Novel Antibiotics for Multidrug-Resistant Gram-Positive Microorganisms
Abstract
:1. Introduction
2. Novel Anti-Gram-Positive Antibiotics
2.1. β-Lactams
2.1.1. Ceftaroline
2.1.2. Ceftobiprole
2.2. Glycopeptides
2.2.1. Dalbavancin
2.2.2. Oritavancin
2.2.3. Telavancin
2.3. Oxazolidinones
Tedizolid Phosphate
2.4. Quinolones
2.4.1. Besifloxacin
2.4.2. Delafloxacin
2.4.3. Ozenoxacin
2.5. Tetracyclines
Omadacycline
3. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
Abbreviations
References
- Li, B.; Webster, T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res. 2018, 36, 22–32. [Google Scholar] [PubMed]
- O’Neill, J. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Rev. Antimicrob. Resist. 2014, 20, 1–16. [Google Scholar]
- David, M.Z.; Dryden, M.; Gottlieb, T.; Tattevin, P.; Gould, I.M. Recently approved antibacterials for methicillin-resistant Staphylococcus aureus (MRSA) and other Gram-positive pathogens: The shock of the new. Int. J. Antimicrob. Agents 2017, 50, 303–307. [Google Scholar] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [PubMed]
- Khameneh, B.; Diab, R.; Ghazvini, K.; Bazzaz, B.S.F. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb. Pathog. 2016, 95, 32–42. [Google Scholar] [CrossRef]
- World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- David, M.Z.; Daum, R.S. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 2010, 23, 616–687. [Google Scholar] [CrossRef] [PubMed]
- Engemann, J.J.; Carmeli, Y.; Cosgrove, S.E.; Fowler, V.G.; Bronstein, M.Z.; Trivette, S.L.; Briggs, J.P.; Sexton, D.J.; Kaye, K.S. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin. Infect. Dis. 2003, 36, 592–598. [Google Scholar]
- Nelson, R.E.; Slayton, R.B.; Stevens, V.W.; Jones, M.M.; Khader, K.; Rubin, M.A.; Jernigan, J.A.; Samore, M.H. Attributable mortality of healthcare-associated infections due to multidrug-resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus. Infect. Control Hosp. Epidemiol. 2017, 38, 848–856. [Google Scholar]
- Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti Infect. Ther. 2014, 12, 1221–1236. [Google Scholar]
- Thummeepak, R.; Leerach, N.; Kunthalert, D.; Tangchaisuriya, U.; Thanwisai, A.; Sitthisak, S. High prevalence of multi-drug resistant Streptococcus pneumoniae among healthy children in Thailand. J. Infect. Public Health 2015, 8, 274–281. [Google Scholar]
- Koulenti, D.; Song, A.; Ellingboe, A.; Abdul-Aziz, M.H.; Harris, P.; Gavey, E.; Lipman, J. Infections by multidrug-resistant Gram-negative Bacteria: what’s new in our arsenal and what’s in the pipeline? Int. J. Antimicrob. Agents 2018. [Google Scholar] [CrossRef] [PubMed]
- Medscape. Teflaro (Ceftaroline) Dosing, Indications, Interactions, Adverse Effects, and More. 30 December 2016. Available online: https://reference.medscape.com/drug/teflaro-ceftaroline-999606 (accessed on 6 August 2019).
- Datapharm Communications Limited. Zevtera 500 mg Powder for Concentrate for Solution for Infusion. 2019. Available online: https://www.medicines.org.uk/emc/product/9164/smpc (accessed on 6 August 2019).
- U.S. Food and Drug Administration. VIBATIV® (Telavancin) for Injection, for Intravenous Use. 09/2009. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/022110s000lbl.pdf (accessed on 6 August 2019).
- U.S. Food and Drug Administration. DALVANCE (Dalbavancin). 1/2016. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021883s003lbl.pdf (accessed on 6 August 2019).
- Corey, G.R.; Kabler, H.; Mehra, P.; Gupta, S.; Overcash, J.S.; Porwal, A.; Giordano, P.; Lucasti, C.; Perez, A.; Good, S.; et al. Single-dose oritavancin in the treatment of acute bacterial skin infections. N. Engl. J. Med. 2014, 370, 2180–2190. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. SIVEXTRO (Tedizolid Phosphate): Indications and Usage. 6/2014. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/205435s000lbl.pdf (accessed on 6 August 2019).
- U.S. Food and Drug Administration. Besivance (Besifloxacin Ophthalmic Suspension) 0.6%; Food and Drug Administration: Silver Spring, MD, USA, 2009. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022308s013lbl.pdf (accessed on 6 August 2019).
- U.S. Food and Drug Administration. BAXDELA (Delafloxacin): Indications and Usage. 2017. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208610s000,208611s000lbl.pdf (accessed on 6 August 2019).
- U.S. Food and Drug Administration. XEPITM (Ozenoxacin) Cream, for Topical Use. 12/2017. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208945lbl.pdf (accessed on 6 August 2019).
- U.S. Food and Drug Administration. NUZYRA (Omadacycline): Indications and Usage. 2018. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209816_209817lbl.pdf (accessed on 6 August 2019).
