Discovery of Antibacterial Dietary Spices That Target Antibiotic-Resistant Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Spice Materials
2.3. Microorganisms and Culture
2.4. Verification of the Drug-Resistant Bacteria
2.5. Preparation of Spice Ethanolic Extracts
2.6. Determination of Antibacterial Activity
2.7. Minimum Inhibitory Concentration (MIC) and Minimum Bactericide Concentration (MBC) Assays
2.8. Cytotoxicity of Spice Extracts
2.9. Determination of Antioxidant Capacity
2.9.1. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.9.2. Trolox Equivalent Antioxidant Capacity (TEAC) Assay
2.10. Determination of Total Phenolic Content (TPC)
2.11. Statistical Analysis
3. Results
3.1. Verification of Drug-Resistant Bacteria
3.2. Antibacterial Activity against Antibiotic-Resistant Bacteria
3.3. Cytotoxicity of Spice Extracts
3.4. Antioxidant Activity of Spice Extracts
3.5. TPC of Spice Extracts
3.6. Correlation Analysis
3.7. Principal Component Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Q.; Meng, X.; Li, Y.; Zhao, C.N.; Tang, G.Y.; Li, H.B. Antibacterial and antifungal activities of spices. Int. J. Mol. Sci 2017, 18, 1283. [Google Scholar] [CrossRef] [PubMed]
- Dhara, L.; Tripathi, A. Antimicrobial activity of eugenol and cinnamaldehyde against extended spectrum beta lactamase producing enterobacteriaceae by in vitro and molecular docking analysis. Eur. J. Integr. Med. 2013, 5, 527–536. [Google Scholar] [CrossRef]
- Boskovic, M.; Zdravkovic, N.; Ivanovic, J.; Janjic, J.; Djordjevic, J.; Starcevic, M.; Baltic, M.Z. Antimicrobial activity of Thyme (Tymus vulgaris) and Oregano (Origanum vulgare) essential oils against some food-borne microorganisms. Procedia Food Sci. 2015, 5, 18–21. [Google Scholar] [CrossRef]
- Farahani, R.K.; Ehsani, P.; Ebrahimi-Rad, M.; Khaledi, A. Molecular detection, virulence genes, biofilm formation, and antibiotic resistance of Salmonella enterica serotype enteritidis isolated from poultry and clinical samples. Jundishapur J. Microbiol. 2018, 11, e69504. [Google Scholar]
- Liu, J.X.; Huang, D.F.; Hao, D.L.; Hu, Q.P. Chemical composition, antibacterial activity of the essential oil from roots of radix aucklandiae against selected food-borne pathogens. Adv. Biosci. Biotechnol. 2014, 5, 1043–1047. [Google Scholar] [CrossRef]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simoes, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef]
- Fowler, Z.L.; Shah, K.; Panepinto, J.C.; Jacobs, A.; Koffas, M.A. Development of non-natural flavanones as antimicrobial agents. PLoS ONE 2011, 6, e25681. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Di Lorenzo, A.; Izadi, M.; Sobarzo-Sanchez, E.; Daglia, M.; Nabavi, S.M. Antibacterial effects of cinnamon: from farm to food, cosmetic and pharmaceutical industries. Nutrients 2015, 7, 7729–7748. [Google Scholar] [CrossRef] [PubMed]
- Gottardi, D.; Bukvicki, D.; Prasad, S.; Tyagi, A.K. Beneficial effects of spices in food preservation and safety. Front. Microbiol. 2016, 7, 1394. [Google Scholar] [CrossRef] [PubMed]
- De Candia, S.; Quintieri, L.; Caputo, L.; Baruzzi, F. Antimicrobial activity of processed spices used in traditional Southern Italian sausage processing. J. Food Process. Preserv. 2017, 41, e13022. [Google Scholar] [CrossRef]
- Irshad, S.; Ashfaq, A.; Muazzam, A.; Yasmeen, A. Antimicrobial and anti-prostate cancer activity of turmeric (Curcuma longa L.) and black pepper (Piper nigrum L.) used in typical Pakistani cuisine. Pak. J. Zool. 2017, 49, 1665–1669. [Google Scholar] [CrossRef]
