Encapsulated Bdellovibrio Powder as a Potential Bio-Disinfectant against Whiteleg Shrimp-Pathogenic Vibrios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Reagents
2.2. Preparation of Bdellovibrio Cells
2.3. Optimization of the Spray Drying Process for Bdellovibrio Cells
2.4. Microparticle Observation of Bdellovibrio Powder
2.5. Storage Stability of Bdellovibrio PowderAssay
2.6. The in Vitro Antibacterial Effect of Bdellovibrio Powder against Shrimp Pathogenic Vibrios Assay
2.7. Safety of Bdellovibrio Powder Assay
2.8. Protective Effect of Bdellovibrio Powder Assay
2.9. Statistical Analysis
2.10. Ethics Statements
3. Results
3.1. Optimization of the Spray-Drying Process for Bdellovibrio Cells
3.2. Microparticle Morphology of Bdellovibrio Powder
3.3. Storage Stability of Bdellovibrio Powder
3.4. The in Vitro Antibacterial Effect of Bdellovibrio Powder against Shrimp-Pathogenic Vibrios
3.5. Safety of Bdellovibrio Powder
3.6. Protective Effect of Bdellovibrio Powder
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benzie, J.A.H. Use and exchange of genetic resources of penaeid shrimps for food and aquaculture. Rev. Aquacult. 2009, 1, 232–250. [Google Scholar] [CrossRef]
- Ananda Raja, R.; Sridhar, R.; Balachandran, C.; Palanisammi, A.; Ramesh, S.; Nagarajan, K. Pathogenicity profile of Vibrio parahaemolyticus in farmed Pacific white shrimp, Penaeus vannamei. Fish Shellfish Immun. 2017, 67, 368–381. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.K.; Deekshit, V.K.; Raj, J.R.M.; Rai, P.; Shivanagowda, B.M.; Karunasagar, I.; Karunasagar, I. Diversity of Vibrio parahaemolyticus associated with disease outbreak among cultured Litopenaeus vannamei (Pacific white shrimp) in India. Aquaculture 2014, 433, 247–251. [Google Scholar] [CrossRef]
- Cao, H.; An, J.; Zheng, W.; He, S. Vibrio cholerae pathogen from the freshwater-cultured whiteleg shrimp Penaeus vannamei and control with Bdellovibrio bacterivorous. J. Invertebr. Pathol. 2015, 130, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; He, P.; Huang, T.; Chen, F.; Xie, D.; Chen, X. Isolation, identification and drug sensitivity test of pathogeny causing empty stomach and intestine of Litopenaeus vannamei larvae. J. South. Agr. 2016, 47, 506–510. [Google Scholar]
- El-Shanshoury, E.R.R.; Abo-Amer, A.E.; Alzahrani, O.M. Isolation of Bdellovibrio sp. from wastewater and their potential application in control of Salmonella paratyphi in water. Geomicrobiol. J. 2015, 33, 886–893. [Google Scholar] [CrossRef]
- Chu, W.; Zhu, W.; Kang, C. Isolation, identification of marine Bdellovibrios and its effect on Vibrio parahaemolyticus. Microbiol. China 2009, 36, 20–24. [Google Scholar]
- Qi, Z.; Zhang, X.; Boon, N.; Bossier, P. Probiotics in aquaculture of China-Current state, problems and prospect. Aquaculture 2009, 290, 15–21. [Google Scholar] [CrossRef]
- Cao, H.; He, S.; Ou, R.; Hou, S.; Gao, X.; Yang, X. Progress on Bdellovibrio bacteriovorus used in aquaculture. Prog. Vet. Med. 2013, 34, 86–90. [Google Scholar]
