The Anti-Campylobacter Activity and Mechanisms of Pinocembrin Action
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Antimicrobial Susceptibility Testing and Resistance Mechanism
2.3. Time-Kill Kinetics
2.4. Membrane Integrity
2.5. Gene Expression
2.6. Intracellular Oxidation
2.7. Oxidative Stress Reduction by Iron Chelation with 2,2-Dipyridyl
2.8. Motility Assay on Soft Agar
2.9. In-Vivo Testing of Campylobacter Virulence Potential
2.10. Statistical Analysis
3. Results
3.1. Anti-Campylobacter Activity of Pinocembrin, and the Resistance Mechanism
3.2. Campylobacter Fitness under Pinocembrin Treatment
3.3. Alterations of Campylobacter Membrane Integrity by Pinocembrin
3.4. Changes in Campylobacter Gene Expression by Pinocembrin
3.5. Intracellular ROS Formation
3.6. Inhibition of Pinocembrin Activity with Fe Chelator 2,2-Dipyridyl
3.7. Modulation of Campylobacter Motility
3.8. Modulation of Campylobacter Virulence under Pinocembrin Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 2017, 15, 5077. [Google Scholar]
- Nyati, K.K.; Nyati, R. Role of Campylobacter jejuni infection in the pathogenesis of Guillain-Barré syndrome: an update. Biomed. Res. Int. 2013, 859125. [Google Scholar] [CrossRef] [Green Version]
- ECDC. Antimicrobial Resistance in Zoonotic Bacteria Still High in Humans, Animals and Food, Say ECDC and EFSA. European Centre for Disease Prevention and Control (ECDC). 2018. Available online: https://www.ecdc.europa.eu/en/news-events/antimicrobial-resistance-zoonotic-bacteria-still-high-humans-animals-and-food-say-ecdc (accessed on 9 December 2019).
- Friedman, M. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. J. Agric. Food Chem. 2015, 63, 3805–3822. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Wang, W.; Li, Q.; Wang, J. The natural flavonoid pinocembrin: Molecular targets and potential therapeutic applications. Mol. Neurobiol. 2016, 53, 1794–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aiello, F.; Armentano, B.; Polerà, N.; Carullo, G.; Loizzo, R.M.; Bonesi, M.; Cappello, M.S.; Capobianco, L.; Tundis, R. From vegetable waste to new agents for potential health applications: Antioxidant properties and effects of extracts, fractions and pinocembrin from Glycyrrhiza glabra L. aerial parts on viability of five human cancer cell lines. J. Agric. Food Chem. 2017, 65, 7944–7954. [Google Scholar] [CrossRef] [PubMed]
- Rasul, A.; Millimouno, F.M.; Ali Eltayb, W.; Ali, M.; Li, J.; Li, X. Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. Biomed. Res. Int. 2013, 203, 1–9. [Google Scholar] [CrossRef]
- Lin, J.; Overbye, M.L.; Zhang, Q. CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antim. Agents Chemotherap. 2002, 46, 2124–2131. [Google Scholar] [CrossRef] [Green Version]
- Klančnik, A.; Smole Možina, S.; Zhang, Q. Anti-Campylobacter activities and resistance mechanisms of natural phenolic compounds in Campylobacter. PLoS ONE 2012, 7, e51800. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Akiba, M.; Sahin, O.; Zhang, Q. CmeR functions as a transcriptional repressor for the multidrug efflux pump CmeABC in Campylobacter jejuni. Antim. Agents Chemotherap. 2005, 49, 1067–1075. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Zhang, M.; Zhou, J.; Pang, L.; Wang, G.; Hou, F. The molecular mechanisms of ciprofloxacin resistance in clinical Campylobacter jejuni and their genotyping characteristics in Beijing, China. Foodborne Pathog. Dis. 2017, 14, 386–392. [Google Scholar] [CrossRef]
- Zhang, T.; Cheng, Y.; Luo, Q.; Lu, Q.; Dong, J.; Zhang, R.; Wen, G.; Wang, H.; Luo, L.; Wang, H.; et al. Correlation between gyrA and CmeR box polymorphism and fluoroquinolone resistance in Campylobacter jejuni isolates in China. Antimicrob. Agents Chemoth. 2017, 61, e00422-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lekshmi, M.; Ammini, P.; Kumar, S.; Varela, M.F. The food production environment and the development of antimicrobial resistance in human pathogens of animal origin. Microorganisms 2017, 5, 11. [Google Scholar] [CrossRef] [PubMed]
- Klančnik, A.; Guzej, B.; Hadolin Kolar, M.; Abramovič, H.; Smole Možina, S. In-vitro antimicrobial and antioxidant activity of commercial rosemary extract formulations. J. Food Prot. 2009, 72, 1744–1752. [Google Scholar] [CrossRef] [PubMed]
- EUCAST 2019. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, 2019. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9.0_Breakpoint_Tables.pdf (accessed on 15 October 2019).