- Nassan, M.A.; Mohamed, E.H.; Abdelhafez, S.; Ismail, T.A. Effect of clove and cinnamon extracts on experimental model of acute hematogenous pyelonephritis in albino rats: Immunopathological and antimicrobial study. Int. J. Immunopathol. Pharmacol. 2015, 28, 60–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naveed, R.; Hussain, I.; Mahmood, M.S.; Akhtar, M. In vitro and in vivo evaluation of antimicrobial activities of essential oils extracted from some indigenous spices. Pak. Vet. J. 2013, 33, 413–417. [Google Scholar]
- Revati, S.; Bipin, C.; Chitra, P.; Minakshi, B. In vitro antibacterial activity of seven Indian spices against high level gentamicin resistant strains of enterococci. Arch. Med. Sci. 2015, 4, 863–868. [Google Scholar] [CrossRef]
- Voukeng, I.K.; Kuete, V.; Dzoyem, J.; Fankam, A.G.; Noumedem, J.A.K.; Kuiate, J.R.; Pages, J.M. Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes. BMC Res. Notes 2012, 5, 299. [Google Scholar] [CrossRef]
- Siddhartha, E.; Sarojamma, V.; Ramakrishna, V. Bioactive compound rich Indian spices suppresses the growth of β-lactamase produced multidrug ressitant bacteria. J. Krishna Inst. Med. Sci. Univ. 2017, 6, 10–24. [Google Scholar]
- Nikolic, M.; Glamoclija, J.; Ferreira, I.C.F.R.; Calhelha, R.C.; Fernandes, A.; Markovic, T.; Markovic, D.; Giweli, A.; Sokovic, M. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind. Crop. Prod. 2014, 52, 183–190. [Google Scholar] [CrossRef]
- Masuda, H.; Hironaka, S.; Matsui, Y.; Hirooka, S.; Hirai, M.; Hirata, Y.; Akao, M.; Kumagai, H. Comparative study of the antioxidative activity of culinary herbs and spices, and hepatoprotective effects of three selected Lamiaceae plants on carbon tetrachloride-induced oxidative stress in rats. Food Sci. Technol. Res. 2015, 21, 407–418. [Google Scholar] [CrossRef]
- Coccimiglio, J.; Alipour, M.; Jiang, Z.H.; Gottardo, C.; Suntres, Z. Antioxidant, antibacterial, and cytotoxic activities of the ethanolic Origanum vulgare extract and its major constituents. Oxid. Med. Cell Longev. 2016, 1404505. [Google Scholar]
- Mozaffari Nejad, A.S.; Shabani, S.; Bayat, M.; Hosseini, S.E. Antibacterial effect of garlic aqueous extract on Staphylococcus aureus in hamburger. Jundishapur J. Microbiol. 2014, 7, e13134. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. Potential application of spices and herb extracts as natural preservatives in cheese. J. Med. Food 2011, 14, 284–290. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. Antibacterial and antioxidant effects of five spice and herb extracts as natural preservatives of raw pork. J. Sci. Food Agric. 2009, 89, 1870–1885. [Google Scholar] [CrossRef]
- Chan, C.L.; Gan, R.Y.; Shah, N.P.; Corke, H. Polyphenols from selected dietary spices and medicinal herbs differentially affect common food-borne pathogenic bacteria and lactic acid bacteria. Food Control 2018, 92, 437–443. [Google Scholar] [CrossRef]
- Gan, R.Y.; Deng, Z.Q.; Yan, A.X.; Shah, N.P.; Lui, W.Y.; Chan, C.L.; Corke, H. Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects. LWT-Food Sci. Technol. 2016, 73, 168–177. [Google Scholar] [CrossRef]
- Elshikh, M.; Ahmed, S.; Funston, F.; Dunlop, P.; McGaw, M.; Marchant, R.; Banat, I.M. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biorechnol. Lett. 2016, 38, 1015–1019. [Google Scholar] [CrossRef] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Elisha, I.L.; Botha, F.S.; McGaw, L.J.; Eloff, J.N. The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complement. Altern. Med. 2017, 17, 133. [Google Scholar] [CrossRef]
- Gan, R.Y.; Kuang, L.; Xu, X.R.; Zhang, Y.A.; Xia, E.Q.; Song, F.L.; Li, H.B. Screening of natural antioxidants from traditional Chinese medicinal plants associated with treatment of rheumatic disease. Molecules 2010, 15, 5988–5997. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol. 2007, 117, 112–119. [Google Scholar] [CrossRef]