- O’Riordan, K.; Andrews, D.; Buckle, K.; Conway, P. Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging viability during storage. J. Appl. Microbiol. 2001, 91, 1059–1066. [Google Scholar] [CrossRef]
- Nesterenko, A.; Alric, I.; Violleau, F.; Silvestre, F.; Durrieu, V. A new way of valorizing biomaterials: The use of sunflower protein for alpha-tocopherol microencapsulation. Food Res. Int. 2013, 53, 115–124. [Google Scholar] [CrossRef]
- Sultana, K.; Godward, G.; Reynolds, N.; Arumugaswamy, R.; Peiris, P.; Kailasapathy, K. Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int. J. Food Microbiol. 2000, 62, 47–55. [Google Scholar] [CrossRef]
- Annan, N.T.; Borza, A.D.; Hansen, L.T. Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Res. Int. 2008, 41, 184–193. [Google Scholar] [CrossRef]
- Weinbreck, F.; Bodnár, I.; Marco, M.L. Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products? Int. J. Food Microbiol. 2010, 136, 364–367. [Google Scholar] [CrossRef]
- Cong, C.; Yuan, Y.; Qu, K.; Geng, H.; Wang, L.; Li, X.; Xu, Y. Research progress on the methods of bacteriophages collection. Chin. J. Antibiot. 2017, 42, 742–748. [Google Scholar]
- Cao, H.; He, S.; Wang, H.; Hou, S.; Lu, L.; Yang, X. Bdellovibrios, potential biocontrol bacteria against pathogenic Aeromonas hydrophila. Vet. Microbiol. 2012, 154, 413–418. [Google Scholar] [CrossRef]
- Luo, G.; Tan, H.; Zhu, X. The effects of several water-treatment units in a recirculating aquaculture system. J. Dalian Fish. Univ. 2008, 23, 68–72. [Google Scholar]
- Yu, L.; Ma, J.; Yue, F.; Liu, S.; Jiang, M. Fermentation characteristics research of recombinant Escherichia coli for succinate production. China Biotechnol. 2010, 30, 43–48. [Google Scholar]
- Jurkevitch, E.; Minz, D.; Ramati, B.; Barel, G. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl. Environ. Microb. 2000, 6, 2365–2371. [Google Scholar] [CrossRef]
- Cao, H.; Yang, Y.; Lu, L.; Yang, X.; Ai, X. Effect of copper sulfate on Bdellovibrio growth and bacteriolytic activity towards gibel carp-pathogenic Aeromonas hydrophila. Can. J. Microbiol. 2018, 64, 1054–1058. [Google Scholar] [CrossRef]
- Zhou, Y.; Yuan, S.; Yan, T.; Ma, Y. Isolation and characterization of a novel lytic T4-like bacteriophage Asfd-1 infecting Aeromonas salmonicide. J. Integr. Technol. 2019, 8, 1–9. [Google Scholar]
- Chen, J.; Cheng, J.; Kang, P.; Diao, L. Isolation and identification of a potent lytic phage from Escherichia coli fermentation. B.S. Ferment. Sci. Technol. 2018, 47, 209–212. [Google Scholar]
- Jurkevitch, E. Isolation and classification of Bdellovibrio and like organisms. Curr. Protoc. Microbiol. 2012, 26, 7B.1.1–7B.1.20. [Google Scholar]
- Wang, H.; Wang, Z.N.; Zhao, X.G. Study on technology of vitamin A microencapsulation. Food Sci. 2006, 27, 366–369. [Google Scholar]
- Guergoletto, K.B.; Busanello, M.; Garcia, S. Influence of carrier agents on the survival of Lactobacillus reuteri LR92 and the physicochemical properties of fermented juçara pulp produced by spray drying. LWT Food Sci. Technol. 2017, 80, 321–327. [Google Scholar] [CrossRef]
