The Role of Minocycline in the Treatment of Nosocomial Infections Caused by Multidrug, Extensively Drug and Pandrug Resistant Acinetobacter baumannii: A Systematic Review of Clinical Evidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Exclusion Criteria
2.3. Definitions and Assumptions
2.4. Search Strategy
2.5. Outcomes & Prioritization
2.6. Risk of Bias in Individual Studies &Confidence in Cumulative Evidence
2.7. Data Synthesis &Statistical Analysis
3. Results
3.1. Search Results
3.2. Study Range and Characteristics
3.3. Effect of Intervention on Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Abbreviation ID of study, Authors, Year, Reference | Satisfied Criteria of the STROBE Checklist | Score |
---|---|---|
Study A, Bishburg E. et al., 2014 [32] | 1(a,b),2,3,4,5,6(a),7,8,10,11,13(a),14(a),15,18,19,20,21,22 | 18/22 |
Study B, Chan J.D. et al., 2010 [33] | 1(a,b),2,3,4,5,6(a),7,8,10,11,13(a),14(a),15,17,18,19,20,21,22 | 19/22 |
Study C, Goff D.A. et al., 2014 [34] | 1(a,b),2,3,4,5,6(a),7,8,10,11,13(a),14(a),15,17,18,19,20,21,22 | 19/22 |
Study D, Griffith M.E. et al., 2008 [35] | 1(a,b),2,3,4,5,6a,7,8,10,11,13a,14(a,b),15,17,18,19,20,21,22 | 19/22 |
Study E, Ning F.et al., 2014 [36] | 1(a,b),2,3,4,5,6(a),7,8,10,11,12(a,b),13(a),14(a,b),15,17,18,19,20,21,22 | 20/22 |
Study F, Pogue J.M. et al., 2014 [37] | 1(a,b),2,3,4,5,6(a),7,8,10,11,13(a,b),14(a,b),15,16(a),17,18,19,20,21,22 | 20/22 |
Study G, Shi Y. et al., 2012 [38] | 1(a,b),2,3,4,5,6,7,8,9,10,11,12(a,b),13(a),14(a,b),15,16(a),17,18,19,20,21,22 | 22/22 |
Study H, Wang L.W. et al., 2014 [39] | 1(a,b),2,3,4,5,6(a),7,8,10,11,13(a),14(a),15,18,19,20,21,22 | 18/22 |
Study I, Wood G.C. et al., 2003 [40] | 1(a,b),2,3,4,5,6,7,8,10,13(a,b),14(a,b),15,17,18,19.20,21,22 | 18/22 |
StudyJ, Vila A. et al., 2016 [41] | 1(a,b),2,3,4,5,6a,7,8,10,11,13a,14(a,b),15,17,18,19,20,21,22 | 19/22 |
References
- Redin, G.S. Antibacterial Activity in Mice of Minocycline, a New Tetracycline. Antimicrob. Agents Chemother. 1966, 6, 371–376. [Google Scholar] [PubMed]
- Garrido-Mesa, N.; Zarzuelo, A.; Gálvez, J. Minocycline: Far beyond an Antibiotic. Br. J. Pharmacol. 2013, 169, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, N.C.; Cunha, B.A. Tetracyclines. Med. Clin. North Am. 1995, 79, 789–801. [Google Scholar] [CrossRef]
- Agwuh, K.N.; MacGowan, A. Pharmacokinetics and Pharmacodynamics of the Tetracyclines Including Glycylcyclines. J. Antimicrob. Chemother. 2006, 58, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.; Leyden, J.J. Safety of Doxycycline and Minocycline: A Systematic Review. Clin. Ther. 2005, 27, 1329–1342. [Google Scholar] [CrossRef]
- Ritchie, D.J.; Garavaglia-Wilson, A. A Review of Intravenous Minocycline for Treatment of Multidrug-Resistant Acinetobacter Infections. Clin. Infect. Dis. 2014, 59, S374–S380. [Google Scholar] [CrossRef]
- Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. Biomed Res. Int. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Boucher, H.W.; Talbot, G.H.; Benjamin, D.K.; Bradley, J.; Guidos, R.J.; Jones, R.N.; Murray, B.E.; Bonomo, R.A.; Gilbert, D. Infectious Diseases Society of America. 10 x ’20 Progress--Development of New Drugs Active Against Gram-Negative Bacilli: An Update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2013, 56, 1685–1694. [Google Scholar] [CrossRef]
- Antunes, L.C.S.; Visca, P.; Towner, K.J. Acinetobacter Baumannii: Evolution of a Global Pathogen. Pathog. Dis. 2014, 71, 292–301. [Google Scholar] [CrossRef]
- Gerner-Smidt, P. Ribotyping of the Acinetobacter Calcoaceticus-Acinetobacter Baumannii Complex. J. Clin. Microbiol. 1992, 30, 2680–2685. [Google Scholar] [PubMed]
- Bassetti, M.; Righi, E.; Esposito, S.; Petrosillo, N.; Nicolini, L. Drug Treatment for Multidrug-Resistant Acinetobacter Baumannii Infections. Future Microbiol. 2008, 3, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Manchanda, V.; Sinha, S.; Singh, N. Multidrug Resistant Acinetobacter. J. Glob. Infect. Dis. 2010, 2, 291. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Kopterides, P.; Siempos, I.I. Attributable Mortality of Acinetobacter Baumannii Infection among Critically Ill Patients. Clin. Infect. Dis. 2006, 43, 389–390. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.-Y.; Lee, H.-C.; Ko, N.-Y.; Chang, C.-M.; Shih, H.-I.; Wu, C.-J.; Ko, W.-C. Clinical and Economic Impact of Multidrug Resistance in Nosocomial Acinetobacter Baumannii Bacteremia. Infect. Control Hosp. Epidemiol. 2007, 28, 713–719. [Google Scholar] [CrossRef]