- Lamola, M.S. Antimicrobial Activity and Cytotoxicity of Extracts and an Isolated Compound from the Edible Plant Grewia Flava against Four Enteric Pathogens. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2015. [Google Scholar]
- Benmeziane, F.; Djermoune-Arkoub, L.; Hassan, K.A.; Zeghad, H. Evaluation of antibacterial activity of aqueous extract and essential oil from garlic against some pathogenic bacteria. Int. Food Res. J. 2018, 25, 561–565. [Google Scholar]
- Nagy, M.; Socaci, S.A.; Tofan, M.; Pop, C.; Mureşan, C.; Pop Cuceu, A.V.; Salan, L.; Rotar, A.M. Determination of total phenolics, antioxidant capacity and antimicrobial activity of selected aromatic spices. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Sci. Technol. 2015, 72, 82–85. [Google Scholar]
- Awan, U.A.; Ali, S.; Shahnawaz, A.M.; Shafique, I.; Zafar, A.; Khan, M.A.R.; Ghous, T.; Saleem, A.; Andleeb, S. Biological activities of Allium sativum and Zingiber officinale extracts on clinically important bacterial pathogens, their phytochemical and FT-IR spectroscopic analysis. Pak. J. Pharm. Sci. 2017, 30, 729–745. [Google Scholar]
- Dghaim, R.; Al Sabbah, H.; Al Zarooni, A.H.; Khan, M.A. Antibacterial effects and microbial quality of commonly consumed herbs in Dubai, United Arab Emirates. Int. Food Res. J. 2017, 24, 2677–2684. [Google Scholar]
- Puangpronpitag, D.; Niamsa, N.; Sittiwet, C. Anti-microbial properties of clove (Eugenia caryophyllum Bullock and Harrison) aqueous extract against food-borne pathogen bacteria. Int. J. Pharmacol. 2009, 5, 281–284. [Google Scholar]
- Sagdic, O.; Ozkan, G.; Aksoy, A.; Yetim, H. Bioactivities of essential oil and extract of Thymus argaeus, Turkish endemic wild thyme. J. Sci. Food Agric. 2009, 89, 791–795. [Google Scholar] [CrossRef]
- Gull, I.; Saeed, M.; Shaukat, H.; Aslam, S.M.; Samra, Z.Q.; Athar, A.M. Inhibitory effect of Allium sativum and Zingiber officinale extracts on clinically important drug resistant pathogenic bacteria. Ann. Clin. Microbiol. Antimicrob. 2011, 11, 8. [Google Scholar] [CrossRef]
- Mandal, S.; DebMandal, M.; Saha, K.; Pal, N.K. In vitro antibacterial activity of three Indian spices against methicillin-resistant Staphylococcus aureus. Oman Med. J. 2011, 26, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.H.; Karim, M.R. Effects of three drying treatments on the polyphenol content, antioxidant and antimicrobial properties of Syzygium aromaticum Extract. Chiang Mai J. Sci. 2018, 45, 937–948. [Google Scholar]
- Krishnan, K.R.; Babuskin, S.; Babu, P.A.S.; Sasikala, M.; Sabina, K.; Archana, G.; Sivarajan, M.; Sukumar, M. Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat. Int. J. Food Microbiol. 2014, 171, 32–40. [Google Scholar] [CrossRef]
- Geremew, T.; Kebede, A.; Andualem, B. The role of spices and lactic acid bacteria as antimicrobial agent to extend the shelf life of metata ayib (traditional Ethiopian spiced fermented cottage cheese). J. Food Sci. Technol. 2015, 52, 5661–5670. [Google Scholar] [CrossRef] [Green Version]
- Ghasemzadeh, A.; Jaafar, H.Z.; Rahmat, A. Changes in antioxidant and antibacterial activities as well as phytochemical constituents associated with ginger storage and polyphenol oxidase activity. BMC Complement. Altern. Med. 2016, 16, 382. [Google Scholar] [CrossRef] [PubMed]
- Nugboon, K.; Intarapichet, K. Antioxidant and antibacterial activities of Thai culinary herb and spice extracts, and application in pork meatballs. Int. Food Res. J. 2015, 22, 1788–1800. [Google Scholar]
- Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Coriander (Coriandrum sativum): A promising functional food toward the well-being. Food Res. Int. 2018, 105, 305–323. [Google Scholar] [CrossRef] [PubMed]