- Gu, M.; Wang, H.; Hu, X.; Wang, G.L.; Fan, T.Y. Improvement on preparation of gelatin microspheres. Res. Explor. Lab. 2015, 34, 57–60. [Google Scholar]
- Gao, J.; Xu, B.; Guo, X.; Qin, J. Biological characterization and genome sequence of KP002, a novel bacteriophage isolated from multiple-drug resistant Klebsiella pneumonia. J. Microbes Infect. 2016, 11, 18–23. [Google Scholar]
- Saraoui, T.; Leroi, F.; Chevalier, F.; Cappelier, J.M.; Passerini, D.; Pilet, M.F. Bioprotective effect of Lactococcus piscium CNCM I-4031 against Listeria monocytogenes growth and virulence. Front. Microbiol. 2018, 9, 1564. [Google Scholar] [CrossRef]
- Cao, H.; He, S.; An, J.; Chen, B.; Fu, G.; Lu, L.; Chen, Y. Production process technique and characteristics of microcapsules of Bacillus amyloliquefaciens against sturgeon-pathogenic Aeromonas hydrophila. Microbiol. China 2014, 41, 1043–1051. [Google Scholar]
- Ni, X.; Wang, J. Changes in lactic acid bacteria and acidity of Lactobacillus drink at different storage temperatures. China Dairy 2014, 150, 51–53. [Google Scholar]
- Ann, E.Y.; Kim, Y.; Oh, S.; Imm, J.Y.; Park, D.J.; Han, K.S.; Kim, S.H. Microencapsulation of Lactobacillus acidophilus ATCC 43121 with prebiotic substrates using a hybridization system. Int. J. Food Sci. Technol. 2007, 42, 411–419. [Google Scholar] [CrossRef]
- Song, M.; Zhang, L.; Zhong, Y.; Xu, H.; Mao, Z. Catalytic properties of manganese complex of cyclic polyamine encapsulated in ethyl cellulose microcapsules. Chem. J. Chin. Univ. 2014, 35, 1941–1947. [Google Scholar]
- Falk, K.; Namork, E.; Rimstad, E.; Mjaaland, S.; Dannevig, B.H. Characterization of infectious salmon anemia virus, an orthomyxo-like virus isolated from Atlantic salmon (Salmo salar L.). J. Virol. 1997, 71, 9016–9023. [Google Scholar]
- Wen, C.; Xue, M.; Zhang, J.; Huang, Y.; Zhou, S. The detection of Bdellovibrio-and-like organisms in commercial preparations used for aquaculture. J. Fish. China 2009, 33, 326–333. [Google Scholar]
- Li, C.; Li, J.; Cui, S. Study of the change of the number of live bacteria in microecological agent stored under room temperature. Chin. J. Microecol. 2009, 21, 133–134. [Google Scholar]
- Lin, H.; Qiu, D.; Tan, L. Isolation and identification of one strain of Vibrio parahaemolyticus. Fish. Sci. 2007, 26, 296–299. [Google Scholar]
- Altay, K.; Dirim, S.N.; Hayaloglu, A.A. The effect of gamma irradiation on microbial load of purple basil (Ocimum bacilicum L.) leaves dried in different methods. J. Food Saf. 2019, 39, e12610. [Google Scholar] [CrossRef]
- Berlin, D.L.; Herson, D.S.; Hicks, D.T.; Hoover, D.G. Response of pathogenic Vibrio species to high hydrostatic pressure. Appl. Environ. Microb. 1999, 65, 2776–2780. [Google Scholar]
- Ministry of Agriculture of China. Clinical experiment technical practice for fishery drugs. Chin. J. Vet. Drug 2003, 37, 11–14. [Google Scholar]
- Marine Products Export Development Authority; Network of Aquaculture Centers in Asia-Pacific. Shrimp Health Management Extension Manual; MPEDA House: Cochin, India, 2003; p. 23.
