Plasma Membrane Potential of Candida albicans Measured by Di-4-ANEPPS Fluorescence Depends on Growth Phase and Regulatory Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Strains and Growth Conditions
2.2. DiS-C3(3) Assay
2.3. Di-4-ANEPPS Assay
2.4. Toxicity of di-4-ANEPPS
2.5. Influence of Detergents on Δψ
2.6. Propidium Iodide (PI) Staining
2.7. Sequences Alignmets
3. Results and Discussion
3.1. Di-4-ANEPPS and DiS-C3(3) Measure Cell Depolarization Depending on the Phases of Growth
3.2. Di-4-ANEPPS and DiS-C3(3) Measure Cell Depolarization and Hyperpolarization Induced by External Factors
3.3. Di-4-ANEPPS Is a Suitable Tool for Fast Measuring of the Influence of Detergents on Δψ
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gásková, D.; Brodská, B.; Herman, P.; Vecer, J.; Malínský, J.; Sigler, K.; Benada, O.; Plásek, J. Fluorescent probing of membrane potential in walled cells: diS-C3(3) assay in Saccharomyces cerevisiae. Yeast 2007, 14, 1189–1197. [Google Scholar] [CrossRef]
- Leonard, R.J.; Garcia, M.L.; Slaughter, R.S.; Reuben, J.P. Selective blockers of voltage-gated K+ channels depolarize human T lymphocytes: mechanism of the antiproliferative effect of charybdotoxin. Proc. Nat. Acad. Sci. USA 1992, 89, 10094–10098. [Google Scholar] [CrossRef]
- Grossmann, G.; Opekarová, M.; Malinsky, J.; Weig-Meckl, I.; Tanner, W. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J. 2007, 26, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kett, D.H.; Azoulay, E.; Echeverria, P.M.; Vincent, J.L. Candida bloodstream infections in intensive care units: Analysis of the extended prevalence of infection in intensive care unit study. Crit. Care Med. 2011, 39, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Vacata, V.; Kotyk, A.; Sigler, K. Membrane potentials in yeast cells measured by direct and indirect methods. Biochim. Biophys. Acta 1981, 643, 265–268. [Google Scholar] [CrossRef]
- Prasad, R.; Hofer, M. Tetraphenylphosphonium is an indicator of negative membrane potential in Candida albicans. Biochim. Biophys. Acta 1986, 861, 377–380. [Google Scholar] [CrossRef]
- Sanglard, D.; Ischer, F.; Parkinson, T.; Falconer, D.; Bille, J. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob. Agents Chemother. 2003, 47, 2404–2412. [Google Scholar] [CrossRef] [PubMed]
- Suchodolski, J.; Feder-Kubis, J.; Krasowska, A. Antifungal activity of ionic liquids based on (−)-menthol: A mechanism study. Microbiol. Res. 2017, 197, 56–64. [Google Scholar] [CrossRef]
- Thevelein, J.M.; Beullens, M.; Honshoven, F.; Hoebeeck, G.; Detremerie, K.; Den Hollander, J.A.; Jans, A.W.H. Regulation of the cAMP level in the yeast Saccharomyces cerevisiae: Intracellular pH and the effect of membrane depolarizing compounds. J. Gen. Microbiol. 1987, 133, 2191–2196. [Google Scholar] [CrossRef]
- Liao, R.S.; Rennie, R.P.; Talbot, J.A. Assessment of the effect of amphotericin B on the vitality of Candida albicans. Antimicrob. Agents Chemother. 1999, 43, 1034–1041. [Google Scholar] [CrossRef]
- Hwang, B.; Hwang, J.S.; Lee, J.; Lee, D.G. The antimicrobial peptide, psacotheasin induces reactive oxygen species and triggers apoptosis in Candida albicans. Biochem. Biophys. Res. Commun. 2011, 405, 267–271. [Google Scholar] [CrossRef]