- Suleiman, W.B.; El Bous, M.M.; El Said, M.; El Baz, H. In vitro evaluation of Syzygium aromaticum L. ethanol extract as biocontrol agent against postharvest tomato and potato diseases. Egypt. J. Bot. 2019, 59, 81–94. [Google Scholar]
- Upadhyaya, S.; Yadav, D.; Chandra, R.; Arora, N. Evaluation of antibacterial and phytochemical properties of different spice extracts. Afr. J. Microbiol. Res. 2018, 12, 27–37. [Google Scholar] [Green Version]
- El Maati, M.F.A.; Mahgoub, S.A.; Labib, S.M.; Al Gaby, A.M.A.; Ramadan, M.F. Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities. Eur. J. Integr. Med. 2016, 8, 494–504. [Google Scholar] [CrossRef]
- Yang, J.Y.; Zhu, C.C.; Gu, L.H.; Hou, H.S. Studies on characteristic fingerprint of Fructus Caryophylli. Tradit. Chin. Drug Res. Clin. Pharmacol. 2015, 26, 226–230. [Google Scholar]
- Cueva, C.; Moreno-Arribas, M.V.; Martin-Alvarez, P.J.; Bills, G.; Vicente, M.F.; Basilio, A.; Rivas, C.L.; Requena, T.; Rodriguez, J.M.; Bartolome, B. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res. Microbiol. 2010, 161, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Fankam, A.G.; Kuete, V.; Voukeng, I.K.; Kuiate, J.R.; Pages, J.M. Antibacterial activities of selected Cameroonian spices and their synergistic effects with antibiotics against multidrug-resistant phenotypes. BMC Complement. Altern. Med. 2011, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Mekinic, I.G.; Skroza, D.; Ljubenkov, I.; Simat, V.; Mozina, S.S.; Katalinic, V. In vitro antioxidant and antibacterial activity of Lamiaceae phenolic extracts: A correlation study. Food Technol. Biotechnol. 2014, 52, 119–127. [Google Scholar]
- Pezzani, R.; Vitalini, S.; Iriti, M. Bioactivities of Origanum vulgare L.: An update. Phytochem. Rev. 2017, 16, 1253–1268. [Google Scholar] [CrossRef]
- D’Souza, S.P.; Chavannavar, S.V.; Kanchanashri, B.; Niveditha, S.B. Pharmaceutical perspectives of spices and condiments as alternative antimicrobial remedy. J. Evid. Based Complement. Altern. Med. 2017, 22, 1002–1010. [Google Scholar] [CrossRef]
- Soleimani, V.; Sahebkar, A.; Hosseinzadeh, H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother. Res. 2018, 32, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Maistro, E.L.; Angeli, J.P.F.; Andrade, S.F.; Mantovani, M.S. In vitro genotoxicity assessment of caffeic, cinnamic and ferulic acids. Genet. Mol. Res. 2011, 10, 1130–1140. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C. Decoction, infusion and hydroalcoholic extract of Origanum vulgare L.: Different performances regrding bioactivity and phenolic compounds. Food Chem. 2014, 158, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef]
- Weerakkody, N.S.; Caffin, N.; Lambert, L.K.; Turner, M.S.; Dykes, G.A. Synergistic antimicrobial activity of galangal (Alpinia galanga), rosemary (Rosmarinus officinalis) and lemon iron bark (Eucalyptus staigerana) extracts. J. Sci. Food Agric. 2010, 91, 461–468. [Google Scholar] [CrossRef]
- Rao, K.; Ch, B.; Narasu, L.M.; Giri, A. Antibacterial activity of Alpinia galanga (L) Willd crude extracts. Appl. Biochem. Biotechnol. 2010, 162, 871–884. [Google Scholar] [CrossRef] [PubMed]
- Rini, C.S.; Rohmah, J.; Widyaningrum, L.Y. The antibacterial activity test galanga (Alpinia galangal) on the growth of becteria Bacillus subtilis and Escherichia coli. IOP Conf. Ser. Mater. Sci. Eng. 2018, 420, 012141. [Google Scholar] [CrossRef]
- Zarai, Z.; Boujelbene, E.; Ben Salem, N.; Gargouri, Y.; Sayari, A. Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from Piper nigrum. LWT-Food Sci. Technol. 2013, 50, 634–641. [Google Scholar] [CrossRef]
Scientific Name | Common Name | Parts Tested | Diameters of Inhibitory Zone (DIZ, mm) | |||
---|---|---|---|---|---|---|