- Udy, A.A.; Roberts, J.A.; De Waele, J.; Paterson, D.L.; Lipman, J. What’s behind the failure of emerging antibiotics in the critically ill?: Understanding the impact of altered pharmacokinetics and augmented renal clearance. Int. J. Antimicrob. Agents 2012, 39, 455–457. [Google Scholar] [CrossRef] [PubMed]
- Burdette, S.D.; Trotman, R. Tedizolid: The First Once-Daily Oxazolidinone Class Antibiotic. Clin. Infect. Dis. 2015, 61, 1315–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodvold, K.A.; Pai, M.P. Pharmacokinetics and pharmacodynamics of oral and intravenous omadacycline. Clin. Infect. Dis. 2019, 69, S16–S22. [Google Scholar] [CrossRef] [PubMed]
- White, B.P.; Barber, K.E.; Stover, K.R. Ceftaroline for the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Am. J. Health Syst. Pharm. 2017, 74, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Moisan, H.; Pruneau, M.; Malouin, F. Binding of ceftaroline to penicillin-binding proteins of Staphylococcus aureus and Streptococcus pneumoniae. J. Antimicrob. Chemother. 2010, 65, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Kosowska-Shick, K.; McGhee, P.; Appelbaum, P. Affinity of ceftaroline and other β-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2010, 54, 1670–1677. [Google Scholar] [CrossRef] [PubMed]
- Biek, D.; Critchley, I.A.; Riccobene, T.A.; Thye, D.A. Ceftaroline fosamil: A novel broad-spectrum cephalosporin with expanded anti-Gram-positive activity. J. Antimicrob. Chemother. 2010, 65, iv9–iv16. [Google Scholar] [CrossRef]
- Kaushik, D.; Rathi, S.; Jain, A. Ceftaroline: A comprehensive update. Int. J. Antimicrob. Agents 2011, 37, 389–395. [Google Scholar] [CrossRef]
- Maselli, D.J.; Fernandez, J.F.; Whong, C.Y.; Echevarria, K.; Nambiar, A.M.; Anzueto, A.; Restrepo, M.I. Clinical evaluation of the role of ceftaroline in the management of community acquired bacterial pneumonia. Infect. Drug Resist. 2012, 5, 43. [Google Scholar]
- Justo, J.A.; Mayer, S.M.; Pai, M.P.; Soriano, M.M.; Danziger, L.H.; Novak, R.M.; Rodvold, K.A. Pharmacokinetics of ceftaroline in normal body weight and obese (classes I, II, and III) healthy adult subjects. Antimicrob. Agents Chemother. 2015, 59, 3956–3965. [Google Scholar] [CrossRef]
- Allergan. TEFLARO® (Ceftaroline Fosamil) for Injection, for Intravenous Use. 12/2018. Available online: https://www.allergan.com/assets/pdf/teflaro_pi (accessed on 6 August 2019).
- Riccobene, T.A.; Pushkin, R.; Jandourek, A.; Knebel, W.; Khariton, T. Penetration of ceftaroline into the epithelial lining fluid of healthy adult subjects. Antimicrob. Agents Chemother. 2016, 60, 5849–5857. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. TEFLARO (Cefaroline Fosamil). 5/2016. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/200327s016s017lbl.pdf (accessed on 6 August 2019).
- Abbott, I.J.; Jenney, A.W.J.; Jeremiah, C.J.; Mirčeta, M.; Kandiah, J.P.; Holt, D.C.; Tong, S.Y.C.; Spelman, D.W. Reduced In Vitro Activity of Ceftaroline by Etest among Clonal Complex 239 Methicillin-Resistant Staphylococcus aureus Clinical Strains from Australia. Antimicrob. Agents Chemother. 2015, 59, 7837–7841. [Google Scholar] [CrossRef] [Green Version]
- Corrado, M.L. Integrated safety summary of CANVAS 1 and 2 trials: Phase III, randomized, double-blind studies evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J. Antimicrob. Chemother. 2010, 65, iv67–iv71. [Google Scholar] [CrossRef]
- Furtek, K.J.; Kubiak, D.W.; Barra, M.; Varughese, C.A.; Ashbaugh, C.D.; Koo, S. High incidence of neutropenia in patients with prolonged ceftaroline exposure. J. Antimicrob. Chemother. 2016, 71, 2010–2013. [Google Scholar] [CrossRef] [Green Version]
- Dryden, M.; Zhang, Y.; Wilson, D.; Iaconis, J.P.; Gonzalez, J. A Phase III, randomized, controlled, non-inferiority trial of ceftaroline fosamil 600 mg every 8 h versus vancomycin plus aztreonam in patients with complicated skin and soft tissue infection with systemic inflammatory response or underlying comorbidities. J. Antimicrob. Chemother. 2016, 71, 3575–3584. [Google Scholar] [CrossRef] [PubMed]
- File Jr, T.M.; Low, D.E.; Eckburg, P.B.; Talbot, G.H.; Friedland, H.D.; Lee, J.; Llorens, L.; Critchley, I.; Thye, D. Integrated analysis of FOCUS 1 and FOCUS 2: Randomized, doubled-blinded, multicenter phase 3 trials of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in patients with community-acquired pneumonia. Clin. Infect. Dis. 2010, 51, 1395–1405. [Google Scholar] [CrossRef] [PubMed]
- Biedenbach, D.J.; Hoban, D.J.; Reiszner, E.; Lahiri, S.D.; Alm, R.A.; Sahm, D.F.; Bouchillon, S.K.; Ambler, J.E. In Vitro Activity of Ceftaroline against Staphylococcus aureus Isolates Collected in 2012 from Latin American Countries as Part of the AWARE Surveillance Program. Antimicrob. Agents Chemother. 2015, 59, 7873–7877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaumburg, F.; Peters, G.; Alabi, A.; Becker, K.; Idelevich, E.A. Missense mutations of PBP2a are associated with reduced susceptibility to ceftaroline and ceftobiprole in African MRSA. J. Antimicrob. Chemother. 2016, 71, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Biedenbach, D.J.; Alm, R.A.; Lahiri, S.D.; Reiszner, E.; Hoban, D.J.; Sahm, D.F.; Bouchillon, S.K.; Ambler, J.E. In Vitro Activity of Ceftaroline against Staphylococcus aureus Isolated in 2012 from Asia-Pacific Countries as Part of the AWARE Surveillance Program. Antimicrob. Agents Chemother. 2016, 60, 343–347. [Google Scholar] [CrossRef] [Green Version]
- Urbán, E.; Stone, G.G. Impact of EUCAST ceftaroline breakpoint change on the susceptibility of methicillin-resistant Staphylococcus aureus isolates collected from patients with complicated skin and soft tissue infections. Clin. Microbiol. Infect. 2019. [Google Scholar] [CrossRef] [PubMed]
- Rosanova, M.T.; Aguilar, P.S.; Sberna, N.; Lede, R. Efficacy and safety of ceftaroline: Systematic review and meta-analysis. Ther. Adv. Infect. Dis. 2019, 6, 2049936118808655. [Google Scholar] [CrossRef]