- Abbo, A.; Carmeli, Y.; Navon-Venezia, S.; Siegman-Igra, Y.; Schwaber, M.J. Impact of Multi-Drug-Resistant Acinetobacter Baumannii on Clinical Outcomes. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 793–800. [Google Scholar] [CrossRef]
- Falagas, M.; Bliziotis, I.; Siempos, I. Attributable Mortality of Acinetobacter Baumannii Infections in Critically Ill Patients: A Systematic Review of Matched Cohort and Case-Control Studies. Crit. Care 2006, 10, R48. [Google Scholar] [CrossRef]
- Kwon, K.T.; Oh, W.S.; Song, J.-H.; Chang, H.-H.; Jung, S.-I.; Kim, S.-W.; Ryu, S.Y.; Heo, S.T.; Jung, D.S.; Rhee, J.-Y.; et al. Impact of Imipenem Resistance on Mortality in Patients with Acinetobacter Bacteraemia. J. Antimicrob. Chemother. 2007, 59, 525–530. [Google Scholar] [CrossRef]
- Falagas, M.E.; Rafailidis, P.I. Attributable Mortality of Acinetobacter Baumannii: No Longer a Controversial Issue. Crit. Care 2007, 11, 134. [Google Scholar] [CrossRef]
- Maragakis, L.L.; Perl, T.M. Antimicrobial Resistance: Acinetobacter Baumannii: Epidemiology, Antimicrobial Resistance, and Treatment Options. Clin. Infect. Dis. 2008, 46, 1254–1263. [Google Scholar] [CrossRef]
- Bonomo, R.A.; Szabo, D. Mechanisms of Multidrug Resistance in Acinetobacter Species and Pseudomonas Aeruginosa. Clin. Infect. Dis. 2006, 43, S49–S56. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Nordmann, P. Carbapenem Resistance in Acinetobacter Baumannii: Mechanisms and Epidemiology. Clin. Microbiol. Infect. 2006, 12, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, Y.; Wilharm, G.; Zander, E.; Wichelhaus, T.A.; Göttig, S.; Hunfeld, K.-P.; Seifert, H.; Witte, W.; Higgins, P.G. Molecular Characterization of BlaNDM-1 in an Acinetobacter Baumannii Strain Isolated in Germany in 2007. J. Antimicrob. Chemother. 2011, 66, 1998–2001. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Murray, G.; Peleg, A. Acinetobacter Baumannii: Evolution of Antimicrobial Resistance—Treatment Options. Semin. Respir. Crit. Care Med. 2015, 36, 085–098. [Google Scholar] [CrossRef]
- Cai, Y.; Chai, D.; Wang, R.; Liang, B.; Bai, N. Colistin Resistance of Acinetobacter Baumannii: Clinical Reports, Mechanisms and Antimicrobial Strategies. J. Antimicrob. Chemother. 2012, 67, 1607–1615. [Google Scholar] [CrossRef]
- Quale, J.; Shah, N.; Kelly, P.; Babu, E.; Backer, M.; Rosas-Garcia, G.; Salamera, J.; George, A.; Bratu, S.; Landman, D. Activity of Polymyxin B and the Novel Polymyxin Analogue CB-182,804 Against Contemporary Gram-Negative Pathogens in New York City. Microb. Drug Resist. 2012, 18, 132–136. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef]
- PRISMA. Available online: http://www.prisma-statement.org/PRISMAStatement/ (accessed on 1 February 2019).
- Identifying Healthcare-Associated Infections (HAI) for NHSN Surveillance. Available online: https://www.cdc.gov/nhsn/PDFs/pscManual/2PSC_IdentifyingHAIs_NHSNcurrent.pdf (accessed on 2 February 2019).
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. PLoS Med. 2007, 4, e297. [Google Scholar] [CrossRef]
- Bishburg, E.; Shah, M.; Chan, T. Use of Intravenous Minocycline for the Treatment of Methicillin-Resistant Staphylococcus Aureus (MRSA) and Resistant Gram-Negative Organisms. Infect. Dis. Clin. Pract. 2014, 22, 26–31. [Google Scholar] [CrossRef]
- Chan, J.D.; Graves, J.A.; Dellit, T.H. Antimicrobial Treatment and Clinical Outcomes of Carbapenem-Resistant Acinetobacter Baumannii Ventilator-Associated Pneumonia. J. Intensive Care Med. 2010, 25, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Goff, D.A.; Bauer, K.A.; Mangino, J.E. Bad Bugs Need Old Drugs: A Stewardship Program’s Evaluation of Minocycline for Multidrug-Resistant Acinetobacter Baumannii Infections. Clin. Infect. Dis. 2014, 59, S381–S387. [Google Scholar] [CrossRef] [PubMed]
- Griffith, M.E.; Yun, H.C.; Horvath, L.L.; Murray, C.K. Minocycline Therapy for Traumatic Wound Infections Caused by the Multidrug-Resistant Acinetobacter Baumannii-Acinetobacter Calcoaceticus Complex. Infect. Dis. Clin. Pract. 2008, 16, 16–19. [Google Scholar] [CrossRef]
- Ning, F.; Shen, Y.; Chen, X.; Zhao, X.; Wang, C.; Rong, Y.; Du, W.; Wen, C.; Zhang, G. A Combination Regimen of Meropenem, Cefoperazone-Sulbactam and Minocycline for Extensive Burns with Pan-Drug Resistant Acinetobacter Baumannii Infection. Chin. Med. J. (Engl.) 2014, 127, 1177–1179. [Google Scholar] [PubMed]