S. aureus SJTUF 20978 (Resistant) | S. aureus ATCC 25923 (Normal) | S. enteritidis SJTUF 10987 (Resistant) | S. enteritidis ATCC 13076 (Normal) | |||
Alpinia galangal (L.) Willd. | Galangal | Rhizome | 25.6 ± 0.49 | 31.7 ± 0.21 | NIZ | NIZ |
Alpinia galanga Willd. | Fructus galangae | Fruit | 20.2 ± 0.52 | 28.3 ± 0.29 | NIZ | NIZ |
Alpinia hainanensis K. Schum. | Semen alpiniae katsumadai | Fruit | 14.8 ± 0.74 | 17.5 ± 0.09 | NIZ | NIZ |
Alpinia officinarum Hance | Small galangal | Rhizome | 11.4 ± 0.24 | 11.9 ± 0.14 | NIZ | NIZ |
Alpinia tonkinensis Gagnep | Green gardamon | Fruit | NIZ | NIZ | NIZ | NIZ |
Amomum aurantiacum H. T. Tsai et S. W. Zhao | Thorn amomum villosum | Fruit | 13.4 ± 0.09 | 15.3 ± 0.24 | 8.6 ± 0.21 | 9.1 ± 0.24 |
Amomum testaceum Ridl | Fructus amomi rotundus | Fruit | 12.0 ± 0.29 | 13.5 ± 0.29 | NIZ | NIZ |
Amomum tsao-ko Crevost et Lemarié | Fructus tsaoko | Fruit | 14.1 ± 0.09 | 14.8 ± 0.24 | NIZ | NIZ |
Amomum villosum Lour. | Fructus amomi | Fruit | 12.1 ± 0.24 | 14.9 ± 0.09 | NIZ | NIZ |
Anethum graveolens L. | Dill | Seed | NIZ | NIZ | NIZ | NIZ |
Angelica dahurica (Hoffm.) Benth. et Hook.f. ex Franch. et Sav. | Radix angelicae formosanae | Rhizome | NIZ | NIZ | NIZ | NIZ |
Areca catechu L. | Areca | Fruit | 10.1 ± 0.09 | 9.90 ± 0.09 | NIZ | NIZ |
Artemisia dracunculus L. | Tarragon | Leaf | NIZ | NIZ | NIZ | NIZ |
Aucklandia lappa Decne. | Costustoot | Rhizome | 10.1 ± 0.19 | 15.2 ± 0.29 | NIZ | NIZ |
Capsicum annuum L. | Dry chilli (grown in Henan) | Fruit | NIZ | NIZ | NIZ | NIZ |
Capsicum annuum L. | Dry chilli (grown in Sichuan) | Fruit | NIZ | NIZ | NIZ | NIZ |
Capsicum annuum L. | Dry chilli (grown in Yunnan) | Fruit | NIZ | NIZ | NIZ | NIZ |
Capsicum annuum var. grossum | Bell pepper | Fruit | NIZ | NIZ | NIZ | NIZ |
Carum carvi L. | Caraway | Fruit | 8.70 ± 0.09 | 10.6 ± 0.09 | NIZ | NIZ |
Cinnamomum cassia (L.) J.Presl | Cinnamon | Bark | 20.7 ± 0.47 | 27.6 ± 1.73 | 16.0 ± 0.52 | 15.5 ± 0.38 |
Citrus limon (L.) Osbeck | Dried lemon | Fruit | 11.3 ± 0.09 | 13.0 ± 0.09 | NIZ | NIZ |
Citrus reticulata Blanco | Citrus | Fruit | NIZ | NIZ | NIZ | NIZ |
Citrus reticulata Blanco | Old citrus | Fruit | NIZ | NIZ | NIZ | NIZ |
Coriandrum sativum L | Coriander | Fruit | NIZ | NIZ | NIZ | NIZ |
Crataegus pinnatifida Bunge | Hawthorn | Fruit | 11.4 ± 0.50 | 12.1 ± 0.29 | NIZ | NIZ |
Cuminum cyminum L. | Chinese cumin seed | Fruit | NIZ | NIZ | NIZ | NIZ |
Curcuma longa L. | Turmeric | Rhizome | NIZ | NIZ | NIZ | NIZ |
Cymbopogon citratus (DC.) Stapf. | Lemongrass | Leaf | NIZ | NIZ | NIZ | NIZ |
Eleutherococcus nodiflorus (Dunn) S.Y.Hu. | Cortex acanthopanacis | Bark | NIZ | NIZ | NIZ | NIZ |
Foeniculum vulgare Mill. | Fennel (traditional Chinese spice) | Fruit | NIZ | NIZ | NIZ | NIZ |
Foeniculum vulgare | Kelly anise seeds (Western food spice) | Fruit | NIZ | NIZ | NIZ | NIZ |
Gardenia jasminoides J. Ellis | Gardenia | Fruit | NIZ | NIZ | NIZ | NIZ |
Glycyrrhiza uralensis Fisch. | Liquorice | Leaf | 15.8 ± 0.14 | 15.6 ± 0.57 | NIZ | NIZ |
Illicium verum Hook. f. | Star anise | Fruit | 12.5 ± 0.09 | 12.8 ± 0.29 | NIZ | NIZ |
Kaempferia galanga L. | Rhizoma kaempferiae | Rhizome | 10.1 ± 0.49 | 10.3 ± 0.52 | NIZ | NIZ |
Laurus nobilis L. | Bay leaf | Leaf | 12.5 ± 0.33 | 13.0 ± 0.09 | NIZ | NIZ |
Lithospermum erythrorhizon Sieb. et Zucc. | Lithospermum | Leaf | 13.3 ± 0.21 | 13.3 ± 0.28 | NIZ | 9.6 ± 0.29 |
Lysimachia capillipes Hemsl | Nephrolepis | Stem | 12.4 ± 0.45 | 13.9 ± 0.62 | NIZ | NIZ |
Lysimachia foenum-graecum Hance | Avandula pedunculata | Whole plant | 12.3 ± 0.49 | 14.4 ± 0.33 | NIZ | 10.9 ± 0.24 |
Magnolia denudata Desr. | Magnolia flower | Flower | NIZ | NIZ | NIZ | NIZ |
Mentha canadensis L. | Pepper mint | Leaf | 12.5 ± 0.09 | 15.9 ± 0.33 | NIZ | NIZ |