- Epps, D.E.; Wolfe, M.L.; Groppi, V. Characterization of the steady-state and dynamic fluorescence properties of the potential-sensitive dye bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC4(3)) in model systems and cells. Chem. Phys. Lipids 1994, 69, 137–150. [Google Scholar] [CrossRef]
- Cabrini, G.; Verkman, A.S. Potential-sensitive response mechanism of diS-C3-(5) in biological membranes. J. Membr. Biol. 1986, 92, 171–182. [Google Scholar] [CrossRef]
- Novo, D.; Perlmutter, N.G.; Hunt, R.H.; Shapiro, H.M. Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique. Cytometry 1999, 35, 55–63. [Google Scholar] [CrossRef]
- Szczepaniak, J.; Łukaszewicz, M.; Krasowska, A. Detection of inhibitors of Candida albicans Cdr transporters using a diS-C3(3) fluorescence. Front. Microbiol. 2015, 6, 176. [Google Scholar] [CrossRef]
- Čadek, R.; Chládková, K.; Sigler, K.; Gášková, D. Impact of the growth phase on the activity of multidrug resistance pumps and membrane potential of S. cerevisiae: Effect of pump overproduction and carbon source. BBA Biomembr. 2004, 1665, 111–117. [Google Scholar] [CrossRef]
- Schaffer, P.; Ahammer, H.; Müller, W.; Koidl, B.; Windisch, H. Di-4-ANEPPS causes photodynamic damage to isolated cardiomyocytes. Pflug. Arch. Eur. J. Phys. 1994, 426, 548–551. [Google Scholar] [CrossRef]
- Fromherz, P.; Müller, C.O. Voltage-sensitive fluorescence of amphiphilic hemicyanine dyes in neuron membrane. Biochim. Biophys. Acta 1993, 1150, 111–122. [Google Scholar] [CrossRef]
- Gross, E.; Bedlack, R.S.; Loew, L.M. Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys. J. 1994, 67, 208–216. [Google Scholar] [CrossRef]
- Montana, V.; Farkas, D.L.; Loew, L.M. Dual-wavelength ratiometric fluorescence measurements of membrane potential. Biochemistry 1989, 28, 4536–4539. [Google Scholar] [CrossRef]
- McGahren, E.D.; Beach, J.M.; Duling, B.R. Capillaries demonstrate changes in membrane potential in response to pharmacological stimuli. Am. J. Physiol. 1998, 274, 60–65. [Google Scholar] [CrossRef]
- Beach, J.M.; McGahren, E.D.; Xia, J.; Duling, B.R. Ratiometric measurement of endothelial depolarization in arterioles with a potential-sensitive dye. Am. J. Physiol. 1996, 270, 2216–2227. [Google Scholar] [CrossRef] [PubMed]
- Kao, W.Y.; Davis, C.E.; Kim, Y.I.; Beach, J.M. Fluorescence emission spectral shift measurements of membrane potential in single cells. Biophys. J. 2001, 81, 1163–1170. [Google Scholar] [CrossRef]
- Chaloupka, R.; Plášek, J.; Slavík, J.; Siglerová, V.; Sigler, K. Measurement of membrane potential in Saccharomyces cerevisiœ by the electrochromic probe di-4-ANEPPS: Effect of intracellular probe distribution. Folia Microbiol. 1997, 42, 451–456. [Google Scholar] [CrossRef]
- Fonzi, W.A.; Irwin, M.Y. Isogenic strain construction and gene mapping in Candida albicans. Genetics 1993, 134, 717–728. [Google Scholar] [PubMed]
- Szczepaniak, J.; Łukaszewicz, M.; Krasowska, A. Estimation of Candida albicans ABC transporter behavior in real-time via fluorescence. Front. Microbiol. 2015, 6, 1382. [Google Scholar] [CrossRef]
- Saccharomyces Genome Database. Available online: https://www.yeastgenome.org/locus/S000003629 (accessed on 2 March 2019).
- Candida Genome Database. Available online: http://www.candidagenome.org/cgi-bin/locus.pl?locus=C4_00670W_A&organism=C_albicans_SC5314 (accessed on 2 March 2019).
- EMBOSS Needle. Available online: https://www.ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.html (accessed on 2 March 2019).