- Pogue, J.M.; Neelakanta, A.; Mynatt, R.P.; Sharma, S.; Lephart, P.; Kaye, K.S. Carbapenem-Resistance in Gram-Negative Bacilli and Intravenous Minocycline: An Antimicrobial Stewardship Approach at the Detroit Medical Center. Clin. Infect. Dis. 2014, 59, S388–S393. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Xu, Y.; Liu, Y.; Du, W.; Rui, X.; Wang, Y. [Cefoperazone-Sulbactam plus Minocycline in the Treatment of Extensively Drug Resistant Acinetobacter Infections]. Zhonghua Yi Xue Za Zhi 2012, 92, 2847–2850. [Google Scholar] [PubMed]
- Wang, L.; Zou, L.; Li, H.; Li, T. [Preliminary Analysis on the Treatment of Ventilator-Associated Pneumonia Caused by Pandrug-Resistant Acinetobacter Baumannii]. Zhongguo Yi XueKeXue Yuan Xue Bao. 2014, 36, 185–188. [Google Scholar] [CrossRef]
- Wood, G.C.; Hanes, S.D.; Boucher, B.A.; Croce, M.A.; Fabian, T.C. Tetracyclines for Treating Multidrug-Resistant Acinetobacter Baumannii Ventilator-Associated Pneumonia. Intensive Care Med. 2003, 29, 2072–2076. [Google Scholar] [CrossRef] [PubMed]
- Vila, A.; Pagella, H.; Amadio, C.; Leiva, A. Acinetobacter Prosthetic Joint Infection Treated with Debridement and High-Dose Tigecycline. Infect. Chemother. 2016, 48, 324. [Google Scholar] [CrossRef] [PubMed]
- Vay, C.; Nastro, M.; Famiglietti, A.; Rodríguez, C.H. In Vitro Activity of Minocycline Alone or in Combination in Multidrug-Resistant Acinetobacter Baumannii Isolates. J. Med. Microbiol. 2015, 64, 1196–1200. [Google Scholar] [CrossRef]
- Yang, Y.-S.; Lee, Y.; Tseng, K.-C.; Huang, W.-C.; Chuang, M.-F.; Kuo, S.-C.; Lauderdale, T.-L.Y.; Chen, T.-L. In Vivo and In Vitro Efficacy of Minocycline-Based Combination Therapy for Minocycline-Resistant Acinetobacter Baumannii. Antimicrob. Agents Chemother. 2016, 60, 4047–4054. [Google Scholar] [CrossRef] [PubMed]
- Pei, G.; Mao, Y.; Sun, Y. In Vitro Activity of Minocycline Alone and in Combination with Cefoperazone-Sulbactam Against Carbapenem-Resistant Acinetobacter Baumannii. Microb. Drug Resist. 2012, 18, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Liu, X.-F.; Huang, J.; Zhu, D.-M.; Li, J.; Zhang, J. Activities of Colistin- and Minocycline-Based Combinations against Extensive Drug Resistant Acinetobacter Baumannii Isolates from Intensive Care Unit Patients. BMC Infect. Dis. 2011, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- He, S.; He, H.; Chen, Y.; Chen, Y.; Wang, W.; Yu, D. In Vitro and in Vivo Analysis of Antimicrobial Agents Alone and in Combination against Multi-Drug Resistant Acinetobacter Baumannii. Front. Microbiol. 2015, 6, 507. [Google Scholar] [CrossRef] [PubMed]
- Bowers, D.R.; Cao, H.; Zhou, J.; Ledesma, K.R.; Sun, D.; Lomovskaya, O.; Tam, V.H. Assessment of Minocycline and Polymyxin B Combination against Acinetobacter Baumannii. Antimicrob. Agents Chemother. 2015, 59, 2720–2725. [Google Scholar] [CrossRef] [PubMed]
- Kmeid, J.G.; Youssef, M.M.; Kanafani, Z.A.; Kanj, S.S. Combination Therapy for Gram-Negative Bacteria: What Is the Evidence? Expert Rev. Anti. Infect. Ther. 2013, 11, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Carmeli, Y.; Durante-Mangoni, E.; Mouton, J.W.; Tacconelli, E.; Theuretzbacher, U.; Mussini, C.; Leibovici, L. Combination Therapy for Carbapenem-Resistant Gram-Negative Bacteria. J. Antimicrob. Chemother. 2014, 69, 2305–2309. [Google Scholar] [CrossRef] [PubMed]
- Poulikakos, P.; Tansarli, G.S.; Falagas, M.E. Combination Antibiotic Treatment versus Monotherapy for Multidrug-Resistant, Extensively Drug-Resistant, and Pandrug-Resistant Acinetobacter Infections: A Systematic Review. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1675–1685. [Google Scholar] [CrossRef] [PubMed]
- Schechner, V.; Kotlovsky, T.; Kazma, M.; Mishali, H.; Schwartz, D.; Navon-Venezia, S.; Schwaber, M.J.; Carmeli, Y. Asymptomatic Rectal Carriage of BlaKPC Producing Carbapenem-Resistant Enterobacteriaceae: Who Is Prone to Become Clinically Infected? Clin. Microbiol. Infect. 2013, 19, 451–456. [Google Scholar] [CrossRef] [PubMed]
- The State of the World’s Antibiotics, 2015—Center for Disease Dynamics, Economics & Policy (CDDEP). Available online: https://cddep.org/publications/state_worlds_antibiotics_2015/ (accessed on 20 March 2019).