Monascus purpureus Went | Red yeast rice | Fruit | NIZ | NIZ | NIZ | NIZ |
Murraya koenigii (L.) Spreng. | Curry leaves | Leaf | 9.80 ± 0.61 | 10.8 ± 0.09 | NIZ | NIZ |
Murraya paniculata (L.) Jack. | Murraya paniculata | Leaf | NIZ | NIZ | NIZ | NIZ |
Myristica fragrans Houtt. | Semen myristicae | Fruit | 10.5 ± 0.21 | 11.6 ± 0.29 | NIZ | NIZ |
Nardostachys jatamansi (D. Don) DC. | Nard | Stem | 14.1 ± 0.47 | 15.5 ± 0.21 | NIZ | NIZ |
Ocimum basilicum L. | Basil | Leaf | NIZ | NIZ | NIZ | NIZ |
Origanum majorana L. | Marjoram | Whole plant | 17.2 ± 0.71 | 15.2 ± 0.62 | NIZ | NIZ |
Origanum vulgare L. | Origanum | Leaf | 14.1 ± 0.39 | 11.8 ± 0.09 | NIZ | NIZ |
Petroselinum crispum (Mill.) Fuss | Parsley | Leaf | NIZ | NIZ | NIZ | NIZ |
Pimenta dioica (L.) Merr. | Allspice | Fruit | 13.2 ± 0.09 | 14.9 ± 0.19 | NIZ | NIZ |
Piper longum L. | Long pepper | Cluster | NIZ | NIZ | NIZ | NIZ |
Piper nigrum L. | Black pepper | Fruit | NIZ | NIZ | NIZ | NIZ |
Piper nigrum L. | White pepper | Fruit | NIZ | NIZ | NIZ | NIZ |
Piper nigrum L. | Red pepper | Fruit | 14.2 ± 0.14 | 16.8 ± 0.09 | NIZ | NIZ |
Piper nigrum L. | Green pepper | Fruit | NIZ | NIZ | NIZ | NIZ |
Reseda odorata L. | Integrated vanilla | Leaf | 14.7 ± 0.51 | 14.0 ± 0.75 | NIZ | NIZ |
Rosmarinus officinalis L. | Rosemary | Leaf | 18.3 ± 0.21 | 20.8 ± 0.14 | NIZ | 10.3 ± 0.42 |
Salvia japonica Thunb. | Sage | Leaf | 15.4 ± 0.49 | 19.3 ± 0.21 | NIZ | NIZ |
Sinapis alba L. | Yellow mustard seeds | Seed | 18.6 ± 1.03 | 21.9 ± 0.16 | NIZ | NIZ |
Sinapis alba L. | Black mustard seeds | Seed | NIZ | NIZ | NIZ | NIZ |
Sophora alopecuroides L. | Fenugreek | Fruit | NIZ | NIZ | NIZ | NIZ |
Syzygium aromaticum (L.) Merr. et L. M. Perry | Male clove | Flower | 15.6 ± 0.33 | 16.4 ± 0.39 | 11.0 ± 0.21 | 9.0 ± 0.29 |
Syzygium aromaticum | Female clove | Fruit | 15.1 ± 0.49 | 20.9 ± 0.14 | 8.5 ± 0.24 | 10.6 ± 0.09 |
Thymus vulgaris L. | Thyme | Leaf | 16.0 ± 0.33 | 14.9 ± 0.42 | NIZ | NIZ |
Zanthoxylum bungeanum Maxim | Red Chinese prickly ash | Fruit | 11.3 ± 0.09 | 12.9 ± 0.21 | NIZ | NIZ |
Zanthoxylum bungeanum Maxim | Green Chinese prickly ash | Fruit | 13.3 ± 0.24 | 13.3 ± 0.21 | NIZ | NIZ |
Name of Antibiotics | Class | Breakpoint Conc. (μg/mL) | S. enteritidis SJTUF 10987 | S. aureus SJTUF | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20745 | 20746 | 20755 | 20758 | 20772 | 20827 | 20841 | 20862 | 20973 | 20978 | 20991 | ||||
Ampicillin | β-lactams | 32 | + | |||||||||||
Cefazolin | 8 | |||||||||||||
Oxacillin | 4 | |||||||||||||
Penicillin | 0.25 | + | ||||||||||||
Gentamicin | Aminoglycosides | 16 | + | + | + | + | + | |||||||
Streptomycin | 64 | + | + | + | + | + | ||||||||
Ciprofloxacin | Fluoroquinolones | 4 | + | + | + | + | + | + | + | + | + | |||
Clindamycin | Lincosamides | 4 | + | + | + | + | + | + | + | + | + | |||
Erythromycin | Macrolides | 8 | + | + | + | + | + | + | + | + | + | + | ||
Sulfisoxazole | Sulfonamides | 512 | + | |||||||||||
Tetracycline | Tetracyclines | 16 | + |
Scientific Name | Common Name | MIC (mg/mL) | MBC (mg/mL) |
---|---|---|---|
Alpinia galangal (L.) Willd. | Galangal | 6.25 | 6.25 |
Alpinia galanga Willd. | Fructus galangae | 6.25 | 6.25 |
Cinnamomum cassia (L.) J. Presl | Cinnamon | 0.8 | 1.6 |
Glycyrrhiza uralensis Fisch. | Liquorice | 0.4 | 0.8 |
Origanum majorana L. | Marjoram | 1.6 | 1.6 |
Rosmarinus officinalis L. | Rosemary | 0.4 | 0.4 |
Salvia japonica Thunb. | Sage | 0.4 | 0.8 |
Sinapis alba L. | Yellow mustard seeds | 6.25 | 12.5 |
Syzygium aromaticum (L.) Merr. et L. M. Perry | Male clove (flower) | 0.8 | 1.6 |
Syzygium aromaticum (L.) Merr. et L. M. Perry | Female clove (fruit) | 0.4 | 0.4 |
Thymus vulgaris L. | Thyme | 1.6 | 1.6 |