- Bachtel, A.D.; Gray, R.A.; Stohlman, J.M.; Bourgeois, E.B.; Pollard, A.E.; Rogers, J.M. A novel approach to dual excitation ratiometric optical mapping of cardiac action potentials with di-4-ANEPPS using pulsed LED excitation. IEEE Trans. BioMed. Eng. 2011, 58, 2120–2126. [Google Scholar] [CrossRef]
- Rodaki, A.; Bohovych, I.M.; Enjalbert, B.; Young, T.; Odds, F.O.; Gow, N.A.R.; Brown, A.J.P. Glucose promotes stress resistance in the fungal pathogen Candida albicans. Mol. Biol. Cell 2009, 20, 4845–4855. [Google Scholar] [CrossRef]
- Calahorra, M.; Sanchez, N.S.; Pena, A. Characterization of glycolytic metabolism and ion transport of Candida albicans. Yeast 2012, 29, 357–370. [Google Scholar] [CrossRef]
- Nso, E.; Goffeau, A.; Dufour, J.P. Fluctuations during growth of the plasma membrane H(+)-ATPase activity of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Folia Microbiol. 2002, 47, 401–406. [Google Scholar] [CrossRef]
- Tsutsui, H.; Jinno, Y.; Tomita, A.; Okamura, Y. Rapid evaluation of a protein-based voltage probe using a field-induced membrane potential change. BBA Biomembr. 2014, 1838, 1730–1737. [Google Scholar] [CrossRef]
- Miranda, M.; Bashi, E.; Vylkova, S.; Edgerton, M.; Slayman, C.; Rivetta, A. Conservation and dispersion of sequence and function in fungal TRK potassium transporters: Focus on Candida albicans. FEMS Yeast Res. 2009, 9, 278–292. [Google Scholar] [CrossRef]
- Hušeková, B.; Elicharová, H.; Sychrová, H. Pathogenic Candida species differ in the ability to grow at limiting potassium concentrations. Can. J. Microbiol. 2016, 62, 394–401. [Google Scholar] [CrossRef]
- Gaskova, D.; Cadek, R.; Chaloupka, R.; Plasek, J.; Sigler, K. Factors underlying membrane potential-dependent and –independent fluorescence responses of potentiometric dyes in stressed cells: diS-C3(3) in yeast. Biochim. Biophys. Acta 2001, 1511, 74–79. [Google Scholar] [CrossRef]
- Ariño, J.; Ramos, J.; Sychrová, H. Alkali metal cation transport and homeostasis in yeasts. Microbiol. Mol. Biol. Rev. 2010, 74, 95–120. [Google Scholar] [CrossRef]
- Bertl, A.; Bilher, H.; Reid, J.D.; Kettner, C.; Slayman, C.I. Physiological characterization of the yeast plasma membrane outward rectifying K+ channel, DIK1 (TOK1) in situ. J. Membr. Biol. 1998, 162, 67–80. [Google Scholar] [CrossRef]
- Maresova, J.; Urbankova, E.; Gaskova, D.; Sychrova, H. Measurements of plasma membrane potential changes in Saccharomyces cerevisiae cells reveal the importance of the Tok1 channel in membrane potential maintenance. FEMS Yeast Res. 2006, 6, 1039–1046. [Google Scholar] [CrossRef]
- Maresova, L.; Muend, S.; Zhang, Y.Q.; Sychrova, H.; Rao, R. Membrane hyperpolarization drives cation influx and fungicidal activity of amiodarone. J. Biol. Chem. 2009, 284, 2795–2802. [Google Scholar] [CrossRef]
- Hendrych, T.; Kodedova, M.; Sigler, K.; Gaskova, D. Characterization of the kinetics and mechanisms of inhibition of drugs interacting with the S. cerevisiae multidrug resistance pumps Pdr5p and Snq2p. Biochim. Biophys. Acta 2009, 1788, 717–723. [Google Scholar] [CrossRef]
- Lachowicz, T.M.; Krasowska, A.; Łuczyński, J.; Witek, S. Plasma membrane H+ATPase activity in wild type and mutants of yeast Saccharomyces cerevisiae treated by some lysosomotropic drugs. Folia Microbiol. 1998, 43, 203–205. [Google Scholar] [CrossRef]