- Lu, Q.; Luo, R.; Bodin, L.; Yang, J.; Zahr, N.; Aubry, A.; Golmard, J.-L.; Rouby, J.-J. Nebulized Antibiotics Study Group. Efficacy of High-Dose Nebulized Colistin in Ventilator-Associated Pneumonia Caused by Multidrug-Resistant Pseudomonas Aeruginosa and Acinetobacter Baumannii. Anesthesiology 2012, 117, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Kallel, H.; Hergafi, L.; Bahloul, M.; Hakim, A.; Dammak, H.; Chelly, H.; Hamida, C.B.; Chaari, A.; Rekik, N.; Bouaziz, M. Safety and Efficacy of Colistin Compared with Imipenem in the Treatmentof Ventilator-Associated Pneumonia: AMatched Case–Control Study. Intensive Care Med. 2007, 33, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Poulakou, G.; Kontopidou, F.V.; Paramythiotou, E.; Kompoti, M.; Katsiari, M.; Mainas, E.; Nicolaou, C.; Yphantis, D.; Antoniadou, A.; Trikka-Graphakos, E.; et al. Tigecycline in the Treatment of Infections from Multi-Drug Resistant Gram-Negative Pathogens. J. Infect. 2009, 58, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Han, Q.; Xie, D.; Fang, M.; Zeng, H.; Deng, Y. Efficacy and Safety of Tigecycline for the Treatment of Severe Infectious Diseases: An Updated Meta-Analysis of RCTs. Int. J. Infect. Dis. 2015, 39, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Poulakou, G.; Bassetti, M.; Tsiodras, S. “Excess Mortality” and Colistin-Tigecycline for Extensively Drug-Resistant Acinetobacter Baumannii Bacteremia. Crit. Care Med. 2015, 43, e470–e471. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of Plasmid-Mediated Colistin Resistance Mechanism MCR-1 in Animals and Human Beings in China: A Microbiological and Molecular Biological Study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Tasina, E.; Haidich, A.-B.; Kokkali, S.; Arvanitidou, M. Efficacy and Safety of Tigecycline for the Treatment of Infectious Diseases: A Meta-Analysis. Lancet Infect. Dis. 2011, 11, 834–844. [Google Scholar] [CrossRef]
- Yahav, D.; Lador, A.; Paul, M.; Leibovici, L. Efficacy and Safety of Tigecycline: A Systematic Review and Meta-Analysis. J. Antimicrob. Chemother. 2011, 66, 1963–1971. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wang, R.; Liang, B.; Bai, N.; Liu, Y. Systematic Review and Meta-Analysis of the Effectiveness and Safety of Tigecycline for Treatment of Infectious Disease. Antimicrob. Agents Chemother. 2011, 55, 1162–1172. [Google Scholar] [CrossRef] [Green Version]
- Curcio, D.; Verde, P.E. Comment on: Efficacy and Safety of Tigecycline: A Systematic Review and Meta-Analysis Downloaded From. J Antimicrob Chemother J. Antimicrob. Chemother. Adv. Access 2011. [Google Scholar] [CrossRef]
- Bassetti, M.; Poulakou, G.; Giamarellou, H. Is There a Future for Tigecycline? Intensive Care Med. 2014, 40, 1039–1045. [Google Scholar] [CrossRef]
- Mody, L.; Gibson, K.E.; Horcher, A.; Prenovost, K.; McNamara, S.E.; Foxman, B.; Kaye, K.S.; Bradley, S. Prevalence of and Risk Factors for Multidrug-Resistant Acinetobacter Baumannii Colonization Among High-Risk Nursing Home Residents. Infect. Control Hosp. Epidemiol. 2015, 36, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Moghnieh, R.; Siblani, L.; Ghadban, D.; El Mchad, H.; Zeineddine, R.; Abdallah, D.; Ziade, F.; Sinno, L.; Kiwan, O.; Kerbaj, F.; et al. Extensively Drug-Resistant Acinetobacter Baumannii in a Lebanese Intensive Care Unit: Risk Factors for Acquisition and Determination of a Colonization Score. J. Hosp. Infect. 2016, 92, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Arvaniti, K.; Lathyris, D.; Ruimy, R.; Haidich, A.-B.; Koulourida, V.; Nikolaidis, P.; Matamis, D.; Miyakis, S. The Importance of Colonization Pressure in Multiresistant Acinetobacter Baumannii Acquisition in a Greek Intensive Care Unit. Crit. Care 2012, 16, R102. [Google Scholar] [CrossRef] [PubMed]
- Merrer, J.; Santoli, F.; Vecchi, C.A.-D.; Tran, B.; De Jonghe, B.; Outin, H. “Colonization Pressure” and Risk of Acquisition of Methicillin-Resistant Staphylococcus Aureus in a Medical Intensive Care Unit. Infect. Control Hosp. Epidemiol. 2000, 21, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Prince, A.S. Biofilms, Antimicrobial Resistance, and Airway Infection. N. Engl. J. Med. 2002, 347, 1110–1111. [Google Scholar] [CrossRef] [PubMed]
- Garnacho-Montero, J.; Dimopoulos, G.; Poulakou, G.; Akova, M.; Cisneros, J.M.; De Waele, J.; Petrosillo, N.; Seifert, H.; Timsit, J.F.; Vila, J.; et al. Task Force on Management and Prevention of Acinetobacter Baumannii Infections in the ICU. Intensive Care Med. 2015, 41, 2057–2075. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Cataldo, M.A.; Dancer, S.J.; De Angelis, G.; Falcone, M.; Frank, U.; Kahlmeter, G.; Pan, A.; Petrosillo, N.; Rodríguez-Baño, J.; et al. ESCMID Guidelines for the Management of the Infection Control Measures to Reduce Transmission of Multidrug-Resistant Gram-Negative Bacteria in Hospitalized Patients. Clin. Microbiol. Infect. 2014, 20, 1–55. [Google Scholar] [CrossRef]
- MDRO Management|GuidelinesLibrary|InfectionControl|CDC. Available online: https://www.cdc.gov/infectioncontrol/guidelines/mdro/index.html (accessed on 19 March 2019).