Scientific Name | Common Name | TPC (mg GAE/g DW) | FRAP (mmol Fe (II)/g DW) | TEAC (mmol Trolox/g DW) |
---|---|---|---|---|
Alpinia galangal (L.) Willd. | Galangal | 119 ± 6.41 | 608 ± 55.6 | 394 ± 27.1 |
Alpinia galanga Willd. | Fructus galangae | 122 ± 2.49 | 687 ± 30.8 | 423 ± 58.0 |
Alpinia hainanensis K. Schum. | Semen alpiniae katsumadai | 473 ± 8.67 | 2876 ± 197 | 2662 ± 83.7 |
Alpinia officinarum Hance | Small galangal | 281 ± 15.3 | 967 ± 43.5 | 707 ± 47.5 |
Alpinia tonkinensis Gagnep | Green gardamon | 64.9 ± 4.72 | 617 ± 24.0 | 284 ± 19.5 |
Amomum aurantiacum H. T. Tsai et S. W. Zhao | Thorn amomum villosum | 350 ± 11.3 | 3433 ± 137 | 1836 ± 127 |
Amomum testaceum Ridl | Fructus amomi rotundus | 84.7 ± 2.67 | 1220 ± 99.6 | 288 ± 25.4 |
Amomum tsao-ko Crevost et Lemarié | Fructus tsaoko | 303 ± 0.78 | 2542 ± 184 | 1902 ± 123 |
Amomum villosum Lour. | Fructus amomi | 360 ± 6.80 | 3605 ± 201 | 2153 ± 370 |
Anethum graveolens L. | Dill | 115 ± 1.83 | 867 ± 51.2 | 234 ± 11.3 |
Angelica dahurica (Hoffm.) Benth. et Hook.f. ex Franch. et Sav. | Radix angelicae formosanae | 16.6 ± 0.48 | 208 ± 20.9 | 75.3 ± 8.74 |
Areca catechu L. | Areca seed | 95.9 ± 3.71 | 741 ± 35.8 | 390 ± 41.9 |
Artemisia dracunculus L. | Tarragon leaf | 148 ± 5.40 | 1118 ± 3.15 | 461 ± 33.7 |
Aucklandia lappa Decne. | Costustoot | 21.7 ± 1.90 | 288 ± 7.51 | 105 ± 3.65 |
Capsicum annuum L. | Dry chilli (grown in Henan) | 28.4 ± 1.55 | 160 ± 7.16 | 99.2 ± 16.8 |
Capsicum annuum L. | Dry chilli (grown in Sichuan) | 17.3 ± 0.14 | 142 ± 4.26 | 59.6 ± 5.20 |
Capsicum annuum L. | Dry chilli (grown in Yunnan) | 29.2 ± 1.59 | 270 ± 5.45 | 109 ± 4.98 |
Capsicum annuum var. grossum | Bell pepper | 16.1 ± 3.18 | 105 ± 12.7 | 77.2 ± 7.52 |
Carum carvi L. | Caraway | 42.3 ± 1.62 | 369 ± 33.3 | 165 ± 54.0 |
Cinnamomum cassia (L.) J.Presl | Cinnamon | 349 ± 12.0 | 3013 ± 99.0 | 1857 ± 47.9 |
Citrus limon (L.) Osbeck | Dried lemon | 7.35 ± 0.68 | 50.3 ± 2.32 | 17.4 ± 0.62 |
Citrus reticulata Blanco | Citrus | 39.7 ± 1.10 | 233 ± 11.4 | 241 ± 9.14 |
Citrus reticulata Blanco | Old citrus | 68.2 ± 2.40 | 306 ± 13.8 | 218 ± 12.3 |
Coriandrum sativum L | Coriander | 31.4 ± 0.42 | 306 ± 2.84 | 111 ± 9.41 |
Crataegus pinnatifida Bunge | Hawthorn | 98.9 ± 2.09 | 768 ± 46.4 | 414 ± 10.1 |
Cuminum cyminum L. | Chinese cumin seed | 58.8 ± 2.08 | 465 ± 18.6 | 184 ± 8.84 |
Curcuma longa L. | Turmeric | 251 ± 4.30 | 1444 ± 51.5 | 1489 ± 252 |
Cymbopogon citratus (DC.) Stapf. | Lemongrass | 153 ± 1.71 | 1586 ± 96.9 | 510 ± 34.5 |
Eleutherococcus nodiflorus (Dunn) S.Y.Hu. | Cortex acanthopanacis | 79.1 ± 3.64 | 704 ± 55.1 | 372 ± 5.41 |
Foeniculum vulgare Mill. | Fennel (traditional Chinese spice) | 58.1 ± 2.36 | 365 ± 16.4 | 222 ± 27.9 |
Foeniculum vulgare | Kelly anise seeds (Western spice) | 30.5 ± 2.99 | 356 ± 8.33 | 221 ± 36.9 |
Gardenia jasminoides J. Ellis | Gardenia | 45.4 ± 3.92 | 553 ± 17.4 | 152 ± 8.22 |
Glycyrrhiza uralensis Fisch. | Liquorice | 65.8 ± 3.08 | 363 ± 13.0 | 365 ± 23.7 |
Illicium verum Hook. f. | Star anise | 165 ± 5.00 | 1650 ± 35.5 | 855 ± 43.0 |
Kaempferia galanga L. | Rhizoma kaempferiae | 15.9 ± 0.14 | 65.3 ± 2.73 | 23.0 ± 0.67 |
Laurus nobilis L. | Bay leaf | 182 ± 1.46 | 1255 ± 81.9 | 1124 ± 100 |
Lithospermum erythrorhizon Sieb. et Zucc. | Lithospermum | 80.9 ± 5.89 | 627 ± 6.44 | 325 ± 12.9 |
Lysimachia capillipes Hemsl | Nephrolepis | 79.1 ± 0.91 | 709 ± 39.4 | 306 ± 32.2 |
Lysimachia foenum-graecum Hance | Avandula pedunculata | 98.5 ± 8.57 | 759 ± 45.7 | 366 ± 32.8 |
Magnolia denudata Desr. | Magnolia flower | 63.2 ± 3.71 | 612 ± 18.6 | 244 ± 10.1 |
Mentha canadensis L. | Pepper mint | 280 ± 2.97 | 3180 ± 167 | 1296 ± 29.5 |
Monascus purpureus Went | Red yeast rice | 65.8 ± 2.32 | 224 ± 5.94 | 158 ± 36.7 |