- Klančnik, A.; Piskernik, S.; Jeršek, B.; Smole Možina, S. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J. Microbiol. Methods 2010, 81, 121–126. [Google Scholar] [CrossRef]
- Kovač, J.; Šimunović, K.; Wu, Z.; Klančnik, A.; Bucar, F.; Zhang, Q. Smole Možina, S. Antibiotic resistance modulation and modes of action of (-)-α-pinene in Campylobacter jejuni. PLoS ONE 2015, 10, e0122871. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Klančnik, A.; Vučković, D.; Plankl, M.; Abram, M.; Smole Možina, S. In-vivo modulation of Campylobacter jejuni virulence in response to environmental stress. Foodborne Pathog. Dis. 2013, 10, 6. [Google Scholar] [CrossRef]
- Wu, Z.; Sahin, O.; Shen, Z.; Liu, P.; Miller, W.G.; Zhang, Q. Multi-omics approaches to deciphering a hypervirulent strain of Campylobacter jejuni. Genome Biol. Evol. 2013, 5, 2217–2230. [Google Scholar] [CrossRef] [Green Version]
- Riley, M.; Labedan, B. Gene products: physiological functions and common ancestries. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed.; Neidhardt, F.C., Curtiss, R., III, Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M., Umbarger, H.E., Eds.; ASM Press: Washington, DC, USA, 1996; pp. 2118–2202. [Google Scholar]
- Kohanski, M.A.; Dwyer, D.J.; Hayete, B.; Lawrence, C.A.; Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 2007, 130, 797–810. [Google Scholar] [CrossRef] [Green Version]
- Delcour, A.H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta 2009, 1794, 808–816. [Google Scholar] [CrossRef] [Green Version]
- Schwachtje, J.; Whitcomb, S.J.; Firmino, A.A.P.; Zuther, E.; Hincha, D.K.; Kopka, K. Induced, Imprinted, and primed responses to changing environments: Does metabolism store and process information? Front. Plant Sci. 2019, 10, 106. [Google Scholar] [CrossRef] [PubMed]
- Hews, C.L.; Cho, T.; Rowley, G.; Raivio, T.L. Maintaining integrity under stress: envelope stress response regulation of pathogenesis in gram-negative bacteria. Front. Cell. Infect. Microbiol. 2019, 9, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pajaniappan, M.; Hall, J.E.; Cawthraw, S.A.; Newell, D.G.; Gaynor, E.C.; Fields, J.A.; Rathbun, K.M.; Agee, W.A.; Burns, C.M.; Hall, S.J.; et al. A temperature-regulated Campylobacter jejuni gluconate dehydrogenase is involved in respiration-dependent energy conservation and chicken colonization. Mol. Microbiol. 2008, 68, 474–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, A.N.; Pandey, R.; Palyada, K.; Naikare, H.; Stintzi, A. Identification of Campylobacter jejuni genes involved in the response to acidic pH and stomach transit. Appl. Environ. Microbiol. 2008, 74, 1583–1597. [Google Scholar] [CrossRef] [Green Version]
- Hendrixsonm, D.R.; DiRitam, V.J. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 2004, 52, 471–484. [Google Scholar] [CrossRef] [Green Version]
- Sellars, M.J.; Hall, S.J.; Kelly, D.J. Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-oxide, or dimethyl sulfoxide requires oxygen. J. Bacteriol. 2002, 184, 4187–4196. [Google Scholar] [CrossRef] [Green Version]
- Bingham-Ramos, L.K.; Hendrixson, D.R. Characterization of two putative cytochrome c peroxidases of Campylobacter jejuni involved in promoting commensal colonization of poultry. Infect. Immun. 2008, 76, 1105–1114. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-C.; Oh, E.; Kim, J.; Jeon, B. Regulation of oxidative stress resistance in Campylobacter jejuni, a microaerophilic foodborne pathogen. Front. Microbiol. 2015, 6, 751. [Google Scholar] [CrossRef] [Green Version]
- Pittman, M.S.; Elvers, K.T.; Lee, L.; Jones, M.A.; Poole, R.K.; Park, S.F.; Kelly, D.J. Growth of Campylobacter jejuni on nitrate and nitrite: electron transport to NapA and NrfA via NrfH and distinct roles for NrfA and the globin Cgb in protection against nitrosative stress. Mol. Microbiol. 2007, 63, 575–590. [Google Scholar] [CrossRef]