- Cheon, S.; Kim, M.-J.; Yun, S.-J.; Moon, J.Y.; Kim, Y.-S. Controlling Endemic Multidrug-Resistant Acinetobacter Baumannii in Intensive Care Units Using Antimicrobial Stewardship and Infection Control. Korean J. Intern. Med. 2016, 31, 367–374. [Google Scholar] [CrossRef]
- Chen, C.-H.; Lin, L.-C.; Chang, Y.-J.; Chen, Y.-M.; Chang, C.-Y.; Huang, C.-C. Infection Control Programs and Antibiotic Control Programs to Limit Transmission of Multi-Drug Resistant Acinetobacter Baumannii Infections: Evolution of Old Problems and New Challenges for Institutes. Int. J. Environ. Res. Public Health 2015, 12, 8871–8882. [Google Scholar] [CrossRef]
- Enfield, K.B.; Huq, N.N.; Gosseling, M.F.; Low, D.J.; Hazen, K.C.; Toney, D.M.; Slitt, G.; Zapata, H.J.; Cox, H.L.; Lewis, J.D.; et al. Control of Simultaneous Outbreaks of Carbapenemase-Producing Enterobacteriaceae and Extensively Drug-Resistant Acinetobacter Baumannii Infection in an Intensive Care Unit Using Interventions Promoted in the Centers for Disease Control and Prevention 2012 Carbapenemase-Resistant Enterobacteriaceae Toolkit. Infect. Control Hosp. Epidemiol. 2014, 35, 810–817. [Google Scholar] [CrossRef]
- Minocycline intravenous—Melinta Therapeutics–AdisInsight. Available online: https://adisinsight.springer.com/drugs/800041651 (accessed on 9 May 2019).
- Falagas, M.E.; Vardakas, K.Z.; Kapaskelis, A.; Triarides, N.A.; Roussos, N.S. Tetracyclines for Multidrug-Resistant Acinetobacter Baumannii Infections. Int. J. Antimicrob. Agents 2015, 45, 455–460. [Google Scholar] [CrossRef]
- Kumar, A.; Ellis, P.; Arabi, Y.; Roberts, D.; Light, B.; Parrillo, J.E.; Dodek, P.; Wood, G.; Kumar, A.; Simon, D.; et al. Initiation of Inappropriate Antimicrobial Therapy Results in a Fivefold Reduction of Survival in Human Septic Shock. Chest 2009, 136, 1237–1248. [Google Scholar] [CrossRef] [PubMed]
- Luna, C.M.; Aruj, P.; Niederman, M.S.; Garzón, J.; Violi, D.; Prignoni, A.; Ríos, F.; Baquero, S.; Gando, S. Grupo Argentino de Estudio de la NeumoníaAsociada al Respirador group. Appropriateness and Delay to Initiate Therapy in Ventilator-Associated Pneumonia. Eur. Respir. J. 2006, 27, 158–164. [Google Scholar] [CrossRef]
- Burkhardt, O.; Rauch, K.; Kaever, V.; Hadem, J.; Kielstein, J.T.; Welte, T. Tigecycline Possibly Underdosed for the Treatment of Pneumonia: A Pharmacokinetic Viewpoint. Int. J. Antimicrob. Agents 2009, 34, 101–102. [Google Scholar] [CrossRef] [PubMed]
- Imberti, R.; Cusato, M.; Villani, P.; Carnevale, L.; Iotti, G.A.; Langer, M.; Regazzi, M. Steady-State Pharmacokinetics and BAL Concentration of Colistin in Critically Ill Patients After IV Colistin Methanesulfonate Administration. Chest 2010, 138, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, P.; Protonotariou, E.; Varlamis, S.; Poulou, A.; Vasilaki, O.; Metallidis, S.; Tsakris, A.; Malisiovas, N.; Skoura, L.; Pournaras, S. Comparative Evaluation of Minocycline Susceptibility Testing Methods in Carbapenem-Resistant Acinetobacter Baumannii. Int. J. Antimicrob. Agents 2016, 48, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Bowler, S.L.; Kantz, S.F.; Mettus, R.T.; Guo, Y.; McElheny, C.L.; Doi, Y. Comparison of Minocycline Susceptibility Testing Methods for Carbapenem-Resistant Acinetobacter Baumannii. J. Clin. Microbiol. 2016, 54, 2937–2941. [Google Scholar] [CrossRef] [PubMed]
- Tsakris, A.; Koumaki, V.; Dokoumetzidis, A. Minocycline Susceptibility Breakpoints for Acinetobacter Baumannii: Do We Need to Re-Evaluate Them? J. Antimicrob. Chemother. 2019, 74, 295–297. [Google Scholar] [CrossRef]
- Greig, S.L.; Scott, L.J. Intravenous Minocycline: A Review in Acinetobacter Infections. Drugs 2016, 76, 1467–1476. [Google Scholar] [CrossRef]
- Jankowski, C.A.; Balada-Llasat, J.-M.; Raczkowski, M.; Pancholi, P.; Goff, D.A. A Stewardship Approach to Combating Multidrug-Resistant Acinetobacter Baumannii Infections With Minocycline. Infect. Dis. Clin. Pract. 2012, 20, 184–187. [Google Scholar] [CrossRef]