Murraya koenigii (L.) Spreng. | Curry leaves | 146 ± 5.43 | 463 ± 27.9 | 241 ± 8.47 |
Murraya paniculata (L.) Jack. | Murraya paniculata | 70.4 ± 1.09 | 497 ± 1.36 | 349 ± 86.9 |
Myristica fragrans Houtt. | Semen myristicae | 111 ± 3.66 | 934 ± 27.3 | 552 ± 21.7 |
Nardostachys jatamansi (D. Don) DC. | Nard | 103 ± 2.08 | 553 ± 29.4 | 219 ± 29.0 |
Ocimum basilicum L. | Basil | 147 ± 4.71 | 1410 ± 24.6 | 487 ± 12.3 |
Origanum majorana L. | Marjoram | 303 ± 3.92 | 3272 ± 130 | 1563 ± 125 |
Origanum vulgare L. | Origanum | 204 ± 0.69 | 2164 ± 135 | 714 ± 21.0 |
Petroselinum crispum (Mill.) Fuss | Parsley | 58.4 ± 1.89 | 521 ± 24.1 | 245 ± 34.8 |
Pimenta dioica (L.) Merr. | Allspice | 339 ± 1.36 | 4404 ± 23.9 | 2184 ± 43.9 |
Piper longum L. | Long pepper | 92.0 ± 1.20 | 1733 ± 68.9 | 789 ± 44.2 |
Piper nigrum L. | Black pepper | 64.3 ± 7.74 | 576 ± 13.0 | 239 ± 9.82 |
Piper nigrum L. | White pepper | 36.8 ± 0.96 | 354 ± 9.54 | 251 ± 50.7 |
Piper nigrum L. | Red pepper | 378 ± 3.52 | 4137 ± 147 | 2055 ± 76.4 |
Piper nigrum L. | Green pepper | 73.5 ± 3.91 | 699 ± 33.2 | 262 ± 9.39 |
Reseda odorata L. | Integrated vanilla | 269 ± 5.74 | 2671 ± 120 | 801 ± 42.9 |
Rosmarinus officinalis L. | Rosemary | 261 ± 9.29 | 2712 ± 160 | 821 ± 20.8 |
Salvia japonica Thunb. | Sage | 204 ± 3.17 | 2345 ± 186 | 700 ± 14.2 |
Sinapis alba L. | Yellow mustard seeds | 183 ± 2.77 | 599 ± 29.6 | 240 ± 4.22 |
Sinapis alba L. | Black mustard seeds | 53.2 ± 1.97 | 523 ± 15.0 | 229 ± 14.8 |
Sophora alopecuroides L. | Fenugreek | 39.8 ± 2.33 | 235 ± 23.8 | 104 ± 9.41 |
Syzygium aromaticum (L.) Merr. et L. M. Perry | Male clove (flower) | 424 ± 14.9 | 5453 ± 23.9 | 3131 ± 177 |
Syzygium aromaticum (L.) Merr. et L. M. Perry | Female clove (fruit) | 485 ± 18.5 | 6682 ± 68.6 | 3415 ± 53.1 |
Thymus vulgaris L. | Thyme | 241 ± 14.7 | 3244 ± 143 | 743 ± 20.0 |
Zanthoxylum bungeanum Maxim | Red Chinese prickly ash | 168 ± 6.58 | 1844 ± 29.7 | 1444 ± 245 |
Zanthoxylum bungeanum Maxim | Green Chinese prickly ash | 193 ± 12.8 | 1961 ± 35.4 | 1398 ± 82.6 |
Pearson Correlation Coefficient (r) | DIZ Value (S. aureus ATCC 25923) | DIZ Value (S. aureus SJTUF 20978) | TPC | FRAP | TEAC |
---|---|---|---|---|---|
DIZ value (S. aureus ATCC 25923) | 1 | 0.956 (p < 0.001) | 0.541 (p < 0.001) | 0.466 (p < 0.001) | 0.448 (p < 0.001) |
DIZ value (S. aureus SJTUF 20978) | 1 | 0.568 (p < 0.001) | 0.490 (p < 0.001) | 0.448 (p < 0.001) | |
TPC | 1 | 0.919 (p < 0.001) | 0.931 (p < 0.001) | ||
FRAP | 1 | 0.924 (p < 0.001) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Gan, R.-Y.; Farha, A.K.; Kim, G.; Yang, Q.-Q.; Shi, X.-M.; Shi, C.-L.; Luo, Q.-X.; Xu, X.-B.; Li, H.-B.; et al. Discovery of Antibacterial Dietary Spices That Target Antibiotic-Resistant Bacteria. Microorganisms 2019, 7, 157. https://doi.org/10.3390/microorganisms7060157
Zhang D, Gan R-Y, Farha AK, Kim G, Yang Q-Q, Shi X-M, Shi C-L, Luo Q-X, Xu X-B, Li H-B, et al. Discovery of Antibacterial Dietary Spices That Target Antibiotic-Resistant Bacteria. Microorganisms. 2019; 7(6):157. https://doi.org/10.3390/microorganisms7060157
Chicago/Turabian StyleZhang, Dan, Ren-You Gan, Arakkaveettil Kabeer Farha, Gowoon Kim, Qiong-Qiong Yang, Xian-Ming Shi, Chun-Lei Shi, Qi-Xia Luo, Xue-Bin Xu, Hua-Bin Li, and et al. 2019. "Discovery of Antibacterial Dietary Spices That Target Antibiotic-Resistant Bacteria" Microorganisms 7, no. 6: 157. https://doi.org/10.3390/microorganisms7060157
APA StyleZhang, D., Gan, R.-Y., Farha, A. K., Kim, G., Yang, Q.-Q., Shi, X.-M., Shi, C.-L., Luo, Q.-X., Xu, X.-B., Li, H.-B., & Corke, H. (2019). Discovery of Antibacterial Dietary Spices That Target Antibiotic-Resistant Bacteria. Microorganisms, 7(6), 157. https://doi.org/10.3390/microorganisms7060157