- Lan, S.H.; Chang, S.P.; Lai, C.C.; Lu, L.C.; Chao, C.M. Ceftaroline Efficacy and Safety in Treatment of Complicated Skin and Soft Tissue Infection: A Systemic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2019, 8, 776. [Google Scholar] [CrossRef] [PubMed]
- Scheeren, T.W. Ceftobiprole medocaril in the treatment of hospital-acquired pneumonia. Future Microbiol. 2015, 10, 1913–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustos, C.; Del Pozo, J.L. Emerging agents to combat complicated and resistant infections: Focus on ceftobiprole. Infect. Drug Resist. 2010, 3, 5. [Google Scholar]
- Rodvold, K.A.; Nicolau, D.P.; Lodise, T.P.; Khashab, M.; Noel, G.J.; Kahn, J.B.; Gotfried, M.; Murray, S.A.; Nicholson, S.; Laohavaleeson, S.; et al. Identifying exposure targets for treatment of staphylococcal pneumonia with ceftobiprole. Antimicrob. Agents Chemother. 2009, 53, 3294–3301. [Google Scholar] [CrossRef] [PubMed]
- Kisgen, J.; Whitney, D. Ceftobiprole, a Broad-Spectrum Cephalosporin With Activity against Methicillin-Resistant Staphylococcus aureus (MRSA). Pharm. Ther. 2008, 33, 631–641. [Google Scholar]
- Nicholson, S.C.; Welte, T.; File, T.M., Jr.; Strauss, R.S.; Michiels, B.; Kaul, P.; Balis, D.; Arbit, D.; Amsler, K.; Noel, G.J. A randomised, double-blind trial comparing ceftobiprole medocaril with ceftriaxone with or without linezolid for the treatment of patients with community-acquired pneumonia requiring hospitalisation. Int. J. Antimicrob. Agents 2012, 39, 240–246. [Google Scholar] [CrossRef]
- Awad, S.S.; Rodriguez, A.H.; Chuang, Y.C.; Marjanek, Z.; Pareigis, A.J.; Reis, G.; Scheeren, T.W.; Sanchez, A.S.; Zhou, X.; Saulay, M.; et al. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin. Infect. Dis. 2014, 59, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Jansen, J.W.; Moenster, R.P. Rate and incidence of adverse reactions associated with ceftaroline exposure: Importance of cutaneous manifestations. Ann. Pharmacother. 2018, 52, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Chan, J.D.; Rogers, L.; Dellit, T.H.; Lynch, J.B.; Pottinger, P.S. High incidence of discontinuations due to adverse events in patients treated with ceftaroline. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2014, 34, 758–763. [Google Scholar] [CrossRef]
- U.S. National Library of Medicine. Ceftobiprole in the Treatment of Patients with Acute Bacterial Skin and Skin Structure Infections. 2019. Available online: https://clinicaltrials.gov/ct2/show/NCT03137173 (accessed on 6 August 2019).
- Basilea Pharmaceutical. Basilea. 2019. Available online: https://www.basilea.com/ (accessed on 6 August 2019).
- U.S. National Library of Medicine. Ceftobiprole in the Treatment of Patients with Staphylococcus Aureus Bacteremia. 2019. Available online: https://clinicaltrials.gov/ct2/show/NCT03138733 (accessed on 6 August 2019).
- Gales, A.C.; Sader, H.S.; Jones, R.N. Antimicrobial activity of dalbavancin tested against Gram-positive clinical isolates from Latin American medical centres. Clin. Microbiol. Infect. 2005, 11, 95–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klinker, K.P.; Borgert, S.J. Beyond Vancomycin: The Tail of the Lipoglycopeptides. Clin. Ther. 2015, 37, 2619–2636. [Google Scholar] [CrossRef] [PubMed]
- Durata Therapeutics, U.S. Ltd. Dalvance (Dalbavancin) for Injection, for Intravenous Use: US Prescribing Information. 2014; Durata Therapeutics: Morristown, NJ, USA, 2015. [Google Scholar]
- Boucher, H.W.; Wilcox, M.; Talbot, G.H.; Puttagunta, S.; Das, A.F.; Dunne, M.W. Once-weekly dalbavancin versus daily conventional therapy for skin infection. N. Engl. J. Med. 2014, 370, 2169–2179. [Google Scholar] [CrossRef]
- Buckwalter, M.; Dowell, J.A. Population pharmacokinetic analysis of dalbavancin, a novel lipoglycopeptide. J. Clin. Pharm. 2005, 45, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Leighton, A.; Gottlieb, A.B.; Dorr, M.B.; Jabes, D.; Mosconi, G.; VanSaders, C.; Mroszczak, E.J.; Campbell, K.C.; Kelly, E. Tolerability, pharmacokinetics, and serum bactericidal activity of intravenous dalbavancin in healthy volunteers. Antimicrob. Agents Chemother. 2004, 48, 940–945. [Google Scholar] [CrossRef]
- Marbury, T.; Dowell, J.A.; Seltzer, E.; Buckwalter, M. Pharmacokinetics of Dalbavancin in Patients With Renal or Hepatic Impairment. J. Clin. Pharm. 2009, 49, 465–476. [Google Scholar] [CrossRef]
- Dunne, M.W.; Puttagunta, S.; Giordano, P.; Krievins, D.; Zelasky, M.; Baldassarre, J. A Randomized Clinical Trial of Single-Dose Versus Weekly Dalbavancin for Treatment of Acute Bacterial Skin and Skin Structure Infection. Clin. Infect. Dis. 2016, 62, 545–551. [Google Scholar] [CrossRef]
- The European Medicines Agency. Xydalba (Dalbavancin). 2019. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/xydalba#assessment-history-section (accessed on 6 August 2019).
- U.S. National Library of Medicine. Dalbavancin for the Treatment of Acute Bacterial Skin and Skin Structure Infections in Children, Known or Suspected to be Caused by Susceptible Gram-positive Organisms, Including MRSA; National Library of Medicine: Bethesda, MD, USA, 2016. Available online: https://clinicaltrials.gov/ct2/show/NCT02814916 (accessed on 6 August 2019).
- U.S. National Library of Medicine. Evaluation of Intravenous and Intraperitoneal Pharmacokinetics of Dalbavancin in Peritoneal Dialysis Patients; National Library of Medicine: Bethesda, MD, USA, 2016. Available online: https://clinicaltrials.gov/ct2/show/NCT02940730 (accessed on 6 August 2019).
- U.S. National Library of Medicine. Development of a New Critical Pathway for Treatment of Acute Bacterial Skin and Skin Structure Infections (ABSSSI); National Library of Medicine: Bethesda, MD, USA, 2017. Available online: https://clinicaltrials.gov/ct2/show/NCT03233438 (accessed on 6 August 2019).
- U.S. National Library of Medicine. A P3 Comparator Trial in Community Acquired Bacterial Pneumonia. Available online: https://clinicaltrials.gov/ct2/show/NCT02269644 (accessed on 2 August 2019).