- Karageorgopoulos, D.E.; Kelesidis, T.; Kelesidis, I.; Falagas, M.E. Tigecycline for the Treatment of Multidrug-Resistant (Including Carbapenem-Resistant) Acinetobacter Infections: A Review of the Scientific Evidence. J. Antimicrob. Chemother. 2008, 62, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Han, Y.; Zhao, J.; Wei, C.; Cui, J.; Wang, R.; Liu, Y. Tigecycline Treatment Experience against Multidrug-Resistant Acinetobacter Baumannii Infections: A Systematic Review and Meta-Analysis. Int. J. Antimicrob. Agents 2016, 47, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, Q. Clinical Efficacy and Safety of Colistin Treatment in Patients with Pulmonary Infection Caused by Pseudomonas Aeruginosa or Acinetobacter Baumannii: A Meta-Analysis. Arch. Med. Sci. 2015, 11, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Zhao, L.; Wang, M.; Liu, Y.; Gui, T.; Zhang, J. Sulbactam-Based Therapy for Acinetobacter Baumannii Infection: A Systematic Review and Meta-Analysis. Braz. J. Infect. Dis. 2013, 17, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Ozger, H.S.; Cuhadar, T.; Yildiz, S.S.; DemirbasGulmez, Z.; Dizbay, M.; GuzelTunccan, O.; Kalkanci, A.; Simsek, H.; Unaldi, O. In Vitro Activity of Eravacycline in Combination with Colistin against Carbapenem-Resistant A. Baumannii Isolates. J. Antibiot. (Tokyo) 2019, 1. [Google Scholar] [CrossRef]
Terms | Definitions |
---|---|
Clinical success- Clinical Cure | Elimination of the signs & symptoms related to the initial infection for which minocycline or non-minocycline based therapies are used. |
Microbiological success- Microbiological Cure | Eradication of the causative organism from the site of infection. |
Adverse Events | Onset of signs, symptoms or laboratory findings related to minocycline, its combinations or non-minocycline based regimens. |
Hospital-Acquired Infection | The date of the site-specific infection occurs on or after the 3rd calendar day of admission (the day of admission is calendar day 1) [29]. |
Antimicrobial resistance classification | MDR: non-susceptible to ≥ 1 agent of ≥ 3 classes of antibiotics, XDR: non-susceptible to ≥ 1 agent in all but ≤2 categories, and PDR: non-susceptible to all classes or agents [30]. |
Site of infection | Site of isolation of the MDR, XDR or PDR A. baumannii (or A. calcoaceticus-baumannii complex) strain in the context of a new onset of relevant signs, symptoms and laboratory markers attributable to infection, based on the treating clinicians’ decision. |
Surgical Site Infections | Infections that occur 30 days after surgery with no implant or within 1 year if an implant is placed and the infection appears to be related to surgery |
Abbreviation ID of Study, Authors, Year, Reference | Type of Study/ Study Population (N) | Country, Region | Year of Study | Setting of Study | Purpose of Study |
---|---|---|---|---|---|
Study A, Bishburg E. et al., 2014 [32] | Retrospective Case Series (N = 21) | USA, Newark | 11/2009–04/2012 | Tertiary Care Hospital – Ward not specified. | To report the experience in using IV Minocycline for the treatment of MRSA and resistant gram-negative infections. |
Study B, Chan J.D. et al., 2010 [33] | Retrospective Case Series (N = 55) | USA, Seattle | 07/2004–12/2007 | Trauma Centre – ICU. | To describe the clinical outcomes of case series of CR-AB VAP. |
Study C, Goff D.A. et al., 2014 [34] | Retrospective Case Series (N = 55) | USA, Ohio | 09/2010–03/2013 | General Ward & ICU. | To describe an Antimicrobial Stewardship Program’s evaluation of Minocycline for the treatment of patients with MDR-AB infections. |
Study D, Griffith M.E. et al.,2008 [35] | Retrospective Case Series (Retrospective Chart Review) (N = 8) | USA, Texas | 2005–2006 | Military Trauma Centre – Ward not specified. | To report the outcomes of patients received Minocycline as therapy for MDR-ABC traumatic wound infections. |
Study E, Ning F. et al., 2014 [36] | Retrospective Case Series (N = 9) | CHINA Beijing | 02/2011–03/2013 | Department of Burn. | To report outcomes of treating extensive burns with PDR-AB infections with high doses of Meropenem, Cefoperazone –Sulbactam and Minocycline |
Study F, Pogue J.M. et al., 2014 [37] | Retrospective Case Series (N = 9) | USA, Detroit | 09/2011–n/a | Tertiary Care Hospital – Ward not specified. | To evaluate the use of IV minocycline for the treatment of CR-AB & Enterobacteriaceae. |
Study G, Shi Y. et al., 2012 [38] | Prospective Single – Centre Trial (N = 77) | CHINA, Beijing | 01/2009–12/2009 | ICU | To explore the effects of cefoperazone/sulbactam plus minocycline on XDR-AB infections in critically ill patients. |
Study H, Wang L.W. et al., 2014,[39] | Retrospective Case Series (N = 42) | CHINA, Beijing | 04/2009–04/2010 | Department of Respiratory Medicine/ICU. | To analyze the clinical features of PDR-AB and compare the efficacy of different antibiotic treatments in aged patients with PDR-AB VAP. |
Study I, Wood G.C. et al., 2003 [40] | Retrospective Case Series (N = 7) | USA, Tennessee | 01/1998–12/1998 | Trauma Centre – ICU. | To report the use of tetracyclines for the treatment of MDR-AB VAP. |