- Baillon, M.L.; Van Vliet, A.H.; Ketley, J.M.; Constantinidou, C.; Penn, C.W. An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni. J. Bacteriol. 1999, 181, 4798–4804. [Google Scholar] [PubMed]
- Pesci, E.C.; Cottle, D.L.; Pickett, C.L. Genetic, enzymatic, and pathogenic studies of the iron superoxide dismutase of Campylobacter jejuni. Infect. Immun. 1994, 62, 2687–2694. [Google Scholar] [PubMed]
- Atack, J.M.; Kelly, D.J. Contribution of the stereospecific methionine sulphoxide reductases MsrA and MsrB to oxidative and nitrosative stress resistance in the food-borne pathogen Campylobacter jejuni. Microbiology 2008, 154, 2219–2230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, C.; Carroll, C.; Jordan, K.N. Induction of an adaptive tolerance response in the foodborne pathogen, Campylobacter jejuni. FEMS Microbiol. Lett. 2003, 23, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Birk, T.; Wik, M.T.; Lametsch, R.; Knøchel, S. Acid stress response and protein induction in Campylobacter jejuni isolates with different acid tolerance. BMC Microbiol. 2012, 12, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brøndsted, L.; Andersen, M.T.; Parker, M.; Jørgensen, K.; Ingmer, H. The HtrA protease of Campylobacter jejuni is required for heat and oxygen tolerance and for optimal interaction with human epithelial cells. Appl. Environ. Microbiol. 2005, 71, 3205–3212. [Google Scholar] [CrossRef] [Green Version]
- Novik, V.; Hofreuter, D.; Galán, J.E. Identification of Campylobacter jejuni genes involved in its interaction with epithelial cells. Infect. Immun. 2010, 78, 3540–3553. [Google Scholar] [CrossRef] [Green Version]
- Palyada, K.; Sun, Y.Q.; Flint, A.; Butcher, J.; Naikare, H.; Stintzi, A. Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni. BMC Genom. 2009, 10, 481. [Google Scholar] [CrossRef] [Green Version]
- Stintzi, A.; Marlow, D.; Palyada, K.; Naikare, H.; Panciera, R.; Whitworth, L.; Clarke, C. Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni. Infect. Immun. 2005, 73, 1797–1810. [Google Scholar] [CrossRef] [Green Version]
- Kendall, J.J.; Barrero-Tobon, A.M.; Hendrixson, D.R.; Kelly, D.J. Hemerythrins in the microaerophilic bacterium Campylobacter jejuni help protect key iron-sulphur cluster enzymes from oxidative damage. Environ. Microbiol. 2014, 16, 1105–1121. [Google Scholar] [CrossRef] [Green Version]
- Mavri, A.; Abramovič, H.; Polak, T.; Bertoncelj, J.; Jamnik, P.; Smole Možina, S.; Jeršek, B. Chemical properties and antioxidant and antimicrobial activities of Slovenian propolis. Chem. Biodivers. 2012, 9, 1545–1558. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Wang, Y.-H.; Liou, C.-C.; Lin, Y.-C.; Huang, H.; Liu, Y.-C. Induction of oxidative DNA damage by flavonoids of propolis: its mechanism and implication about antioxidant capacity. Chem. Res. Toxicol. 2012, 13, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Hofreuter, D. Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni. Front. Cell. Infect. Microbiol. 2014, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrillo, C.D.; Taboada, E.; Nash, J.H.E.; Lanthier, P.; Kelly, J.; Lau, P.C.; Verhulp, R.; Mykytczuk, O.; Jonathan, S.; Findlay, W.A.; et al. Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J. Biol. Chem. 2004, 279, 20327–20338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaynor, E.C.; Cawthraw, S.; Manning, G.; MacKichan, J.K.; Falkow, S.; Newell, D.G. The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J. Bacteriol. 2004, 186, 503–517. [Google Scholar] [CrossRef] [Green Version]