- Dunne, M.; Rappo, U.; Puttagunta, S.; Baldassarre, J.; Su, S.; Desai-Krieger, D.; Inoue, M. Intrapulmonary and Plasma Concentrations of Dalbavancin in Healthy Adults after a Single 1500 mg Infusion. In Proceedings of the 26th European Congress of Clinical Microbiology and Infectious Diseases, Amsterdam, The Netherlands, 9–12 April 2016. [Google Scholar]
- Barber, K.E.; Tirmizi, A.; Finley, R.; Stover, K.R. Dalbavancin use for the treatment of methicillin-resistant Staphylococcus aureus pneumonia. J. Pharmacol. Pharmacother. 2017, 8, 77. [Google Scholar]
- Bork, J.T.; Heil, E.L.; Berry, S.; Lopes, E.; Davé, R.; Gilliam, B.L.; Amoroso, A. Dalbavancin Use in Vulnerable Patients Receiving Outpatient Parenteral Antibiotic Therapy for Invasive Gram-Positive Infections. Infect. Dis. Ther. 2019, 8, 171–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenthal, S.; Decano, A.G.; Bandali, A.; Lai, D.; Malat, G.E.; Bias, T.E. Oritavancin (Orbactiv): A New-Generation Lipoglycopeptide for the Treatment Of Acute Bacterial Skin and Skin Structure Infections. Pharm. Ther. 2018, 43, 143. [Google Scholar]
- Belley, A.; McKay, G.A.; Arhin, F.F.; Sarmiento, I.; Beaulieu, S.; Fadhil, I.; Parr, T.R., Jr.; Moeck, G. Oritavancin disrupts membrane integrity of Staphylococcus aureus and vancomycin-resistant enterococci to effect rapid bacterial killing. Antimicrob. Agents Chemother. 2010, 54, 5369–5371. [Google Scholar] [CrossRef] [PubMed]
- Arhin, F.F.; Draghi, D.C.; Pillar, C.M.; Parr, T.R., Jr.; Moeck, G.; Sahm, D.F. Comparative in vitro activity profile of oritavancin against recent gram-positive clinical isolates. Antimicrob. Agents Chemother. 2009, 53, 4762–4771. [Google Scholar] [CrossRef] [PubMed]
- Flüh, G.; Seifert, H.; Kaasch, A.J. Oritavancin: An Update; Future Medicine: London, UK, 2018. [Google Scholar]
- Saravolatz, L.D.; Stein, G.E. Oritavancin: A Long-Half-Life Lipoglycopeptide. Clin. Infect. Dis. 2015, 61, 627–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Food and Drug Administration. ORBACTIV (Oritavancin). 8/2014. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206334s000lbl.pdf (accessed on 6 August 2019).
- Agency, E.M. Orbactiv. 15 November 2018. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/orbactiv (accessed on 6 August 2019).
- Corey, G.R.; Good, S.; Jiang, H.; Moeck, G.; Wikler, M.; Green, S.; Manos, P.; Keech, R.; Singh, R.; Heller, B. Single-dose oritavancin versus 7–10 days of vancomycin in the treatment of gram-positive acute bacterial skin and skin structure infections: The SOLO II noninferiority study. Clin. Infect. Dis. 2014, 60, 254–262. [Google Scholar] [CrossRef]
- Lodise, T.P.; Redell, M.; Armstrong, S.O.; Sulham, K.A.; Corey, G.R. Efficacy and safety of oritavancin relative to vancomycin for patients with acute bacterial skin and skin structure infections (ABSSSI) in the outpatient setting: Results from the SOLO clinical trials. Open Forum Infect. Dis. 2017, 4, ofw274. [Google Scholar]
- Friedman, H.; Mason, J.; Hund, M.; Sills, N.; Lee, S.; Moriarty, S.; Moon, T. A Phase I, double-blind, randomized, placebo-and positive-controlled, single dose, parallel design trial to assess the potential electrocardiographic effects of oritavancin in healthy adults. In Proceedings of the 48th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC, USA, 25–28 October 2008. [Google Scholar]
- Moriarty, S.; Wasilewski, M.; Rosen, A.; Perry, M. Safety of oritavancin versus vancomycin for treatment of patients with complicated skin and skin-structure infections: P1853. Clin. Microbiol. Infect. 2009, 15, S538. [Google Scholar]
- Kmeid, J.; Kanafani, Z.A. Oritavancin for the treatment of acute bacterial skin and skin structure infections: An evidence-based review. Core Evid. 2015, 10, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Righi, E. Development of novel antibacterial drugs to combat multiple resistant organisms. Langenbecks. Arch. Surg. 2015, 400, 153–165. [Google Scholar] [CrossRef]
- U.S. National Library of Medicine. Open-Label, Dose-Finding, Pharmacokinetics, Safety and Tolerability Study of Oritavancin in Pediatric Patients with Suspected or Confirmed Bacterial Infections. 2014. Available online: https://clinicaltrials.gov/ct2/show/NCT02134301 (accessed on 6 August 2019).
- U.S. Food and Drug Administration. Oritavancin for Staphylococcus Aureus Infections in Opioid Users. 2018. Available online: https://clinicaltrials.gov/ct2/show/NCT03761953 (accessed on 6 August 2019).
- Rubinstein, E.; Lalani, T.; Corey, G.R.; Kanafani, Z.A.; Nannini, E.C.; Rocha, M.G.; Rahav, G.; Niederman, M.S.; Kollef, M.H.; Shorr, A.F. Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens. Clin. Infect. Dis. 2011, 52, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Pace, J.L.; Krause, K.; Johnston, D.; Debabov, D.; Wu, T.; Farrington, L.; Lane, C.; Higgins, D.L.; Christensen, B.; Judice, J.K. In vitro activity of TD-6424 against Staphylococcus aureus. Antimicrob. Agents Chemother. 2003, 47, 3602–3604. [Google Scholar] [CrossRef] [PubMed]
- Gotfried, M.H.; Shaw, J.P.; Benton, B.M.; Krause, K.M.; Goldberg, M.R.; Kitt, M.M.; Barriere, S.L. Intrapulmonary distribution of intravenous telavancin in healthy subjects and effect of pulmonary surfactant on in vitro activities of telavancin and other antibiotics. Antimicrob. Agents Chemother. 2008, 52, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Lunde, C.S.; Hartouni, S.R.; Janc, J.W.; Mammen, M.; Humphrey, P.P.; Benton, B.M. Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid II. Antimicrob. Agents Chemother. 2009, 53, 3375–3383. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.E.; O’Riordan, W.; Hopkins, A.; Friedland, H.D.; Barriere, S.L.; Kitt, M.M.; Investigators, A. Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections associated with surgical procedures. Am. J. Surg. 2009, 197, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Stryjewski, M.E.; Graham, D.R.; Wilson, S.E.; O’Riordan, W.; Young, D.; Lentnek, A.; Ross, D.P.; Fowler, V.G.; Hopkins, A.; Friedland, H.D. Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms. Clin. Infect. Dis. 2008, 46, 1683–1693. [Google Scholar] [CrossRef] [PubMed]
- Corey, G.R.; Kollef, M.H.; Shorr, A.F.; Rubinstein, E.; Stryjewski, M.E.; Hopkins, A.; Barriere, S.L. Telavancin for hospital-acquired pneumonia: Clinical response and 28-day survival. Antimicrob. Agents Chemother. 2014, 58, 2030–2037. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Vibativ: Withdrawal of the Marketing Authorisation Application. 28 November 2008. Available online: https://www.ema.europa.eu/en/medicines/human/withdrawn-applications/vibativ (accessed on 6 August 2019).