- Ogbuagu, D.H.; Iwuchukwu, E.I. Evaluation of the toxicity of three hair shampoos on the catfish (Clarias gariepinus) fingerlings. Appl. Ecol. Environ. Sci. 2014, 2, 86–89. [Google Scholar]
- Zhang, L.; Hu, C.; Luo, P.; Shen, Q. Prevention of Vibrio infection by application of Bdellovibrio bacteriovorus in intensively cultured shrimp. Prog. Fish. Sci. 2009, 30, 26–33. [Google Scholar]
- Saulnier, D.; Haffner, P.; Goarant, C.; Levy, P.; Ansquer, D. Experimental infection models for shrimp vibriosis studies: A review. Aquaculture 2000, 191, 133–144. [Google Scholar] [CrossRef]
- Baulny, M.O.D.; Quentel, C.; Fournier, V.; Lamour, F.; Gouvello, R.L. Effect of long-term oral administration of β-glucan as an immunostimulant or an adjuvant on some non-specific parameters of the immune response of turbot Scophthalmus maximus. Dis. Aquat. Organ. 1996, 26, 139–147. [Google Scholar] [CrossRef]
- Sar, T.T.; Umeh, E.U.; Akosu, D.D. Occurrence, detection and isolation of Bdellovibrio spps. from some fresh water bodies in Benue State, Nigeria. Microbiol. J. 2015, 5, 21–27. [Google Scholar] [CrossRef]
- Williams, H.N.; Falkler, W.A.; Shay, D.E. Incidence of marine bdellovibrios lytic against Vibrio parahaemolyticus in Chesapeake Bay. Appl. Environ. Microb. 1980, 40, 970–972. [Google Scholar]
- Starr, M.P.; Stolp, H. Chapter VΙ Bdellovibrio methodology. Method. Microbiol. 1976, 9, 217–244. [Google Scholar]
- Su, G.; Zhou, C.; Jiang, K.; Jiang, F.; Lin, J.; Cai, H. Study on fermentation conditions for the culture of Bdellovibrio BDSG1 strain. J. Jimei Univ. (Nat. Sci.) 2006, 11, 289–294. [Google Scholar]
- Chen, K.; Zhong, W.; Gao, Z. Research progress on utilization of Bdellovibrio in aquaculture. Fish. Sci. 2018, 37, 284–290. [Google Scholar]
- Ma, M.; Wang, X.; Shi, J.; Zhang, B.; Wang, Y.; Guo, Y. Effect of different types of gelatin on the growth of MC3T3-E1 cells. Sci. Technol. Gelatin 2012, 32, 13–24. [Google Scholar]
- Arslan, S.; Erbas, M.; Tontul, I.; Topuz, A. Microencapsulation of probiotic Saccharomyces cerevisae var. boulardii with different wall materials by spray drying. LWT Food Sci. Technol. 2015, 63, 685–690. [Google Scholar] [CrossRef]
- Fu, N.; Chen, X. Towards a maximal cell survival on convective thermal drying process. Food Res. Int. 2011, 44, 1127–1149. [Google Scholar] [CrossRef]
- Rajabi, H.; Ghorbani, M.; Jafari, S.M.; Mahoonak, A.S.; Rajabzadeh, G. Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocoll. 2015, 51, 327–337. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, Y.; Mao, Z.; Feng, H.; Tang, J. Studying of Lactobacillus casei-loaded microcapsules with high survival rate. Acta Agric. Zhejiangensis 2014, 26, 461–466. [Google Scholar]
- Pandiyan, P.; Balaraman, D.; Thirunavukkarasu, R.; George, E.G.J.; Subaramaniyan, K.; Manikkam, S.; Sadayappan, B. Probiotics in aquaculture. Drug Invent. Today 2013, 5, 55–59. [Google Scholar] [CrossRef]
- Lin, M.; Yang, X.; Xue, H.; Cao, H.; Qiu, J. Effect on fish cell lines and pathogens by Bdellovibrio BDH21-02 strain. Microbiol. China 2006, 33, 7–11. [Google Scholar]
- Feng, X.; Zhang, H. The preliminary research on the Bdellovibrio bacteriovorus for protecting the mice from E. coli. Chin. J. Microecol. 1999, 11, 270–271. [Google Scholar]