- Krasowska, A.; Chmielewska, L.; Łuczyński, J.; Witek, S.; Sigler, K. Dual mechanism of the antifungal effect of new lysosomotropic agents on Saccharomyces cerevisiae RXII strain. Cell. Mol. Biol. Lett. 2003, 8, 111–120. [Google Scholar]
- Zahumenský, J.; Jančíková, I.; Drietomská, A.; Švenkrtová, A.; Hlaváček, O.; Hendrych, T.; Plášek, J.; Sigler, K.; Gášková, D. Yeast Tok1p channel is a major contributor to membrane potential maintenance under chemical stress. BBA Biomembr. 2017, 1859, 1974–1985. [Google Scholar] [CrossRef]
- Paidhungat, M.; Garrett, S. A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol. Cell. Biol. 1997, 17, 6339–6347. [Google Scholar] [CrossRef]
- Iida, H.; Nakamura, H.; Ono, T.; Okumura, M.; Anraku, Y. MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol. Cell. Biol. 1994, 14, 8259–8271. [Google Scholar] [CrossRef]
- Muller, E.M.; Mackin, N.A.; Erdman, S.E.; Cunningham, K.W. Fig1p facilitates Ca2+ influx and cell fusion during mating of Saccharomyces cerevisiae. J. Biol. Chem. 2003, 278, 38461–38469. [Google Scholar] [CrossRef]
- Brand, A.; Shanks, S.; Duncan, V.M.S.; Yang, M.; Mackenzie, K.; Gow, N.A.R. Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr. Biol. 2007, 17, 347–352. [Google Scholar] [CrossRef]
- Muller, E.M.; Locke, E.G.; Cunningham, K.W. Differential regulation of two Ca2+ influx systems by pheromone signaling in Saccharomyces cerevisiae. Genetics 2001, 159, 1527–1538. [Google Scholar]
- Pena, A.; Calahorra, M.; Michel, B.; Ramirez, J.; Sanchez, N.S. Effects of amiodarone on K+, internal pH and Ca2+ homeostasis in Saccharomyces cerevisiae. FEMS Yeast Res. 2009, 9, 832–848. [Google Scholar]
- Calahorra, M.; Sanchez, N.S.; Peña, A. Effects of acridine derivatives on Ca2+ uptake by Candida albicans. Bioenergetics 2017, 6, 152. [Google Scholar] [CrossRef]
- Kodedova, M.; Sigler, K.; Lemire, B.D.; Gaskova, D. Fluorescence method for determining the mechanism and speed of action of surface-active drugs on yeast cells. Biotechniques 2011, 50, 58–63. [Google Scholar] [CrossRef]
- Maite, M.; Champeil, P.; Moller, J.V. Interaction of membrane proteins and lipids with solubilizing detergents. Biochim. Biophys. Acta 2000, 1508, 86–111. [Google Scholar]
- Block, S.S. Disinfection, Sterilization and Preservation, 4th ed.; Lea & Febiger: Philadelphia, PA, USA, 1991. [Google Scholar]
- Laouar, L.; Muligan, B.J.; Lowe, K.C. Yeast permeabilization with surfactants. Biotechnol. Lett. 1992, 14, 719–720. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchodolski, J.; Krasowska, A. Plasma Membrane Potential of Candida albicans Measured by Di-4-ANEPPS Fluorescence Depends on Growth Phase and Regulatory Factors. Microorganisms 2019, 7, 110. https://doi.org/10.3390/microorganisms7040110
Suchodolski J, Krasowska A. Plasma Membrane Potential of Candida albicans Measured by Di-4-ANEPPS Fluorescence Depends on Growth Phase and Regulatory Factors. Microorganisms. 2019; 7(4):110. https://doi.org/10.3390/microorganisms7040110
Chicago/Turabian StyleSuchodolski, Jakub, and Anna Krasowska. 2019. "Plasma Membrane Potential of Candida albicans Measured by Di-4-ANEPPS Fluorescence Depends on Growth Phase and Regulatory Factors" Microorganisms 7, no. 4: 110. https://doi.org/10.3390/microorganisms7040110
APA StyleSuchodolski, J., & Krasowska, A. (2019). Plasma Membrane Potential of Candida albicans Measured by Di-4-ANEPPS Fluorescence Depends on Growth Phase and Regulatory Factors. Microorganisms, 7(4), 110. https://doi.org/10.3390/microorganisms7040110