- Gaynor, E.C.; Wells, D.H.; MacKichan, J.K.; Falkow, S. The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol. Microbiol. 2005, 56, 8–27. [Google Scholar] [CrossRef]
- Guerry, P.; Poly, F.; Riddle, M.; Maue, A.C.; Chen, Y.H.; Monteiro, M.A. Campylobacter polysaccharide capsules: virulence and vaccines. Front. Cell Infect. Microbiol. 2012, 15, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Stintzi, C.M.; King, M.; Haardt, M.; Armstrong, G.D. Campylobacter jejuni motility and invasion of Caco-2 cells. Infect. Immun. 1995, 63, 4295–4300. [Google Scholar] [PubMed]
- Le, M.T.; Porcelli, I.; Weight, C.M.; Gaskin, D.J.H.; Carding, S.R.; van Vliet, A.H.M. Acid-shock of Campylobacter jejuni induces flagellar gene expression and host cell invasion. Eur. J. Microbiol. Immunol. 2012, 2, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Kalmokoff, M.; Lanthier, P.; Tremblay, T.L.; Foss, M.; Lau, P.C.; Sanders, G.; Austin, J.; Kelly, J.; Szymanski, C.M. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J. Bacteriol. 2006, 188, 4312–4320. [Google Scholar] [CrossRef] [Green Version]
- Konkel, M.E.; Kim, B.J.; Klena, J.D.; Young, C.R.; Ziprin, R. Characterization of the thermal stress response of Campylobacter jejuni. Infect. Immun. 1998, 66, 3666–3672. [Google Scholar]
Strain | MIC (µg/mL) | ||
---|---|---|---|
Ciprofloxacin | Erythromycin | Pinocembrin | |
C. jejuni NCTC 11168 | 0.062 | 0.25 | 64 |
C. jejuni NCTC 11168ΔcmeB | 0.016 | 0.062 | 16 |
C. jejuni NCTC 11168ΔcmeF | 0.125 | 0.25 | 64 |
C. jejuni NCTC 11168ΔcmeR | 0.25 | 0.5 | 64 |
Functional Classification of Predicted C. jejuni Genes * | Differentially Expressed Genes (n) | Up-Regulated Genes (n) | Down-Regulated Genes (n) |
---|---|---|---|
1 Small molecule metabolism | 16 | 11 | 5 |
1.B Energy metabolism | 6 | 4 | |
1.G Biosynthesis of cofactors, prosthetic groups and carriers | 4 | 0 | |
1.C Central intermediary metabolism | 0 | 1 | |
1.D Amino acid biosynthesis | 1 | 0 | |
2 Broad regulatory functions | 2 | 2 | 0 |
2.1 Signal transduction | 2 | ||
3 Macromolecule metabolism | 20 | 10 | 9 |
3.A Synthesis and modification of macromolecules | 0 | 7 | |
3.B Degradation of macromolecules | 1 | 0 | |
3.C Cell envelope | 9 | 2 | |
4 Cell processes | 23 | 12 | 11 |
4.A Transport/ binding proteins | 4 | 2 | |
4.E Protein and peptide secretion | 1 | 0 | |
4.G Detoxification | 3 | 0 | |
4.I Pathogenicity | 4 | 7 | |
5 Other | 3 | 1 | 2 |
5.H Conserved hypothetical proteins | 1 | 2 | |
6. Miscellaneous | 9 | 8 | 1 |
Total | 73 |
C. jejuni NCTC 11168ΔcmeR | Diameter (mm) |
---|---|
Untreated | 21.2 ± 1.57 |
Pinocembrin (0.25 × MIC) | 19 ± 0.81 |
Pinocembrin (0. 5 × MIC) | 31 ± 1.91 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klančnik, A.; Šimunović, K.; Kovac, J.; Sahin, O.; Wu, Z.; Vučković, D.; Abram, M.; Zhang, Q.; Smole Možina, S. The Anti-Campylobacter Activity and Mechanisms of Pinocembrin Action. Microorganisms 2019, 7, 675. https://doi.org/10.3390/microorganisms7120675
Klančnik A, Šimunović K, Kovac J, Sahin O, Wu Z, Vučković D, Abram M, Zhang Q, Smole Možina S. The Anti-Campylobacter Activity and Mechanisms of Pinocembrin Action. Microorganisms. 2019; 7(12):675. https://doi.org/10.3390/microorganisms7120675
Chicago/Turabian StyleKlančnik, Anja, Katarina Šimunović, Jasna Kovac, Orhan Sahin, Zuowei Wu, Darinka Vučković, Maja Abram, Qijing Zhang, and Sonja Smole Možina. 2019. "The Anti-Campylobacter Activity and Mechanisms of Pinocembrin Action" Microorganisms 7, no. 12: 675. https://doi.org/10.3390/microorganisms7120675
APA StyleKlančnik, A., Šimunović, K., Kovac, J., Sahin, O., Wu, Z., Vučković, D., Abram, M., Zhang, Q., & Smole Možina, S. (2019). The Anti-Campylobacter Activity and Mechanisms of Pinocembrin Action. Microorganisms, 7(12), 675. https://doi.org/10.3390/microorganisms7120675