Study J, Vila A. et al., 2016 [41] | Retrospective Case Series (N = 3) | ARGENTINA, Mendoza | 2010–2012 | Tertiary Care Hospital – Ward not specified | To report 3 cases of MDR-AB prosthetic joint infections treated with debridement and tigecycline (2 patients received oral minocycline as maintenance treatment). |
Abbreviation ID of study, Authors, Year, Reference | Patient Demographics | A. baumannii Infections (N = Total No. of Patients) | No. of Patients on Minocycline (Monotherapy) | Organisms, Resistance Pattern Definition & Susceptibility Testing Method | Minocycline Route of Administration & Doses | Minocycline Combinations | Other Antimicrobial Agents & Doses | Clinical Success Definition | Microbiological Success Definition |
---|---|---|---|---|---|---|---|---|---|
Study A, Bishburg E. et al., 2014 [32] | Male: 10, Female: 11 Age Range: 25–83 y.o. (n/a separate data for patients with AB infections) | BSI (n = 1), SSTI (n = 2), LRTI (n = 2) (N = 5) | 5 (n/a) |
| 100 mg I.V. B.I.D., converted to P.O. per physician decision | Not applicable | Not applicable | Not defined. | Not defined. |
Study B, Chan J.D.et al., 2010 [33] | Male: 40, Female: 15 Age Range: 18–87 y.o. | VAP (N = 55) | 36 (11) |
| 200 mg LD followed by 100 mg I.V. B.I.D. OR 200 mg P.O. B.I.D. | AMG(n = 20), AMG + TGC (n = 3), AMG + PLM (n = 2) | TGC: 100 mg LD – then 50 mg I.V. B.I.D., TOB: 7 mg/kg I.V. OD. OR 300 mg INH B.I.D., GEN: 7 mg/kg I.V. OD, AMK: 15 mg/kg I.V. OD, PLM-B: 2.5–5 mg/kg per day B.I.D. or Q.I.D., COL: 2.5–5 mg/kg per day B.I.D. or Q.I.D. or 150 mg INH B.I.D., SAM: 2+1 gr I.V. Q.I.D. | Improvement and resolution of signs and symptoms of VAP. | Eradication of CR-AB from subsequent BAL or sputum culture at the completion of therapy. |
Study C, Goff D.A. et al., 2014 [34] | Male: 36, Female: 19 Age Range: 23–85 y.o. | LRTI (n = 32), BSI (n = 10), IAI (n = 3), LRTI+BSI (n = 4), SSTI (n = 2),Osteomyelitis (n = 2), UTI (n = 2) (N = 55) | 55 (3) |
| 100 mg I.V. B.I.D. (n = 42 received 200mg I.V. LD) | COL I.V. (n = 19) DOR + COL I.V. (n = 9), SAM+COL I.V. (n = 7), DOR+COL INH (n = 4), SAM (n = 3) SAM + DOR + COL I.V. (n = 3) DOR (n = 2) SAM + DOR (n = 2) SAM + COL INH (n = 1), COL INH (n = 1) SAM + COL I.V.+ COL INH (n = 1) | Not applicable | Complete or partial resolution of the signs & symptoms attributable to the MDR-AB infection without a need for the escalation of antimicrobials. | Eradication of MDR-AB in follow-up cultures from the primary source of infection during treatment or presumed when patient clinically improved & follow-up cultures were not performed. |
Study D, Griffith M.E. et al., 2008 [35] | Male: 8 Age Range: 19–35 y.o. | Osteomyelitis & SSTI (N = 8) | 8 (1) |
| 100 mg P.O. B.I.D. | VAN (n = 2), AMK (n = 1) IPM (n = 4) | Not applicable | No further clinical evidence of infection as determined by symptoms, physical examination, laboratory evaluation. | Not defined |
Study E, Ning F.et al., 2014 [36] | Male: 6, Female: 3 Age Range: 23–57 y.o. | LRTI (n = 3), LRTI + SSTI (n = 2), LRTI + SSTI + BSI (n = 4) (N = 9) | 9 (0) |
| 200 mg P.O. Q.I.D. | MEM I.V. Q.I.D. (6gr/day total).+CFP/S 6 gr I.V B.I.D. | Not applicable | Drugs were withdrawn after symptoms’ improvement combined with negative blood & sputum cultures. | Negative blood and sputum cultures. |
StudyF, Pogue J.M. et al., 2014 [37] | Male: 5, Female: 2 Age Range: 35–74 y.o. | BSI (n = 3), LRTI (n = 3), LRTI + SSTI (n = 1) (N = 7) | 7 (1) |
| 100 mg I.V. B.I.D. (n = 2) 200 mg I.V. B.I.D. (n = 5) | MEM + COL (n = 1), COL (n = 4), SAM (n = 1) | Not applicable | Resolution of signs & symptoms of the infection requiring MIN. | Clearance of the organism of interest from repeated cultures. |
Study G, Shi Y. et al., 2012 [38] | Male: 49, Female: 28 Age Range: 49–89 y.o. | LRTI (n = 61), BSI (n = 5), Intra-abdominal (n = 3), SSTI (n = 2), Multiple sites (n = 6) (N = 77) | 77 (0) |
| 100 mg I.V. or P.O. B.I.D. | CFP/S (n = 70) CFP/S + IPM/CIL (n = 7) | Not applicable | Clinical effect divided in: cure, marked improvement, improvement & ineffectiveness. Effective group defined as cure+marked improvement. | Cleared cultures. |
Study H, Wang L.W. et al., 2014 [39] | Mean age: 89.1+/−3.2 | VAP (N = 42) | 20 (0) |
| n/a | CFP/S | n/a | Not defined | Bacterial eradication of PDR-AB from cultures. |
Study I, Wood G.C. et al., 2003 [40] | Male: 7 (age n/a) | VAP (n = 5), VAP + BSI (n = 1), VAP + SSTI (n = 1) (N = 7) | 4 (2) |