- Zhang, L.; Shen, J.; Chen, J. The effect of Bdellovibrio bacteriovorus on the water quality and bacterial population in the grass carp ponds. J. Hydroecol. 2009, 2, 6–10. [Google Scholar]
- Xiong, Y.; Su, C.; Wang, Y.; Chen, Z.; Tian, S.; Long, B. Effect of Bdellovibrio bacteriovorus on water quality of pond culture. Mod. Agric. Sci. Technol. 2012, 18, 263–265. [Google Scholar]
- Iebba, V.; Santangelo, F.; Totino, V.; Nicoletti, M.; Gagliardi, A.; de Biase, R.V.; Cucchiara, S.; Nencioni, L.; Conte, M.P.; Schippa, S. Higher prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of heathy subjects. PLoS ONE 2013, 8, e61608. [Google Scholar] [CrossRef]
- Johnke, J.; Fraune, S.; Bosch, T.C.G.; Hentschel, U.; Schulenburg, H. Bdellovibrio and like organisms are predictors of microbiome diversity in distinct host groups. Microb. Ecol. 2019. [Google Scholar] [CrossRef]
- Dwidar, M.; Monnappa, A.K.; Mitchell, R.J. The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus. BMB Rep. 2012, 45, 71–78. [Google Scholar] [CrossRef]
- Gupta, S.; Tang, C.; Tran, M.; Kadouri, D.E. Effect of predatory bacteria on human cell lines. PLoS ONE 2016, 11, e0161242. [Google Scholar] [CrossRef]
- Yoshimura, H.; Endoh, Y.S. Acute toxicity to freshwater organisms of antiparasitic drugs for veterinary use. Environ. Toxicol. 2005, 20, 60–66. [Google Scholar] [CrossRef]
- Zhao, H. Methods for the control of bacteria in gelatin production. Sci. Technol. Gelatin 2005, 25, 29–32. [Google Scholar]
Test No. | A (g L−1) | B (L h−1) | C (mL min−1) | D (°C) | Cell Density (log PFU g−1) |
---|---|---|---|---|---|
1 | 15 | 650 | 8 | 135 | 6.16 ± 0.15 e |
2 | 15 | 700 | 10 | 140 | 6.91 ± 0.13 bcd |
3 | 15 | 750 | 12 | 145 | 7.12 ± 0.09 b |
4 | 20 | 650 | 10 | 145 | 6.74 ± 0.16 d |
5 | 20 | 700 | 12 | 135 | 7.48 ± 0.06 a |
6 | 20 | 750 | 8 | 140 | 7.63 ± 0.01 a |
7 | 25 | 650 | 12 | 140 | 6.77 ± 0.27 cd |
8 | 25 | 700 | 8 | 145 | 6.91 ± 0.02 bcd |
9 | 25 | 750 | 10 | 135 | 7.02 ± 0.11 bc |
K1 | 6.730 | 6.557 | 6.900 | 6.887 | |
K2 | 7.283 | 7.100 | 6.890 | 7.103 | |
K3 | 6.900 | 7.257 | 7.123 | 6.923 | |
R | 0.553 | 0.700 | 0.233 | 0.216 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; Wang, H.; Yu, J.; An, J.; Chen, J. Encapsulated Bdellovibrio Powder as a Potential Bio-Disinfectant against Whiteleg Shrimp-Pathogenic Vibrios. Microorganisms 2019, 7, 244. https://doi.org/10.3390/microorganisms7080244
Cao H, Wang H, Yu J, An J, Chen J. Encapsulated Bdellovibrio Powder as a Potential Bio-Disinfectant against Whiteleg Shrimp-Pathogenic Vibrios. Microorganisms. 2019; 7(8):244. https://doi.org/10.3390/microorganisms7080244
Chicago/Turabian StyleCao, Haipeng, Huicong Wang, Jingjing Yu, Jian An, and Jun Chen. 2019. "Encapsulated Bdellovibrio Powder as a Potential Bio-Disinfectant against Whiteleg Shrimp-Pathogenic Vibrios" Microorganisms 7, no. 8: 244. https://doi.org/10.3390/microorganisms7080244
APA StyleCao, H., Wang, H., Yu, J., An, J., & Chen, J. (2019). Encapsulated Bdellovibrio Powder as a Potential Bio-Disinfectant against Whiteleg Shrimp-Pathogenic Vibrios. Microorganisms, 7(8), 244. https://doi.org/10.3390/microorganisms7080244