- Wong, E.; Rab, S. Tedizolid phosphate (sivextro): A second-generation oxazolidinone to treat acute bacterial skin and skin structure infections. Pharm. Ther. 2014, 39, 555. [Google Scholar]
- Chen, H.; Yang, Q.; Zhang, R.; He, W.; Ma, X.; Zhang, J.; Xia, F.; Zhao, F.; Cao, J.; Liu, Y.; et al. In vitro antimicrobial activity of the novel oxazolidinone tedizolid and comparator agents against Staphylococcus aureus and linezolid-resistant Gram-positive pathogens: A multicentre study in China. Int. J. Antimicrob. Agents 2014, 44, 276–277. [Google Scholar] [CrossRef]
- Merck Sharp & Dohme Limited. Sivextro 200 mg Film-Coated Tablets. 2018. Available online: https://www.medicines.org.uk/emc/product/1922/smpc (accessed on 6 August 2019).
- Zhanel, G.G.; Love, R.; Adam, H.; Golden, A.; Zelenitsky, S.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.; Rubinstein, E.; Walkty, A. Tedizolid: A novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens. Drugs 2015, 75, 253–270. [Google Scholar] [CrossRef]
- Barber, K.E.; Smith, J.R.; Raut, A.; Rybak, M.J. Evaluation of tedizolid against Staphylococcus aureus and enterococci with reduced susceptibility to vancomycin, daptomycin or linezolid. J. Antimicrob. Chemother. 2016, 71, 152–155. [Google Scholar] [CrossRef]
- Sahm, D.F.; Deane, J.; Bien, P.A.; Locke, J.B.; Zuill, D.E.; Shaw, K.J.; Bartizal, K.F. Results of the surveillance of Tedizolid activity and resistance program: In vitro susceptibility of gram-positive pathogens collected in 2011 and 2012 from the United States and Europe. Diagn. Microbiol. Infect. Dis. 2015, 81, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Louie, A.; Liu, W.; Kulawy, R.; Drusano, G.L. In vivo pharmacodynamics of torezolid phosphate (TR-701), a new oxazolidinone antibiotic, against methicillin-susceptible and methicillin-resistant Staphylococcus aureus strains in a mouse thigh infection model. Antimicrob. Agents Chemother. 2011, 55, 3453–3460. [Google Scholar] [CrossRef]
- Housman, S.T.; Pope, J.S.; Russomanno, J.; Salerno, E.; Shore, E.; Kuti, J.L.; Nicolau, D.P. Pulmonary disposition of tedizolid following administration of once-daily oral 200-milligram tedizolid phosphate in healthy adult volunteers. Antimicrob. Agents Chemother. 2012, 56, 2627–2634. [Google Scholar] [CrossRef] [PubMed]
- Ferrandez, O.; Urbina, O.; Grau, S. Critical role of tedizolid in the treatment of acute bacterial skin and skin structure infections. Drug Des. Dev. Ther. 2017, 11, 65–82. [Google Scholar] [CrossRef] [PubMed]
- Prokocimer, P.; De Anda, C.; Fang, E.; Mehra, P.; Das, A. Tedizolid phosphate vs linezolid for treatment of acute bacterial skin and skin structure infections: The ESTABLISH-1 randomized trial. JAMA 2013, 309, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Moran, G.J.; Fang, E.; Corey, G.R.; Das, A.F.; De Anda, C.; Prokocimer, P. Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2014, 14, 696–705. [Google Scholar] [CrossRef]
- Lee, E.Y.; Caffrey, A.R. Thrombocytopenia with tedizolid and linezolid. Antimicrob. Agents Chemother. 2018, 62, e01417–e01453. [Google Scholar] [CrossRef]
- Fala, L. Sivextro (Tedizolid Phosphate) Approved for the Treatment of Adults with Acute Bacterial Skin and Skin-Structure Infections. Am. Health Drug Benefits 2015, 8, 111–115. [Google Scholar]
- Douros, A.; Grabowski, K.; Stahlmann, R. Drug-drug interactions and safety of linezolid, tedizolid, and other oxazolidinones. Expert Opin. Drug Metab. Toxicol. 2015, 11, 1849–1859. [Google Scholar] [CrossRef] [PubMed]
- U.S. National Library of Medicine. Tedizolid Phosphate (TR-701 FA, MK-1986) vs. Linezolid for the Treatment of Nosocomial Pneumonia (MK-1986-002). 2013. Available online: https://clinicaltrials.gov/ct2/show/NCT02019420 (accessed on 6 August 2019).