| 100 mg I.V. B.I.D. | IPM-CIL (n = 1) TVA + TMP/SMX (n = 1). | DOX 100 mg I.V. B.I.D. | AB was absent from the follow-up BAL cultures and the patient improved clinically OR The patient improved clinically& survived until discharge. | AB was absent from the follow-up BAL cultures. |
Study J, Vila A. et al., 2016 [41] | Male: 1, Female: 2 Age Range: 45–75 y.o. | PJI (n = 3) (N = 3) | 2 (0) |
| 200 mg P.O/day | TGC + COL (prior to oral minocycline) (n = 2) | TGC: 100 mg LD – then 100 mg I.V. B.I.D, COL | No signs and symptoms of infection, CRP < 10 mg/L, normal ESR, absence of radiological signs of loosening at the end of treatment, without further recurrences. | Negative tissue cultures from subsequent debridements. |
Abbreviation ID of Study, Authors, Year, Reference | Clinical Success | Microbiological Success | Mortality | Adverse Events | ||||
---|---|---|---|---|---|---|---|---|
Minocycline (%) | Other Antibiotics (%) | Minocycline (%) | Other Antibiotics (%) | Minocycline (%) | Other Antibiotics (%) | Minocycline (%) | Other Antibiotics (%) | |
Study A, Bishburg E. et al., 2014 [32] | 5 (100) BSI: 1 (100)LRTI: 2 (100) | n/a | Not available | n/a | 0 | n/a | Not available | n/a |
Study B, Chan J.D. et al., 2010[33] | 29 (80.5) VAP: 29 (80.5) | 13 (68.4) | Not separately specified * | Not separately specified * | Not separately specified * | Not separately specified * | 0 | Nephrotoxicity due to aminoglycosides or polymyxins: 10 (18.2) |
Study C, Goff D.A. et al., 2014 [34] | 40 (72.7) LRTI: 20 (62.5) § BSI: 9 (90) § LRTI+BSI: 3 (75) § | n/a | 43 (78) ± | n/a | 14 (25.5) | n/a | 0 | n/a |
Study D, Griffith M.E. et al., 2008 [35] | 7 (87.5) | n/a | Not available | n/a | 0 | n/a | Eosinophilia & neutropenia: 1 (12.5) | n/a |
Study E, Ning F. et al., 2014 [36] | 9 (100) LRTI: 3 (100) LRTI + SSTI: 2 (100) LRTI + SSTI + BSI: 4 (100) | n/a | 8 (88.9) ± | n/a | 0 | n/a | 0 | n/a |
Study F, Pogue J.M. et al., 2014 [37] | 5 (71.4) LRTI: 1 (50) BSI: 2 (66.6) LRTI + SSTI: 1 (100) LRTI + BSI: 1 (100) | n/a | 3 (60) ** LRTI + BSI: 1 (100) BSI: 2 (66.6) | n/a | 2 (28.6) | n/a | Nephrotoxicity due to colistin combination: 2 (28.6) | n/a |
Study G, Shi Y. et al., 2012 [38] | 48 (62.3) ± | n/a | 36 (46.8) ± | n/a | 19 (24.7) | n/a | Elevation of LFTs: 6 (7.8) | n/a |
Study H, Wang L.W. et al., 2014 [39] | 13 (65) VAP: 13 (65) | 5 (22.7) VAP: 5 (22.7) | 8 (40) VAP: 8 (40) | 3 (13.6) VAP: 3 (13.6) | Not available | Not available | Not available | Not available |
Study I, Wood G.C. et al., 2003 [40] | 4 (100) VAP: 4 (100) ± | 2 (66.7) VAP: 2 (66.7) ± | 3 (100) ** VAP: 3 (100) ± | 1 (50) ** VAP: 1 (50) ± | 0 | 1 (33.3) | 0 | 0 |
Study J, Vila A. et al., 2016 [41] | 2 (100) | 1 (100) | 2 (100) | 1 (100) | 0 | 0 | 0 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragkou, P.C.; Poulakou, G.; Blizou, A.; Blizou, M.; Rapti, V.; Karageorgopoulos, D.E.; Koulenti, D.; Papadopoulos, A.; Matthaiou, D.K.; Tsiodras, S. The Role of Minocycline in the Treatment of Nosocomial Infections Caused by Multidrug, Extensively Drug and Pandrug Resistant Acinetobacter baumannii: A Systematic Review of Clinical Evidence. Microorganisms 2019, 7, 159. https://doi.org/10.3390/microorganisms7060159
Fragkou PC, Poulakou G, Blizou A, Blizou M, Rapti V, Karageorgopoulos DE, Koulenti D, Papadopoulos A, Matthaiou DK, Tsiodras S. The Role of Minocycline in the Treatment of Nosocomial Infections Caused by Multidrug, Extensively Drug and Pandrug Resistant Acinetobacter baumannii: A Systematic Review of Clinical Evidence. Microorganisms. 2019; 7(6):159. https://doi.org/10.3390/microorganisms7060159
Chicago/Turabian StyleFragkou, Paraskevi C., Garyfallia Poulakou, Andromachi Blizou, Myrto Blizou, Vasiliki Rapti, Drosos E. Karageorgopoulos, Despoina Koulenti, Antonios Papadopoulos, Dimitrios K. Matthaiou, and Sotirios Tsiodras. 2019. "The Role of Minocycline in the Treatment of Nosocomial Infections Caused by Multidrug, Extensively Drug and Pandrug Resistant Acinetobacter baumannii: A Systematic Review of Clinical Evidence" Microorganisms 7, no. 6: 159. https://doi.org/10.3390/microorganisms7060159
APA StyleFragkou, P. C., Poulakou, G., Blizou, A., Blizou, M., Rapti, V., Karageorgopoulos, D. E., Koulenti, D., Papadopoulos, A., Matthaiou, D. K., & Tsiodras, S. (2019). The Role of Minocycline in the Treatment of Nosocomial Infections Caused by Multidrug, Extensively Drug and Pandrug Resistant Acinetobacter baumannii: A Systematic Review of Clinical Evidence. Microorganisms, 7(6), 159. https://doi.org/10.3390/microorganisms7060159