu, N.; Abate, D. Optimization of cultivation conditions for biotechnological production of lipid by Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) SY89 for biodiesel preparation. 3 Biotech 2017, 3, 145. [Google Scholar] [CrossRef]
- Kempka, A.P.; Lipke, N.R.; Pinheiro, T.L.F.; Menoncin, S.; Treichel, H.; Freire, D.M.G. Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation. Bioprocess Biosyst. Eng. 2008, 31, 119–125. [Google Scholar] [CrossRef]
- Kosa, G.; Vuoristo, K.S.; Horn, S.; Zimmermann, B.; Afseth, N.K.; Kohler, A.; Shapaval, V. FTIR spectroscopy as a unified method for simultaneous analysis of intra- and extracellular metabolites in high-throughput screening of microbial bioprocesses. Microb. Cell Fact. 2017, 16, 195–206. [Google Scholar] [CrossRef]
- Kosa, G.; Zimmermann, B.; Kohler, A.; Ekeberg, D.; Afseth, N.K.; Mounier, J.; Shapaval, V. High-throughput screening of Mucoromycota fungi for production of low- and high-value lipids. Biotechnol. Biofuels 2018, 11, 66. [Google Scholar] [CrossRef]
- El-Banna, A.; El-Razek, A.; El-Mahdy, A. Some Factors Affecting the Production of Carotenoids by Rhodotorula glutinis var. glutinis. Food Nutr. Sci. 2012, 2, 10–18. [Google Scholar]
- Xiao, W. Yeast Protocols (Methods in Molecular Biology), 2nd ed.; Humana Press: Totowa, NJ, USA, 2005; p. 392. [Google Scholar]
- Frengova, G.I.; Beshkova, D.M. Carotenoids from Rhodotorula and Phaffia: Yeasts of biotechnological importance. J. Ind. Microbiol.Biotechnol. 2009, 36, 163–180. [Google Scholar] [CrossRef]
- Lee, J.J.L.; Chen, L.; Shi, J.; Trzcinski, A.; Chen, W.N. Metabolic profiling of Rhodosporidium toruloides grown on glycerol for carotenoid production during different growth phases. J. Agric. Food Chem. 2014, 62, 10203–10209. [Google Scholar] [CrossRef] [PubMed]
- Amaral, P.F.F.; Coelho, M.A.; Marrucho, I.M.J.; Countinho, J.A.P. Biosurfactants from Yeasts: Characteristics, Production and Application. In Biosurfactants; Sen, R., Ed.; Springer: New York, NY, USA, 2010; Chapter 18; pp. 236–249. [Google Scholar]
C/N Ratio | Medium Component | |||
---|---|---|---|---|
Glucose | Glycerol | Waste Fat | Waste Fat/Tween 80 | |
13 | 30.00 | 30.67 | 18.7 | 18.7/1.87 |
25 | 49.50 | 46.00 | 35.00 | 35.00/3.50 |
50 | 99.90 | 93.00 | 70.00 | 70.00/7.00 |
100 | 199:80 | 186.00 | 140.00 | 140.00/14.00 |
Time (min) | Mobile Phase A (%) | Mobile Phase B (%) |
---|---|---|
0.0 | 100.0 | 0.0 |
10.0 | 0.0 | 100.0 |
14.0 | 0.0 | 100.0 |
15.3 | 100.0 | 0.0 |
19.0 | 100.0 | 0.0 |
Retention Time (min) | Gradient (°C·min−1) | Temperature (°C) | Retention (min) | |
---|---|---|---|---|
1 | 0.000 | start | - | - |
2 | 1.000 | 0.000 | 80.000 | 1.000 |
3 | 5.000 | 15.000 | 140.000 | 0.000 |
4 | 21.667 | 3.000 | 190.000 | 0.000 |
5 | 25.467 | 25.000 | 260.000 | 1.000 |
6 | 25.467 | stop | - | - |
Lipase Source | Enzyme Nr | Activity U/mg of Protein | Glycerol (g/L) Per Time of Hydrolysis | ||||
---|---|---|---|---|---|---|---|
1 h | 3 h | 6 h | 24 h | 30 h | |||
Aspergillus niger | 1 | 5–15 | 0.03 | 0.16 | 0.38 | 0.67 | 1.16 |
B Candida antarctica, recombinant from Aspergillus oryzae | 2 | 9 | 0.46 | 1.18 | 1.28 | 1.61 | 2.28 |
Candida rugosa | 3 | 2 | 1.06 | 9.75 | 13.52 | 14.9 | 15.85 |
Mucor miehei | 4 | 1 | 0.64 | 1.52 | 7.23 | 11.05 | 11.84 |
Pseudomonas cepacia | 5 | 30 | 0.21 | 0.78 | 4.48 | 5.63 | 6.69 |
Pseudomonas fluorescens | 6 | 40 | 0.02 | 0.68 | 2.35 | 3.42 | 4.08 |
Rhizopus oryzae | 7 | 30 | 0.20 | 0.78 | 1.34 | 1.42 | 1.82 |
Rhizopus niveus | 8 | 1.5 | 0.02 | 0.24 | 0.49 | 0.51 | 0.64 |
Porcine pancreas | 9 | 30–90 | 0.01 | 0.07 | 0.13 | 0.17 | 0.19 |
Strain | C/N 13 | C/N 25 | C/N 50 | C/N 100 | ||||
---|---|---|---|---|---|---|---|---|
Glucans % | Sum G+L % | Glucans % | Sum G+L % | Glucans % | Sum G+L % | Glucans % | Sum G+L % | |
RG | 23.18 | 32.35 | 23.80 | 56.65 | 21.05 | 58.37 | 20.35 | 56.87 |
CM | 26.15 | 32.10 | 23.61 | 58.84 | 18.53 | 65.05 | 16.32 | 63.59 |
RM | 17.52 | 30.24 | 14.60 | 46.79 | 15.54 | 49.77 | 15.99 | 49.25 |
SP | 14.30 | 25.38 | 16.87 | 47.73 | 15.58 | 54.94 | 14.73 | 53.85 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szotkowski, M.; Byrtusova, D.; Haronikova, A.; Vysoka, M.; Rapta, M.; Shapaval, V.; Marova, I. Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate. Microorganisms 2019, 7, 578. https://doi.org/10.3390/microorganisms7110578
Szotkowski M, Byrtusova D, Haronikova A, Vysoka M, Rapta M, Shapaval V, Marova I. Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate. Microorganisms. 2019; 7(11):578. https://doi.org/10.3390/microorganisms7110578
Chicago/Turabian StyleSzotkowski, Martin, Dana Byrtusova, Andrea Haronikova, Marie Vysoka, Marek Rapta, Volha Shapaval, and Ivana Marova. 2019. "Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate" Microorganisms 7, no. 11: 578. https://doi.org/10.3390/microorganisms7110578
APA StyleSzotkowski, M., Byrtusova, D., Haronikova, A., Vysoka, M., Rapta, M., Shapaval, V., & Marova, I. (2019). Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate. Microorganisms, 7(11), 578. https://doi.org/10.3390/microorganisms7110578