- Haas, W.; Pillar, C.M.; Zurenko, G.E.; Lee, J.C.; Brunner, L.S.; Morris, T.W. Besifloxacin, a novel fluoroquinolone, has broad-spectrum in vitro activity against aerobic and anaerobic bacteria. Antimicrob. Agents Chemother. 2009, 53, 3552–3560. [Google Scholar] [CrossRef]
- Levine, C.; Hiasa, H.; Marians, K.J. DNA gyrase and topoisomerase IV: Biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim. Biophys. Acta 1998, 1400, 29–43. [Google Scholar] [CrossRef]
- Haas, W.; Pillar, C.M.; Hesje, C.K.; Sanfilippo, C.M.; Morris, T.W. Bactericidal activity of besifloxacin against staphylococci, Streptococcus pneumoniae and Haemophilus influenzae. J. Antimicrob. Chemother. 2010, 65, 1441–1447. [Google Scholar] [CrossRef] [Green Version]
- Haas, W.; Pillar, C.M.; Hesje, C.K.; Sanfilippo, C.M.; Morris, T.W. In vitro time-kill experiments with besifloxacin, moxifloxacin and gatifloxacin in the absence and presence of benzalkonium chloride. J. Antimicrob. Chemother. 2011, 66, 840–844. [Google Scholar] [CrossRef] [Green Version]
- Asbell, P.A.; Pandit, R.T.; Sanfilippo, C.M. Antibiotic Resistance Rates by Geographic Region Among Ocular Pathogens Collected During the ARMOR Surveillance Study. Ophthalmol. Ther. 2018, 7, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Comstock, T.L.; Karpecki, P.M.; Morris, T.W.; Zhang, J.Z. Besifloxacin: A novel anti-infective for the treatment of bacterial conjunctivitis. Clin. Ophthalmol. 2010, 4, 215–225. [Google Scholar] [CrossRef]
- Sanfilippo, C.M.; Hesje, C.K.; Haas, W.; Morris, T.W. Topoisomerase mutations that are associated with high-level resistance to earlier fluoroquinolones in Staphylococcus aureus have less effect on the antibacterial activity of besifloxacin. Chemotherapy 2011, 57, 363–371. [Google Scholar] [CrossRef]
- Cambau, E.; Matrat, S.; Pan, X.S.; Roth Dit Bettoni, R.; Corbel, C.; Aubry, A.; Lascols, C.; Driot, J.Y.; Fisher, L.M. Target specificity of the new fluoroquinolone besifloxacin in Streptococcus pneumoniae, Staphylococcus aureus and Escherichia coli. J. Antimicrob. Chemother. 2009, 63, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Silverstein, B.E.; Allaire, C.; Bateman, K.M.; Gearinger, L.S.; Morris, T.W.; Comstock, T.L. Efficacy and tolerability of besifloxacin ophthalmic suspension 0.6% administered twice daily for 3 days in the treatment of bacterial conjunctivitis: A multicenter, randomized, double-masked, vehicle-controlled, parallel-group study in adults and children. Clin. Investig. 2011, 33, 13–26. [Google Scholar] [CrossRef]
- Mah, F.S.; Sanfilippo, C.M. Besifloxacin: Efficacy and Safety in Treatment and Prevention of Ocular Bacterial Infections. Ophthalmol. Ther. 2016, 5, 1–20. [Google Scholar] [CrossRef]
- Sanfilippo, C.M.; Allaire, C.M.; DeCory, H.H. Besifloxacin Ophthalmic Suspension 0.6% Compared with Gatifloxacin Ophthalmic Solution 0.3% for the Treatment of Bacterial Conjunctivitis in Neonates. Drugs R D 2017, 17, 167–175. [Google Scholar] [CrossRef]
- Van Bambeke, F. Delafloxacin, a non-zwitterionic fluoroquinolone in Phase III of clinical development: Evaluation of its pharmacology, pharmacokinetics, pharmacodynamics and clinical efficacy. Future Microbiol. 2015, 10, 1111–1123. [Google Scholar] [CrossRef]
- Jorgensen, S.C.; Mercuro, N.J.; Davis, S.L.; Rybak, M.J. Delafloxacin: Place in therapy and review of microbiologic, clinical and pharmacologic properties. Infect. Dis. Ther. 2018, 7, 197–217. [Google Scholar] [CrossRef]
- Almer, L.S.; Hoffrage, J.B.; Keller, E.L.; Flamm, R.K.; Shortridge, V.D. In vitro and bactericidal activities of ABT-492, a novel fluoroquinolone, against Gram-positive and Gram-negative organisms. Antimicrob. Agents Chemother. 2004, 48, 2771–2777. [Google Scholar] [CrossRef]
- Remy, J.M.; Tow-Keogh, C.A.; McConnell, T.S.; Dalton, J.M.; Devito, J.A. Activity of delafloxacin against methicillin-resistant Staphylococcus aureus: Resistance selection and characterization. J. Antimicrob. Chemother. 2012, 67, 2814–2820. [Google Scholar] [CrossRef]
- Thabit, A.K.; Crandon, J.L.; Nicolau, D.P. Pharmacodynamic and pharmacokinetic profiling of delafloxacin in a murine lung model against community-acquired respiratory tract pathogens. Int. J. Antimicrob. Agents 2016, 48, 535–541. [Google Scholar] [CrossRef]
- Hoover, R.K.; Alcorn, H., Jr.; Lawrence, L.; Paulson, S.K.; Quintas, M.; Cammarata, S.K. Delafloxacin Pharmacokinetics in Subjects With Varying Degrees of Renal Function. J. Clin. Pharm. 2018, 58, 514–521. [Google Scholar] [CrossRef]
- O’Riordan, W.; Mehra, P.; Manos, P.; Kingsley, J.; Lawrence, L.; Cammarata, S. A randomized phase 2 study comparing two doses of delafloxacin with tigecycline in adults with complicated skin and skin-structure infections. Int. J. Infect. Dis. 2015, 30, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Kingsley, J.; Mehra, P.; Lawrence, L.E.; Henry, E.; Duffy, E.; Cammarata, S.K.; Pullman, J. A randomized, double-blind, Phase 2 study to evaluate subjective and objective outcomes in patients with acute bacterial skin and skin structure infections treated with delafloxacin, linezolid or vancomycin. J. Antimicrob. Chemother. 2016, 71, 821–829. [Google Scholar] [CrossRef]
- O’Riordan, W.; Manus, A.M.; Teras, J.; Poromanski, I.; Saldariagga, M.C.; Quintas, M.; Cammarata, S.; Lawrence, L. A Global Phase 3 Study of Delafloxacin Compared to Vancomycin/Aztreonam in Patients with Acute Bacterial Skin and Skin Structure Infections. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2016; Volume 3. [Google Scholar]
- Lodise, T.; Corey, R.; Hooper, D.; Cammarata, S. Safety of delafloxacin: Focus on adverse events of special interest. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2018; Volume 5. [Google Scholar]
- U.S. Food and Drug Administration. BAXDELA: Approval Letter. 2017. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208610Orig1s000,208611Orig1s000Approv.pdf (accessed on 6 August 2019).
- Melinta Therapeutics. Melinta Therapeutics Partner, Menarini Group, Submits Marketing Authorization Application for Delafloxacin in Europe. 2018. Available online: http://ir.melinta.com/news-releases/news-release-details/melinta-therapeutics-partner-menarini-group-submits-marketing (accessed on 6 August 2019).
- U.S. National Library of Medicine. Study to Compare Delafloxacin to Moxifloxacin for the Treatment of Adults with Community-acquired Bacterial Pneumonia (DEFINE-CABP). 2018. Available online: https://clinicaltrials.gov/ct2/show/NCT02679573 (accessed on 6 August 2019).
- Melinta Therapeutics. BAXDELA (DELAFLOXACIN): UNITED STATES. 2019. Available online: http://melinta.com/pipeline/baxdela/ (accessed on 6 August 2019).
- Wren, C.; Bell, E.; Eiland, L.S. Ozenoxacin: A Novel Topical Quinolone for Impetigo. Ann. Pharm. 2018, 52, 1233–1237. [Google Scholar] [CrossRef]
- Yamakawa, T.; Mitsuyama, J.; Hayashi, K. In vitro and in vivo antibacterial activity of T-3912, a novel non-fluorinated topical quinolone. J. Antimicrob. Chemother. 2002, 49, 455–465. [Google Scholar] [CrossRef]
- Ferrer International. Product Monograph Including Patient Medication Information OZANEX (ozenoxacin cream). 2017. Available online: http://www.cipherpharma.com/wp-content/uploads/2017/12/Ozanex-PM-English.pdf (accessed on 6 August 2019).
- Gonzalez Borroto, J.I.; Awori, M.S.; Chouinard, L.; Smith, S.Y.; Tarrago, C.; Blazquez, T.; Gargallo-Viola, D.; Zsolt, I. Studies on articular and general toxicity of orally administered ozenoxacin in juvenile rats and dogs. Future Microbiol. 2018, 13, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Rosen, T.; Albareda, N.; Rosenberg, N.; Alonso, F.G.; Roth, S.; Zsolt, I.; Hebert, A.A. Efficacy and Safety of Ozenoxacin Cream for Treatment of Adult and Pediatric Patients With Impetigo: A Randomized Clinical Trial. JAMA Derm. 2018, 154, 806–813. [Google Scholar] [CrossRef]
- Honeyman, L.; Ismail, M.; Nelson, M.L.; Bhatia, B.; Bowser, T.E.; Chen, J.; Mechiche, R.; Ohemeng, K.; Verma, A.K.; Cannon, E.P.; et al. Structure-activity relationship of the aminomethylcyclines and the discovery of omadacycline. Antimicrob. Agents Chemother. 2015, 59, 7044–7053. [Google Scholar] [CrossRef]
- Draper, M.P.; Weir, S.; Macone, A.; Donatelli, J.; Trieber, C.A.; Tanaka, S.K.; Levy, S.B. Mechanism of action of the novel aminomethylcycline antibiotic omadacycline. Antimicrob. Agents Chemother. 2014, 58, 1279–1283. [Google Scholar] [CrossRef]
- Villano, S.; Steenbergen, J.; Loh, E. Omadacycline: Development of a novel aminomethylcycline antibiotic for treating drug-resistant bacterial infections. Future Microbiol. 2016, 11, 1421–1434. [Google Scholar] [CrossRef]
- Gotfried, M.H.; Horn, K.; Garrity-Ryan, L.; Villano, S.; Tzanis, E.; Chitra, S.; Manley, A.; Tanaka, S.K.; Rodvold, K.A. Comparison of Omadacycline and Tigecycline Pharmacokinetics in the Plasma, Epithelial Lining Fluid, and Alveolar Cells of Healthy Adult Subjects. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef]
- Noel, G.J.; Draper, M.P.; Hait, H.; Tanaka, S.K.; Arbeit, R.D. A randomized, evaluator-blind, phase 2 study comparing the safety and efficacy of omadacycline to those of linezolid for treatment of complicated skin and skin structure infections. Antimicrob. Agents Chemother. 2012, 56, 5650–5654. [Google Scholar] [CrossRef]
- Loh, E. A Phase 3 Randomized, Double-Blind, Multi-Center Study to Compare the Safety and Efficacy of Oral and IV Omadacycline to Linezolid for Treating Adult Subjects with ABSSSI (The OASIS Study). 2017. Available online: https://paratekpharma.com/media/1410/eccmid-oasis-oral-final-22apr2017-vff.pdf (accessed on 6 August 2019).
- Comella, C.; O’Riordan, W.A.; Green, S.; Overcash, J.S.; Eckburg, P.; Steenbergen, J.; Das, A.; Tzanis, E.; Garrity-Ryan, L.; Manley, A.; et al. Efficacy of Oral and IV Omadacycline vs. Linezolid for Treating Adult Subjects With ABSSSI: Analysis by Infection Type and Pathogen in the OASIS Study 2017. Available online: https://www.escmid.org/escmid_publications/escmid_elibrary/material/?mid=40123 (accessed on 6 August 2019).
- O’Riordan, W.; Green, S.; Overcash, J.S.; Puljiz, I.; Metallidis, S.; Gardovskis, J.; Garrity-Ryan, L.; Das, A.F.; Tzanis, E.; Eckburg, P.B. Omadacycline for acute bacterial skin and skin-structure infections. N. Engl. J. Med. 2019, 380, 528–538. [Google Scholar] [CrossRef]
- Stets, R.; Popescu, M.; Gonong, J.; Mitha, I.; Nseir, W.; Madej, A.; Kirsch, C.; Das, A.; Garrity-Ryan, L.; Steenbergen, J.N.; et al. A Phase 3 Randomized, Double-blind, Multi-center Study to Compare the Safety and Efficacy of IV to Oral Omadacycline to Moxifloxacin for the Treatment of Adult Subjects with CABP (The OPTIC Study). Open Forum Infect. Dis. 2017, 4. [Google Scholar] [CrossRef]
- Stets, R.; Popescu, M.; Gonong, J.R.; Mitha, I.; Nseir, W.; Madej, A.; Kirsch, C.; Das, A.F.; Garrity-Ryan, L.; Steenbergen, J.N. Omadacycline for Community-Acquired Bacterial Pneumonia. N. Engl. J. Med. 2019, 380, 517–527. [Google Scholar] [CrossRef]
- Paratek Pharmaceuticals. Available online: https://paratekpharma.com/ (accessed on 6 August 2019).
- U.S. National Library of Medicine. Oral Omadacycline vs. Oral Nitrofurantoin for the Treatment of Cystitis. 2019. Available online: https://clinicaltrials.gov/ct2/show/NCT03757234 (accessed on 6 August 2019).
- Bradley, J.S. Which antibiotic for resistant Gram-positives, and why? J. Infect. 2014, 68, S63–S75. [Google Scholar] [CrossRef]
- Roberts, J.A.; Kruger, P.; Paterson, D.L.; Lipman, J. Antibiotic resistance—what’s dosing got to do with it? Crit. Care Med. 2008, 36, 2433–2440. [Google Scholar] [CrossRef]
Drug | Approval Time | Antibiotic Class | Company | Spectrum Against Organisms | Indication | Dose 1 | Comments/Warnings 2 |
---|---|---|---|---|---|---|---|
Ceftaroline (Teflaro/Zinforo) | FDA: October 2010 EMA: August 2012 | Cephalosporin | Allergan Pharmaceutical Industries Ltd. (US/Canada); Takeda Pharmaceutical Company Ltd. (Japan); Pfizer (globally except US/Canada/Japan) | ABSSSI: MRSA, MSSA, S. pyogenes, S. agalactiae CABP: MSSA, S. pneumoniae, H. influenzae | FDA: CABP and ABSSSI EMA: CABP and cSSSI | 3 IV: 600 mg over 5 to 60 min every 12 h [13] |
|
Ceftobiprole (Zevtera/Mabelio) | EMA: October 2013 | Cephalosporin | Basilea Pharmaceutica Ltd. | MRSA, ampicillin-susceptible enterococci and penicillin-resistant pneumococci | EMA: HAP (excluding VAP) and CABP | IV: 500 mg over 2 h every 8 h [14] |
|
Telavancin (Vibativ) | FDA: September 2009 | Lipoglycopeptide | Theravance Biopharma Antibiotics, Inc., | MRSA, vancomycin-intermediate S. aureus and penicillin-resistant S. pneumoniae | FDA: cSSSI, HAP (including VAP) | IV: 10 mg/kg over 60 min every 24 h for 7–14 days (cSSSI) and 7–21 days (HAP/VAP) [15] |
|
Dalbavancin (Dalvance/ Xydalba) | FDA: May 2014 | Lipoglycopeptide | Durata Therapeutics (acquired by Actavis in 2014) | MRSA, S. pyogenes, S. agalactiae and E. faecalis strains susceptible to vancomycin | FDA: ABSSSI | IV: 1000 mg over 30 min followed one week later by 500 mg over 30 min [16] |
|
Oritavancin (Orbactiv) | FDA: August 2014 EMA: March 2015 | Glycopeptide | Melinta Therapeutics Inc. | MSSA, MRSA, VRE and vancomycin-intermediate and vancomycin-resistant staphylococci | FDA: ABSSSI EMA: ABSSSI | IV: 1200 mg single dose over 3 h [17] |
|
Tedizolid Phosphate (Sivextro) | FDA: June 2014 EMA: March 2015 | Oxazolidinone | Cubist Pharmaceuticals | MRSA, vancomycin-intermediate Enterococcus spp. | FDA: ABSSSI EMA: ABSSSI | IV: 200 mg single dose over 1 h for 6 days 5 PO: 200 mg once daily [18] |
|
Besifloxacin (Besivance) | FDA: June 2009 | Fluoroquinolone | SSP Co. Ltd. | MRSA, S. epidermidis, S. pneumoniae, and H. influenzae | FDA: bacterial conjunctivitis | Instill one drop in the affected eye(s) 3 times a day, four to 12 h apart for 7 days [19] |
|
Delafloxacin (Baxdela) | FDA: June 2017 | Fluoroquinolone | Melinta Therapeutics Inc. | S. aureus (including MRSA), S. pneumoniae, other fluoroquinolone resistant strains (Ineffective against Fluoroquinolone-resistant enterococci) | FDA: ABSSSI | IV: 300 mg over 1 h every 12 h PO: 450 mg tablet every 12 h for 5 to 14 days [20] |
|
Ozenoxacin (Ozaenex/Xepi) | FDA: December 2017 | Non-fluorinated quinolone | Ferrer Internacional S.A. | MRSA, MSSA, MRSE and S. pyogenes | FDA: impetigo | Topical: apply a thin layer to the affected area twice daily for 5 days [21 |
|
Omadacycline (Nuzyra) | FDA: October 2018 | Tetracycline | Paratek Pharmaceuticals | MRSA, penicillin-resistant and multidrug-resistant S. pneumoniae, and vancomycin-resistant Enterococcus spp. | FDA: CABP, ABSSSI | Duration: 7–14 days Loading IV Day1: 200 mg over 1 h once daily or 100 mg over 30 min twice daily Maintainance: 100 mg over 30 min or 300 mg po once daily 6 Loading PO (ABSSSI) Day 1&2: 450 mg once daily Maintainance PO (ABSSSI) 300 mg once daily [22] |
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koulenti, D.; Xu, E.; Yin Sum Mok, I.; Song, A.; Karageorgopoulos, D.E.; Armaganidis, A.; Lipman, J.; Tsiodras, S. Novel Antibiotics for Multidrug-Resistant Gram-Positive Microorganisms. Microorganisms 2019, 7, 270. https://doi.org/10.3390/microorganisms7080270
Koulenti D, Xu E, Yin Sum Mok I, Song A, Karageorgopoulos DE, Armaganidis A, Lipman J, Tsiodras S. Novel Antibiotics for Multidrug-Resistant Gram-Positive Microorganisms. Microorganisms. 2019; 7(8):270. https://doi.org/10.3390/microorganisms7080270
Chicago/Turabian StyleKoulenti, Despoina, Elena Xu, Isaac Yin Sum Mok, Andrew Song, Drosos E. Karageorgopoulos, Apostolos Armaganidis, Jeffrey Lipman, and Sotirios Tsiodras. 2019. "Novel Antibiotics for Multidrug-Resistant Gram-Positive Microorganisms" Microorganisms 7, no. 8: 270. https://doi.org/10.3390/microorganisms7080270
APA StyleKoulenti, D., Xu, E., Yin Sum Mok, I., Song, A., Karageorgopoulos, D. E., Armaganidis, A., Lipman, J., & Tsiodras, S. (2019). Novel Antibiotics for Multidrug-Resistant Gram-Positive Microorganisms. Microorganisms, 7(8), 270. https://doi.org/10.3390/microorganisms7080270